Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (521)

Search Parameters:
Keywords = neutrophil recruitment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 724 KB  
Review
The Role of Oxidative Stress in the Pathogenesis of Childhood Asthma: A Comprehensive Review
by Despoina Koumpagioti, Margarita Dimitroglou, Barbara Mpoutopoulou, Dafni Moriki and Konstantinos Douros
Children 2025, 12(9), 1110; https://doi.org/10.3390/children12091110 - 23 Aug 2025
Viewed by 179
Abstract
This review aims to provide a comprehensive overview of how oxidative stress drives inflammation, structural remodeling, and clinical expression of childhood asthma, while critically appraising emerging redox-sensitive biomarkers and antioxidant-focused preventive and therapeutic strategies. Oxidative stress arises when reactive oxygen species (ROS) and [...] Read more.
This review aims to provide a comprehensive overview of how oxidative stress drives inflammation, structural remodeling, and clinical expression of childhood asthma, while critically appraising emerging redox-sensitive biomarkers and antioxidant-focused preventive and therapeutic strategies. Oxidative stress arises when reactive oxygen species (ROS) and reactive nitrogen species (RNS) outpace airway defenses. This surplus provokes airway inflammation: ROS/RNS activate nuclear factor kappa-B (NF-κB) and activator protein-1 (AP-1), recruit eosinophils and neutrophils, and amplify type-2 cytokines. Normally, an antioxidant network—glutathione (GSH), enzymes such as catalase (CAT) and superoxide dismutase (SOD), and nuclear factor erythroid 2-related factor 2 (Nrf2)—maintains redox balance. Prenatal and early exposure to fine particulate matter <2.5 micrometers (µm) (PM2.5), aeroallergens, and tobacco smoke, together with polymorphisms in glutathione S-transferase P1 (GSTP1) and CAT, overwhelm these defenses, driving epithelial damage, airway remodeling, and corticosteroid resistance—the core of childhood asthma pathogenesis. Clinically, biomarkers such as exhaled 8-isoprostane, hydrogen peroxide (H2O2), and fractional exhaled nitric oxide (FeNO) surge during exacerbations and predict relapses. Therapeutic avenues include Mediterranean-style diet, regular aerobic exercise, pharmacological Nrf2 activators, GSH precursors, and mitochondria-targeted antioxidants; early trials report improved lung function and fewer attacks. Ongoing translational research remains imperative to substantiate these approaches and to enable the personalization of therapy through individual redox status and genetic susceptibility, ultimately transforming the care and prognosis of pediatric asthma. Full article
(This article belongs to the Section Pediatric Pulmonary and Sleep Medicine)
Show Figures

Figure 1

22 pages, 8390 KB  
Article
Probiotic and Vitamin D Ameliorate TNBS-Induced Colitis by Targeting Mucosal Barrier and Neutrophil Infiltration
by Jonathan López-Carrasquillo, Vivianka Y. Ramos-Plaza, Myrella L. Cruz, Bryan M. Rodriguez-Morales, Raphael Sánchez, Pablo López, Gladys Chompré and Caroline B. Appleyard
Nutrients 2025, 17(17), 2719; https://doi.org/10.3390/nu17172719 - 22 Aug 2025
Viewed by 330
Abstract
Background/Objective: Probiotic and vitamin D supplements are widely studied in clinical and animal studies as potential treatments for inflammatory bowel disease. However, their potential synergistic or additive effect in ameliorating colitis development is still poorly understood. The aim of this study was to [...] Read more.
Background/Objective: Probiotic and vitamin D supplements are widely studied in clinical and animal studies as potential treatments for inflammatory bowel disease. However, their potential synergistic or additive effect in ameliorating colitis development is still poorly understood. The aim of this study was to investigate the potential beneficial enhancement of combining a mixed-strain probiotic with vitamin D supplementation in a colitis animal model. Method: After 5 days of acclimation, C57BL/6 mice received Vivomixx probiotic (at least 1 × 109 Colony-Forming Units) and/or vitamin D (5 IU/g) in drinking water and chow, respectively, for 7 days prior to intracolonic TNBS-induced colitis and until sacrifice. On day 10, animals were sacrificed, and colons were collected to assess colonic damage, cytokine and chemokine expression, total M1 macrophage phenotype, and neutrophil recruitment. Serum and fecal samples were collected to assess vitamin D levels and microbiome composition. Results: Administration of probiotic and vitamin D alone or combined decreased colonic damage and neutrophil recruitment and activity. This effect was associated with an increase in the active form of vitamin D in serum and mucosal barrier integrity. However, administration of probiotics and/or vitamin D did not modulate macrophage infiltration or the M1 pro-inflammatory phenotype. Conclusions: These results suggest that combined probiotic and vitamin D supplementation attenuates TNBS-induced colitis by targeting neutrophil infiltration while enhancing the mucosal barrier. This alternative approach may offer protective potential for IBD management. Full article
(This article belongs to the Special Issue Diet in the Pathogenesis and Management of Inflammatory Bowel Disease)
Show Figures

