Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (20,510)

Search Parameters:
Keywords = neutrality

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 933 KB  
Article
Research on Algae Enhancing Biogenic Methane Production from Coal
by Liu Zhu, Wangjie Diao, Yi Liu, Peilin Zhu and Chenyao Gong
Sustainability 2025, 17(17), 7960; https://doi.org/10.3390/su17177960 (registering DOI) - 3 Sep 2025
Abstract
The low efficiency of the microbial gasification of coal limits the application of bio-coal bed methane technology. The co-fermentation of coal and biomass provides a new approach for improving the degradation rate of coal. In this study, a co-fermentation system comprising five different [...] Read more.
The low efficiency of the microbial gasification of coal limits the application of bio-coal bed methane technology. The co-fermentation of coal and biomass provides a new approach for improving the degradation rate of coal. In this study, a co-fermentation system comprising five different coal orders with five microalgae was constructed in the laboratory, and the methanogenic characteristics of coal–algae co-fermentation and its microbiological mechanism were systematically investigated in terms of gas production, soluble organic matter, and microbial community characteristics. The results showed that the combination of lignite and Nannochloropsis exhibited optimal methane production, with a methane yield of 26.43 mL/g coal. Biogenic methane yields for lignite–Porphyra and anthracite–Porphyra were 23.43 mL and 21.28 mL, respectively, demonstrating the potential for algae to enhance gas production even in high-rank coals. pH monitoring revealed that algal species played a critical role in the acidification process. Dunaliella caused a continuous pH decrease, reaching 3.76 by day 30, while Nannochloropsis maintained a neutral pH of 6.95, optimizing the fermentation environment. Significant differences in soluble organic matter were observed between the lignite and anthracite fermentation systems, with lignite systems producing more volatile fatty acids, including acetic and butyric acids. Microbial community analysis revealed that Methanosarcina, an acetic acid-utilizing methanogen, was dominant in lignite and anthracite systems, while Syntrophomonas played a key role in lignite–Nannochloropsis co-fermentation. These findings provide valuable insights into optimizing coal microbial gasification and selecting appropriate algal species to enhance methane production efficiency. Full article
20 pages, 898 KB  
Article
Studies on Poisson–Nernst–Planck Systems with Large Permanent Charges Under Relaxed Neutral Boundary Conditions
by Jianing Chen, Zhantao Li, Jie Song and Mingji Zhang
Mathematics 2025, 13(17), 2847; https://doi.org/10.3390/math13172847 (registering DOI) - 3 Sep 2025
Abstract
Modeling ion transport through membrane channels is crucial for understanding cellular processes, and Poisson–Nernst–Planck (PNP) equations provide a fundamental continuum framework for such ionic fluxes. We investigate a quasi-one-dimensional steady-state PNP system for two oppositely charged ion species, focusing on how large permanent [...] Read more.
Modeling ion transport through membrane channels is crucial for understanding cellular processes, and Poisson–Nernst–Planck (PNP) equations provide a fundamental continuum framework for such ionic fluxes. We investigate a quasi-one-dimensional steady-state PNP system for two oppositely charged ion species, focusing on how large permanent charges within the channel and realistic boundary conditions impact ion transport. In contrast to classical models that impose ideal electroneutrality at the channel ends (a simplification that eliminates boundary layers near the membrane interfaces), we adopt relaxed neutral boundary conditions that allow small charge imbalances at the boundaries. Using asymptotic analysis treating the large permanent charge as a singular perturbation, we derive explicit first-order expansions for each ionic flux, incorporating boundary layer parameters (σ,ρ) to quantify slight deviations from electroneutrality. This analysis enables a qualitative characterization of individual cation and anion flux behaviors. Notably, we identify two critical transmembrane potentials, V1c and V2c, at which the cation and anion fluxes, respectively, vanish, signifying flux-reversal thresholds that delineate distinct monotonic regimes in the flux-voltage response; these critical values depend on the permanent charge magnitude and the boundary layer parameters. We further show that both ionic fluxes exhibit saturation: as the applied voltage becomes extreme, each flux approaches a finite limiting value, with the saturation level modulated by the degree of boundary charge imbalance. Moreover, allowing even small boundary charge deviations reveals non-intuitive discrepancies in flux behavior relative to the ideal electroneutral case. For example, in certain parameter regimes, a large permanent charge that enhances an ionic current under strict electroneutral conditions will instead suppress that current under relaxed-neutral conditions (and vice versa). This new analytical framework exposes subtle yet essential nonlinear dynamics that classical electroneutral assumptions would otherwise obscure. It provides deeper insight into the interplay between large fixed charges and boundary-layer effects, emphasizing the importance of incorporating such realistic boundary conditions to ensure accurate modeling of ion transport through membrane channels. Numerical simulations are performed to provide more intuitive illustrations of our analytical results. Full article
Show Figures

Figure 1

25 pages, 783 KB  
Review
Household Carbon Emissions Research from 2005 to 2024: An Analytical Review of Assessment, Influencing Factors, and Mitigation Pathways
by Yuanping Wang, Changhui Sun, Yueyue Fan, Shaotong Su, Chun Wang, Ruiling Wang and Payam Rahnamayiezekavat
Buildings 2025, 15(17), 3172; https://doi.org/10.3390/buildings15173172 - 3 Sep 2025
Abstract
Rising household carbon emissions (HCEs) substantially increase residential energy consumption. This review evaluates the four principal quantification methods: Emission Coefficient Method (ECM), Input–Output Analysis (IOA), Consumer Lifestyle Approach (CLA), and Life Cycle Assessment (LCA). The methods are compared according to data requirements, uncertainty [...] Read more.
Rising household carbon emissions (HCEs) substantially increase residential energy consumption. This review evaluates the four principal quantification methods: Emission Coefficient Method (ECM), Input–Output Analysis (IOA), Consumer Lifestyle Approach (CLA), and Life Cycle Assessment (LCA). The methods are compared according to data requirements, uncertainty levels, and scale suitability. The study synthesizes multidimensional determinants—including household income, household size, urbanization, energy intensity and composition, population aging, and household location—and translates these insights into behavior-informed mitigation pathways grounded in behavioral economics principles. Combining compact-city planning, targeted energy-efficiency incentives, and behavior-nudging measures can reduce HCEs without compromising living standards, providing local governments with an actionable roadmap to carbon neutrality. Full article
31 pages, 1536 KB  
Article
Digital Economy Development, Environmental Regulation, and Green Technology Innovation in Manufacturing
by Ku Liang and Yujie Hu
Sustainability 2025, 17(17), 7955; https://doi.org/10.3390/su17177955 (registering DOI) - 3 Sep 2025
Abstract
The development of the digital economy has become a significant driving force for the innovation of green technology in the manufacturing sectors. Green technology innovation in the manufacturing sectors is not only a key engine for realizing economic green transformation and achieving the [...] Read more.
The development of the digital economy has become a significant driving force for the innovation of green technology in the manufacturing sectors. Green technology innovation in the manufacturing sectors is not only a key engine for realizing economic green transformation and achieving the goal of achieving peak carbon emissions by 2030 and carbon neutrality by 2060, but also an important path for cultivating new quality productivity. Based on Schumpeter’s endogenous growth theory, in this study, we constructed an analytical model with a unified framework of digital economic development and environmental regulation, systematically explored the mechanism of digital economic development with respect to green technological innovation in the manufacturing sectors and the moderating effect of environmental regulation, and carried out empirical research based on panel data at the provincial level and the level of the subdivided manufacturing sectors in China. We found that the development of the digital economy promotes green technology innovation in the manufacturing industry. However, according to the theory of increasing marginal information costs, it shows a significant nonlinear relationship. Absorptive capacity is the key means of support that manufacturing enterprises can leverage to improve their level of green technological innovation. Environmental regulation plays a crucial role in guiding green technological innovation in the manufacturing sectors. A further heterogeneity analysis showed that the development of the digital economy exerts a stronger positive impact on green technological innovation in cleaner-production-oriented manufacturing sectors and those located in regions with more advanced financial regions and in technology-intensive industries. This study provides theoretical support for understanding the driving mechanisms of green technological innovation in the manufacturing sector against the backdrop of the digital economy, offering practical implications for optimizing environmental regulation policies and enhancing the level of green development in manufacturing. Full article
Show Figures