Figure 1

28 pages, 1748 KB  
Review
Neutrophil Dynamics in Response to Cancer Therapies
by Huazhen Xu, Xiaojun Chen, Yuqing Lu, Nihao Sun, Karis E. Weisgerber, Manzhu Xu and Ren-Yuan Bai
Cancers 2025, 17(15), 2593; https://doi.org/10.3390/cancers17152593 - 7 Aug 2025
Viewed by 550
Abstract
Neutrophils are increasingly recognized as key players in the tumor microenvironment (TME), displaying functional plasticity that enables them to either promote or inhibit cancer progression. Depending on environmental cues, tumor-associated neutrophils (TANs) may polarize toward antitumor “N1” or protumor “N2” phenotypes, exerting diverse [...] Read more.
Neutrophils are increasingly recognized as key players in the tumor microenvironment (TME), displaying functional plasticity that enables them to either promote or inhibit cancer progression. Depending on environmental cues, tumor-associated neutrophils (TANs) may polarize toward antitumor “N1” or protumor “N2” phenotypes, exerting diverse effects on tumor growth, metastasis, immune modulation, and treatment response. While previous studies have focused on the pathological roles of TANs in cancer, less attention has been given to how cancer therapies themselves influence the behavior of TANs. This review provides a comprehensive synthesis of current knowledge regarding the dynamics of TANs in response to major cancer treatment modalities, including chemotherapy, radiotherapy, cell-based immunotherapies, and oncolytic viral and bacterial therapies. We discuss how these therapies influence TAN recruitment, polarization, and effector functions within the TME, and highlight key molecular regulators involved. By consolidating mechanistic and translational insights, this review emphasizes the potential to therapeutically reprogram TANs to enhance treatment efficacy. A deeper understanding of context-dependent TAN roles will be essential for developing more effective, neutrophil-informed cancer therapies. Full article
(This article belongs to the Special Issue The Role of Neutrophils in Tumor Progression and Metastasis)
Show Figures