Figure 1

27 pages, 4680 KB  
Article
Data-Model Complexity Trade-Off in UAV-Acquired Ultra-High-Resolution Remote Sensing: Empirical Study on Photovoltaic Panel Segmentation
by Zhigang Zou, Xinhui Zhou, Pukaiyuan Yang, Jingyi Liu and Wu Yang
Drones 2025, 9(9), 619; https://doi.org/10.3390/drones9090619 - 3 Sep 2025
Abstract
With the growing adoption of deep learning in remote sensing, the increasing diversity of models and datasets has made method selection and experimentation more challenging, especially for non-expert users. This study presents a comprehensive evaluation of photovoltaic panel segmentation using a large-scale ultra-high-resolution [...] Read more.
With the growing adoption of deep learning in remote sensing, the increasing diversity of models and datasets has made method selection and experimentation more challenging, especially for non-expert users. This study presents a comprehensive evaluation of photovoltaic panel segmentation using a large-scale ultra-high-resolution benchmark of over 25,000 manually annotated unmanned aerial vehicle image patches, systematically quantifying the impact of model and data characteristics. Our results indicate that increasing the spatial diversity of training data has a more substantial impact on training stability and segmentation accuracy than simply adding spectral bands or enlarging the dataset volume. Across all experimental settings, moderate-sized models (DeepLabV3_50, ResUNet50, and SegFormer B4) often provided the best trade-off between segmentation performance and computational efficiency, achieving an average Intersection over Union (IoU) of 0.8966 comparable to 0.8970 of larger models. Moreover, model architecture plays a more critical role than model size; as the ResUNet models consistently achieved higher mean IoU than both DeepLabV3 and SegFormer models, with average improvements of 0.047 and 0.143, respectively. Our findings offer quantitative guidance for balancing architectural choices, model complexity, and dataset design, ultimately promoting more robust and efficient deployment of deep learning models in high-resolution remote sensing applications. Full article
27 pages, 4462 KB  
Review
Unlocking Alternative Cement Solutions: Utilizing Wastes and By-Products for Magnesium Phosphate Cement Development
by Anna Alfocea-Roig, Jessica Giro-Paloma, Sergio Huete-Hernández and Joan Formosa
Urban Sci. 2025, 9(9), 352; https://doi.org/10.3390/urbansci9090352 - 3 Sep 2025
Abstract
Concrete is the most used material worldwide, with cement as its essential component. Cement production, however, has a considerable environmental footprint contributing nearly 8% of global CO2 emissions, largely from clinker calcination. This review aims to examine strategies for reducing these emissions, [...] Read more.
Concrete is the most used material worldwide, with cement as its essential component. Cement production, however, has a considerable environmental footprint contributing nearly 8% of global CO2 emissions, largely from clinker calcination. This review aims to examine strategies for reducing these emissions, with a particular focus on alternative materials for producing magnesium phosphate cements (MPCs). Specifically, the objectives are first to summarize mitigation pathways, such as CO2 capture, energy efficiency, and alternative raw materials, and second evaluate the feasibility of using industrial wastes and by-products, including low-grade MgO, tundish deskulling waste (TUN), boron-MgO (B-MgO), and magnesia refractory brick waste (MRB), as MgO sources for MPC. The review highlights that these materials represent a promising route to reduce the environmental impact of cement production and support the transition toward carbon neutrality by 2050. Full article
Show Figures

Figure 1

16 pages, 4680 KB  
Article
Physicochemical Characterization and Formation Pathway of Hydrochar from Brewer’s Spent Grain via Hydrothermal Carbonization
by Pengbo Liu, Sheng Huang, Youqing Wu, Xueqin Li, Xiao Wei and Shiyong Wu
Catalysts 2025, 15(9), 847; https://doi.org/10.3390/catal15090847 (registering DOI) - 3 Sep 2025
Abstract
In order to investigate the formation pathway of hydrochar during hydrothermal carbonization (HTC) and to identify the optimal process conditions for producing high-quality pyrolysis feedstock, the effect of hydrothermal temperature (220, 250, and 280 °C) on tar and hydrochar properties were analyzed by [...] Read more.
In order to investigate the formation pathway of hydrochar during hydrothermal carbonization (HTC) and to identify the optimal process conditions for producing high-quality pyrolysis feedstock, the effect of hydrothermal temperature (220, 250, and 280 °C) on tar and hydrochar properties were analyzed by GC-MS, XRD, XPS, FT-IR, and SEM using protein-rich brewer’s spent grain (BSG) as raw material. The results showed that aromatic compounds play a major role in tar production. Increasing hydrothermal temperature significantly enhanced volatile matter removal and consequently increased the fixed carbon content from 23.14 wt.% in HC-220 to 27.07 wt.% in HC-280, while the catalytic effect of H3O+ produced by high-temperature water facilitated the dehydration and decarboxylation reactions, resulting in a reduction in the H/C atomic ratio from 1.44 in HC-220 to 1.25 in HC-280 and the O/C atom ratio from 0.32 in HC-220 to 0.25 in HC-280. HC-280 exhibited superior fuel properties, with a high heating value (HHV) of 35.4 MJ/kg. XPS analysis indicated that elevated temperatures promote the conversion of sp3 C to sp2 C (the value of sp2 C/sp3 C increased from 1.13 in HC-220 to 1.49 in HC-280), significantly increasing the aromatic condensation degree of hydrochar. The more pronounced reduction in the -OH content compared to -COOH indicated that dehydration reactions predominated over decarboxylation. Finally, the formation pathways of hydrochar during HTC were revealed based on the properties of different products. The results demonstrate that HTC is an effective method for converting BSG into pyrolysis feedstock with potential applications in energy production. Future work should focus on the technical–economic assessment of the process at a pilot scale and evaluating the hydrochar’s performance in real pyrolysis systems. Full article
Show Figures

Graphical abstract

21 pages, 319 KB  
Article
Asymmetries, Lights, and Shadows of the Legal Situation of Religious Minorities in Spain
by Alejandro Torres Gutiérrez
Religions 2025, 16(9), 1144; https://doi.org/10.3390/rel16091144 - 3 Sep 2025
Abstract
The Spanish Constitution of 1978 recognizes the fundamental right of freedom of conscience and religion, the principle of equality and non-discrimination on religious grounds, and the principle of secularism and neutrality of the state. However, the legislative development of these principles is strongly [...] Read more.
The Spanish Constitution of 1978 recognizes the fundamental right of freedom of conscience and religion, the principle of equality and non-discrimination on religious grounds, and the principle of secularism and neutrality of the state. However, the legislative development of these principles is strongly stratified, and different levels of rights can be distinguished, depending on whether we are speaking about confessions with an agreement (Catholic Church, evangelicals, Jews, and Muslims), those with a mere declaration of well-known roots (Church of Jesus Christ of Latter-day Saints, Jehovah’s Witnesses, Buddhists, Orthodox, and Bahá’ís), and the rest of the confessions merely registered in the Register of Religious Entities (Hinduism, Taoism, Sikhism, Church of Scientology, etc.). Only the Catholic Church has access to the income tax allocation, and only denominations with an agreement enjoy the main tax benefits, or religious teaching in schools. The declaration of notorious rootedness has very limited effects at present (recognition of marriage and the mere expectation of signing a cooperation agreement with the state, provided there is political will to do so). It is, therefore, necessary to opt for a model of common law, which is more neutral and applies equally to all religious groups. Full article
24 pages, 5704 KB  
Article
Evaluating the Impact of High-Esterified Pectin on Retrogradation and Film-Forming Properties of High-Amylose Starch
by Jéssica Ferraz, Maria Fernanda Ortolani Pollini, Vinicius Martinho Borges Cardoso, Sara Nunes, Marlus Chorilli, Cesar Augusto Roque-Borda and Andréia Bagliotti Meneguin
Polysaccharides 2025, 6(3), 78; https://doi.org/10.3390/polysaccharides6030078 - 3 Sep 2025
Abstract
Achieving precise drug release in the colon remains a key objective in therapies for inflammatory bowel disease (IBD). Natural polysaccharides, including high-amylose starch (HAS) and pectin, offer relevant characteristics for localized drug delivery due to their biocompatibility, biodegradability, and adaptability. In this work, [...] Read more.
Achieving precise drug release in the colon remains a key objective in therapies for inflammatory bowel disease (IBD). Natural polysaccharides, including high-amylose starch (HAS) and pectin, offer relevant characteristics for localized drug delivery due to their biocompatibility, biodegradability, and adaptability. In this work, high-esterified pectin (HEP) was incorporated during the retrogradation of HAS to further form cohesive films without the need for organic solvents or high temperatures. The resulting matrices showed improved mucoadhesive performance, particularly under colonic conditions, where hydrophobic ester groups in HEP enhanced tissue adherence. This feature is critical for prolonged residence time in inflamed mucosa. Variations in HEP content directly influenced matrix density, fluid interaction, and mechanical resistance, without compromising film integrity. The high degree of esterification limited pH-dependent swelling and promoted alternative release mechanisms potentially related to enzymatic degradation. Such behavior contrasts with traditional low-esterified pectin (LEP) systems, suggesting that HEP may act as a structural modifier rather than a neutral excipient. Despite its widespread use in food systems, HEP remains underexplored in pharmaceutical matrices, especially in combination with retrograded starch (RS). The physicochemical and biointerfacial properties observed here underscore their applicability for the rational design of colonic delivery systems and provide a foundation for formulation strategies tailored to chronic intestinal disorders. Full article
Show Figures