Figure 1

20 pages, 2823 KB  
Article
Pro-Reparative Effects of KvLQT1 Potassium Channel Activation in a Mouse Model of Acute Lung Injury Induced by Bleomycin
by Tom Voisin, Alban Girault, Mélissa Aubin Vega, Émilie Meunier, Jasmine Chebli, Anik Privé, Damien Adam and Emmanuelle Brochiero
Int. J. Mol. Sci. 2025, 26(15), 7632; https://doi.org/10.3390/ijms26157632 - 7 Aug 2025
Viewed by 498
Abstract
Acute Respiratory Distress Syndrome (ARDS) is a complex and devastating form of respiratory failure, with high mortality rates, for which there is no pharmacological treatment. The acute exudative phase of ARDS is characterized by severe damage to the alveolar–capillary barrier, infiltration of protein-rich [...] Read more.
Acute Respiratory Distress Syndrome (ARDS) is a complex and devastating form of respiratory failure, with high mortality rates, for which there is no pharmacological treatment. The acute exudative phase of ARDS is characterized by severe damage to the alveolar–capillary barrier, infiltration of protein-rich fluid into the lungs, neutrophil recruitment, and high levels of inflammatory mediators. Rapid resolution of this reversible acute phase, with efficient restoration of alveolar functional integrity, is essential before the establishment of irreversible fibrosis and respiratory failure. Several lines of in vitro and in vivo evidence support the involvement of potassium (K+) channels—particularly KvLQT1, expressed in alveolar cells—in key cellular mechanisms for ARDS resolution, by promoting alveolar fluid clearance and epithelial repair processes. The aim of our study was to investigate whether pharmacological activation of KvLQT1 channels could elicit beneficial effects on ARDS parameters in an animal model of acute lung injury. We used the well-established bleomycin model, which mimics (at day 7) the key features of the exudative phase of ARDS. Our data demonstrate that treatments with the KvLQT1 activator R-L3, delivered to the lungs, failed to improve endothelial permeability and lung edema in bleomycin mice. However, KvLQT1 activation significantly reduced neutrophil recruitment and tended to decrease levels of pro-inflammatory cytokines/chemokines in bronchoalveolar lavages after bleomycin administration. Importantly, R-L3 treatment was associated with significantly lower injury scores, higher levels of alveolar type I (HTI-56, AQP5) and II (pro-SPC) cell markers, and improved alveolar epithelial repair capacity in the presence of bleomycin. Together, these results suggest that the KvLQT1 K+ channel may be a potential target for the resolution of the acute phase of ARDS. Full article
(This article belongs to the Special Issue Lung Diseases Molecular Pathogenesis and Therapy)
Show Figures

Figure 1

19 pages, 2363 KB  
Article
Can Biomarkers Predict Kidney Function Recovery and Mortality in Patients with Critical COVID-19 and Acute Kidney Injury?
by Noemí Del Toro-Cisneros, José C. Páez-Franco, Miguel A. Martínez-Rojas, Isaac González-Soria, Juan Antonio Ortega-Trejo, Hilda Sánchez-Vidal, Norma A. Bobadilla, Alfredo Ulloa-Aguirre and Olynka Vega-Vega
Diagnostics 2025, 15(15), 1960; https://doi.org/10.3390/diagnostics15151960 - 5 Aug 2025
Viewed by 402
Abstract
Background/Objectives: COVID-19 is a systemic viral infection that may lead to serious complications including acute kidney injury that requires kidney replacement therapy. The primary aim of this study was to evaluate urinary SerpinA3 (uSerpinA3) excretion as a biomarker of kidney recovery at [...] Read more.
Background/Objectives: COVID-19 is a systemic viral infection that may lead to serious complications including acute kidney injury that requires kidney replacement therapy. The primary aim of this study was to evaluate urinary SerpinA3 (uSerpinA3) excretion as a biomarker of kidney recovery at 90 days, and the mortality in patients with critical COVID-19 and AKI requiring kidney replacement therapy (KRT). Methods: The study included patients with critical COVID-19 on invasive mechanical ventilation (IMV) requiring KRT. Blood and urine samples were obtained when KRT was initiated (day zero), and thereafter on days 1, 3, 7, and 14 post-replacement. uSerpinA3, kidney injury molecule-1 (uKIM-1), and neutrophil gelatinase-associated lipocalin (uNGAL) were measured in urine, and interleukin-6 (IL-6), interleukin-10 (IL-10), and tumor necrosis factor alpha (TNF-α) in peripheral blood. In addition, metabolomics in sample days zero and 3, and in the survivors on sample day 90 was performed by employing gas chromatography coupled with mass spectrometry. Results: A total of 60 patients were recruited, of whom 29 (48%) survived hospitalization and recovered kidney function by day 90. In the survivors, 79% presented complete recovery (CRR) and the remaining (21%) recovered partially (PRR). In terms of uSerpinA3, levels on days 7 and 14 predicted CRR, with AUC values of 0.68 (p = 0.041) and 0.71 (p = 0.030), respectively, as well as mortality, with AUC values of 0.75 (p = 0.007) and 0.76 (p = 0.015), respectively. Among the other biomarkers, the excretion of uKIM-1 on day zero of KRT had a superior performance as a CRR predictor [(AUC, 0.71 (p = 0.017)], and as a mortality predictor [AUC, 0.68 (p = 0.028)]. In the metabolomics analysis, we identified four distinct profiles; the metabolite that maintained statistical significance in predicting mortality was p-cresol glucuronide. Conclusions: This study strongly suggests that uSerpinA3 and uKIM-1 can predict CRR and mortality in patients with critical COVID-19 and AKI requiring KRT. Metabolic analysis appears promising for identifying affected pathways and their clinical impact in this population. Full article
Show Figures

Figure 1

25 pages, 15118 KB  
Article
CD45 and CD148 Are Critically Involved in Neutrophil Recruitment and Function During Inflammatory Arthritis in Mice
by Jan-Niklas Heming, Andreas Margraf, Karolina Najder, Giulia Germena, Mathis Richter, Anika Cappenberg, Katharina Henke, Bernadette Bardel, Lena Schemmelmann, Marina Oguama, Pia Lindental, Wida Amini, Jacqueline Sobocik, Georg Schett, Gerhard Krönke, Helena Block, Jan Rossaint, Oliver Soehnlein and Alexander Zarbock
Cells 2025, 14(15), 1169; https://doi.org/10.3390/cells14151169 - 29 Jul 2025
Viewed by 404
Abstract
Neutrophils play a key role in autoimmune diseases like rheumatoid arthritis, contributing to tissue damage through rapid recruitment and activation. In this study, we investigated the regulatory properties of two receptor-like tyrosine phosphatases (RPTPs), CD45 and CD148, in inflammatory arthritis. Using an in [...] Read more.
Neutrophils play a key role in autoimmune diseases like rheumatoid arthritis, contributing to tissue damage through rapid recruitment and activation. In this study, we investigated the regulatory properties of two receptor-like tyrosine phosphatases (RPTPs), CD45 and CD148, in inflammatory arthritis. Using an in vivo mouse model of K/BxN serum transfer-induced arthritis, we found that CD45 and CD148 feature distinct regulatory properties during inflammatory arthritis. CD45 is required for neutrophil infiltration, cytokine release, and reactive oxygen species production, whereas CD148 deficiency leads to a delayed onset of arthritis but unaltered overall neutrophil infiltration and reduced ROS production. Furthermore, we could demonstrate that activation of Src family kinases in neutrophils is differentially regulated by CD45 and CD148 in a stimulus-dependent manner. Summarizing, our results suggest that CD45 is positively involved, while CD148 is positively and negatively involved in neutrophil recruitment and function during inflammatory arthritis. Full article
Show Figures