Graphical abstract

15 pages, 2556 KB  
Article
Targeted Lymph Node Immunization with Serotype-Specific Dengue VLP Vaccines Enhances Antibody Avidity and Specificity
by Dominik A. Rothen, Alessandro Pardini, Sudip Kumar Dutta, Pascal S. Krenger, Anne-Cathrine Vogt, Romano Josi, Monique Vogel, Paul Engeroff, Mona O. Mohsen, Kaspars Tars, Byron Martina and Martin F. Bachmann
Vaccines 2025, 13(9), 941; https://doi.org/10.3390/vaccines13090941 (registering DOI) - 3 Sep 2025
Abstract
Introduction: Dengue virus (DENV) remains a global health threat, with four distinct serotypes (DENV1-4) that complicate vaccine development due to low-affinity, cross-reactive antibodies that increase the risk of antibody-dependent enhancement (ADE). Objective: To address the challenge of inducing strictly serotype-specific immune responses, this [...] Read more.
Introduction: Dengue virus (DENV) remains a global health threat, with four distinct serotypes (DENV1-4) that complicate vaccine development due to low-affinity, cross-reactive antibodies that increase the risk of antibody-dependent enhancement (ADE). Objective: To address the challenge of inducing strictly serotype-specific immune responses, this study explored the use of targeting individual lymph nodes (LNs) for the creation of simultaneous but independent immune responses as a targeted approach to reduce cross-reactivity and improve vaccine specificity. Methods: In the initial experiments, targeting individual LN successfully induced specific germinal centers (GCs) for different antigens in distinct LNs, highlighting its potential to enhance immune specificity. This approach was further tested using two virus-like particle (VLP)-based vaccines based on AP205 for DENV1 and DENV4, selected due to their genetic divergence and to probe the potential to minimize cross-reactive immune responses. In this setup, AP205-DV1 and AP205-DV4 were administered in targeted separate LNs, and the specificity of the immune response was compared to subcutaneous administration of a mixture of both vaccines. Results: Our data show that targeting distinct LNs elicited antibodies with significantly higher avidity, which is a critical factor in determining the neutralizing capacity of the immune response. Avidity measurements confirmed that this segregation approach results in a more refined selection of high-affinity B cells. Neutralization experiments demonstrated that targeting distinct LNs with individual vaccines induced a more potent and serotype-specific neutralizing response, compared to the injection of a vaccine mixture. Conclusions: These findings suggest that targeting individual LNs could be a promising method for enhancing both the specificity and potency of immune responses, particularly for flaviviruses. Targeting distinct LNs by direct administration of individual vaccines into distinct watersheds rather than individual lymph nodes will offer the opportunity to facilitate the approach in humans. Full article
(This article belongs to the Special Issue Virus-Like Particle Vaccine Development)
Show Figures

Figure 1

17 pages, 2832 KB  
Article
Revealing Antioxidant Activity of Cellooligosaccharides and Xylooligosaccharides from Banana Leaves, Pseudostem and Guava Seed Cake
by Carolina Froes Forsan, Danieli Fernanda Canaver Marin and Michel Brienzo
AppliedChem 2025, 5(3), 21; https://doi.org/10.3390/appliedchem5030021 - 3 Sep 2025
Abstract
Free radicals are molecules generated during some biochemical processes, and in excess, they can cause various diseases; therefore, their production needs to be controlled in humans. One approach to achieving this is through the consumption of substances with antioxidant capacity, which are capable [...] Read more.
Free radicals are molecules generated during some biochemical processes, and in excess, they can cause various diseases; therefore, their production needs to be controlled in humans. One approach to achieving this is through the consumption of substances with antioxidant capacity, which are capable of neutralizing free radicals. This study evaluated the antioxidant activity of cellooligosaccharides (COS) and xylooligosaccharides (XOS) solutions, extracted from banana leaf and pseudostem, and guava seed cake, unfiltered and filtered using a Sep-pak filter. Additionally, the antioxidant activity of their monomers, including commercial glucose, xylose, and cellobiose, was evaluated using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical assay. Antioxidant activity was observed in the unfiltered COS and XOS solutions, with maximum DPPH radical reduction of 48.3% and 84.2%, respectively. In filtered COS and XOS solutions, the reduction did not exceed 0.5%. It can be concluded that the antioxidant activity is due to the presence of compounds dissolved in the oligosaccharide solutions, such as lignin, extractives and carboxylic acids, which were qualified by the Folin–Ciocalteu method, nuclear magnetic resonance, and scanning spectrophotometry. Full article
Show Figures

Figure 1

16 pages, 4975 KB  
Article
Optimization of Energy Harvesting Performance and Local Resonance Instability Phenomenon Suppression in Piezoelectric Cantilever Beams with Arrayed Grooves
by Yan Zhang, Qi Li, Haodong Sun, Kaiming Sun, Yuanjing Mou and Jie Wan
Vibration 2025, 8(3), 50; https://doi.org/10.3390/vibration8030050 - 3 Sep 2025
Abstract
This study addresses the performance optimization of piezoelectric cantilever beam energy harvesters by proposing a design method based on surface arrayed groove modulation. Through systematic investigation of the effects of single grooves (upper surface, lower surface, and double-sided grooves) and arrayed grooves on [...] Read more.
This study addresses the performance optimization of piezoelectric cantilever beam energy harvesters by proposing a design method based on surface arrayed groove modulation. Through systematic investigation of the effects of single grooves (upper surface, lower surface, and double-sided grooves) and arrayed grooves on the power generation performance of piezoelectric cantilever beams, the coupling mechanism of stiffness modulation, Local resonance instability phenomenon, and energy conversion in groove design is revealed. The results show that while single grooves can improve the output voltage by altering the neutral axis position, groove widths exceeding 20 mm induce Local resonance instability phenomenon, leading to energy dissipation. In contrast, arrayed grooves effectively suppress Local resonance instability phenomenon by uniformly distributing the grooves, significantly enhancing energy conversion efficiency. The optimized arrayed groove configuration (groove width: 4 mm, depth: 1 mm, number: 7) achieves a peak voltage of 549.525 mV, representing a 17.3% improvement over the ungrooved structure, without inducing narrow-bandwidth effects. Additionally, this design exhibits excellent process compatibility and can be fabricated using conventional machining methods, reducing costs by 30–45% compared to additive manufacturing. This study provides important optimization directions and technical references for the design of piezoelectric cantilever beam energy harvesters. Full article
Show Figures

Figure 1

24 pages, 746 KB  
Article
Schema-Agnostic Data Type Inference and Validation for Exchanging JSON-Encoded Construction Engineering Information
by Seokjoon You, Hyon Wook Ji, Hyunseok Kwak, Taewon Chung and Moongyo Bae
Buildings 2025, 15(17), 3159; https://doi.org/10.3390/buildings15173159 - 2 Sep 2025
Abstract
Modern construction and infrastructure projects produce large volumes of heterogeneous data, including building information models, JSON sensor streams, and maintenance logs. Ensuring interoperability and data integrity across diverse software platforms requires standardized data exchange methods. However, traditional neutral object models, often constrained by [...] Read more.
Modern construction and infrastructure projects produce large volumes of heterogeneous data, including building information models, JSON sensor streams, and maintenance logs. Ensuring interoperability and data integrity across diverse software platforms requires standardized data exchange methods. However, traditional neutral object models, often constrained by rigid and incompatible schemas, are ill-suited to accommodate the heterogeneity and long-term nature of such data. Addressing this challenge, the study proposes a schema-less data exchange approach that improves flexibility in representing and interpreting infrastructure information. The method uses dynamic JSON-based objects, with infrastructure model definitions serving as semantic guidelines rather than rigid templates. Rule-based reasoning and dictionary-guided term mapping are employed to infer entity types from semi-structured data without enforcing prior schema conformance. Experimental evaluation across four datasets demonstrated exact entity-type match rates ranging from 61.4% to 76.5%, with overall success rates—including supertypes and ties—reaching up to 95.0% when weighted accuracy metrics were applied. Compared to a previous baseline, the method showed a notable improvement in exact matches while maintaining overall performance. These results confirm the feasibility of schema-less inference using domain dictionaries and indicate that incorporating schema-derived constraints could further improve accuracy and applicability in real-world infrastructure data environments. Full article
(This article belongs to the Special Issue BIM Methodology and Tools Development/Implementation)
Show Figures

Figure 1

13 pages, 1434 KB  
Article
Soil Chemical Properties Along an Elevational Gradient in the Alpine Shrublands of the Northeastern Tibetan Plateau
by Juan Zhang, Xiaofeng Ren, Erwen Xu, Alexander Myrick Evans, Wenmao Jing, Rongxin Wang, Xin Jia, Minhui Bi, Isaac Dennis Amoah, Michael Pohlmann, Cleophas Mecha and C. Ken Smith
Soil Syst. 2025, 9(3), 95; https://doi.org/10.3390/soilsystems9030095 - 2 Sep 2025
Abstract
The high-elevation ecosystems of the Tibetan Plateau provide crucial ecosystem services including watershed protection and water provision for downstream human and wildlife communities. Thus, understanding the relationship between soil properties and vegetation under different management regimes is important as a warming climate alters [...] Read more.
The high-elevation ecosystems of the Tibetan Plateau provide crucial ecosystem services including watershed protection and water provision for downstream human and wildlife communities. Thus, understanding the relationship between soil properties and vegetation under different management regimes is important as a warming climate alters these systems. This study assessed vegetation cover, quantified the distribution of soil nutrients, and examined the relationships among soil chemical properties and plant cover in the high-elevation shrublands (3300 to 3700 m) in the Qilian Mountains on the northeastern Tibetan Plateau of China. These vegetation surveys and soil sample collections were conducted on 15 shrubland plots at different soil depths and soil chemical properties were investigated at each elevation. The content of soil organic matter (SOM), total nitrogen (TN), available phosphorus (AP), and available potassium (AK) fluctuated along the elevational gradient, while soil pH was close to neutral (pH 7.4). At our sites, SOM and TN contents generally increased with elevation, and AK was positively correlated with Salix plant cover. Using PCA, we determined that PC1 captured 43% of the total variance, and SOM and TN were the top contributing features. As climate in the region warms and precipitation becomes more variable, understanding the current soil–vegetation equilibria and how vegetation may migrate in future years is important to predicting changes in this region, especially at high elevations. From a managerial perspective, our goal was to provide additional information for restoring and managing subalpine and alpine shrubland vegetation in the Qilian Mountains to ensure the future sustainable use of these systems. Full article
Show Figures

Figure 1

23 pages, 5320 KB  
Article
Low-Carbon Greening Strategies for Expressway Service Area: Optimizing Carbon Sink Design Across Diverse Climate Zones
by Liang Zhao, Xianglin Liu, Yahui Gao, Tianhao Shi, Wenyu Li, Meng Tang, Yunyi Huang and Tingzhen Ming
Buildings 2025, 15(17), 3149; https://doi.org/10.3390/buildings15173149 - 2 Sep 2025
Abstract
The increasing demand for sustainable development and carbon neutrality highlights the need to improve the energy efficiency of infrastructure, particularly in highway service areas. This study explores the application of green roofs as a low-carbon technology to reduce energy consumption across buildings located [...] Read more.
The increasing demand for sustainable development and carbon neutrality highlights the need to improve the energy efficiency of infrastructure, particularly in highway service areas. This study explores the application of green roofs as a low-carbon technology to reduce energy consumption across buildings located in different climate zones in China. A combination of theoretical modeling and simulation-based analysis was used to evaluate various green roof configurations in five representative cities: Harbin, Beijing, Wuhan, Guangzhou, and Kunming. The results show that green roofs can reduce annual building energy consumption by up to 2.02%, depending on climate and plant species. For example, fern roofs in Guangzhou reduced heating demand by 16.35%, while grass roofs in Wuhan lowered the daytime roof surface temperature by 31.82 °C. Furthermore, optimizing the building orientation to 60° led to energy savings of up to 7.73% in Kunming. These findings suggest that tailored greening strategies based on regional climate can effectively improve building energy performance and support the development of sustainable service infrastructure. Full article
Show Figures

Figure 1

Back to TopTop