Figure 1

19 pages, 766 KB  
Systematic Review
Molecular Mechanisms Underlying Inflammation in Early-Onset Neonatal Sepsis: A Systematic Review of Human Studies
by Anca Vulcănescu, Mirela-Anișoara Siminel, Anda-Lorena Dijmărescu, Maria-Magdalena Manolea, Sidonia-Maria Săndulescu, Virginia Maria Rădulescu, Valeriu Gheorman and Sorin-Nicolae Dinescu
J. Clin. Med. 2025, 14(15), 5315; https://doi.org/10.3390/jcm14155315 - 28 Jul 2025
Viewed by 515
Abstract
Background/Objective: Early-onset neonatal sepsis (EOS), defined as infection occurring within the first 72 h after birth, remains a major contributor to neonatal morbidity and mortality worldwide. Although advances in perinatal care have improved overall outcomes, the diagnosis of EOS continues to be [...] Read more.
Background/Objective: Early-onset neonatal sepsis (EOS), defined as infection occurring within the first 72 h after birth, remains a major contributor to neonatal morbidity and mortality worldwide. Although advances in perinatal care have improved overall outcomes, the diagnosis of EOS continues to be challenging. Clinical presentations are often nonspecific, laboratory confirmation is often delayed, and immune responses vary considerably among neonates. Expanding our understanding of the molecular mechanisms underlying EOS is essential in enhancing early detection, refining risk stratification, and guiding therapeutic strategies. This systematic review aims to synthesize the available information on the molecular pathways involved in EOS, focusing on pathogen-induced inflammation, systemic immune responses, sterile inflammatory processes, interactions between infectious and non-infectious pathways, as well as emerging molecular diagnostic approaches. Methods: A comprehensive review of original research articles and reviews published between January 2015 and January 2025 was conducted; studies were included based on their focus on human neonates and their analysis of molecular or immunological mechanisms relevant to EOS pathogenesis, immune dysregulation, or novel diagnostic strategies. Results: Pathogen-driven inflammation typically involves the activation of Toll-like receptors (TLRs), the recruitment of neutrophils, and the release of pro-inflammatory cytokines such as IL-6, IL-1β, and TNF-α, particularly in response to vertical transmission of organisms like Escherichia coli and Streptococcus agalactiae. Systemic inflammatory responses are marked by cytokine dysregulation, contributing to multi-organ dysfunction. Sterile inflammation, often initiated by hypoxia–reperfusion injury or intrauterine stress, amplifies susceptibility to sepsis. Interactions between immune, metabolic, and endothelial pathways further exacerbate tissue injury. Recent advances, including transcriptomic profiling, microRNA-based biomarkers, and immune checkpoint studies, offer promising strategies for earlier diagnosis and individualized therapeutic options. Conclusions: EOS arises from a complex interplay of infectious and sterile inflammatory mechanisms. A deeper molecular understanding holds promise for advancing correct diagnostics and targeted therapies, aiming to improve neonatal outcomes. Full article
(This article belongs to the Section Clinical Pediatrics)
Show Figures

Figure 1

15 pages, 3635 KB  
Article
The Calprotectin Fragment, CPa9-HNE, Is a Plasma Biomarker of Mild Chronic Obstructive Pulmonary Disease
by Mugdha M. Joglekar, Jannie M. B. Sand, Theo Borghuis, Diana J. Leeming, Morten Karsdal, Frank Klont, Russell P. Bowler, Barbro N. Melgert, Janette K. Burgess and Simon D. Pouwels
Cells 2025, 14(15), 1155; https://doi.org/10.3390/cells14151155 - 26 Jul 2025
Viewed by 431
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory disease predominantly of the small airways and parenchyma. COPD lungs exhibit an influx of circulating innate immune cells, which, when isolated, display impaired functions, including imbalanced protease secretion. In addition to immune cells, the [...] Read more.
Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory disease predominantly of the small airways and parenchyma. COPD lungs exhibit an influx of circulating innate immune cells, which, when isolated, display impaired functions, including imbalanced protease secretion. In addition to immune cells, the extracellular matrix (ECM) plays a crucial role in COPD pathology. Remodeling of the ECM can generate ECM fragments, which can be released into circulation and subsequently induce pro-inflammatory responses. COPD is a heterogeneous disease, and serological biomarkers can be used to sub-categorize COPD patients for targeted treatments and optimal recruitment in clinical trials. This study evaluated fragments of calprotectin, collagen type VI, and versican, generated by neutrophil elastase and matrix metalloproteinases (MMP-) 2 and 12, respectively, as potential biomarkers of COPD disease, severity, and endotypes. Lower plasma levels of a neoepitope marker of calprotectin, indicative of activated neutrophils (nordicCPa9-HNETM), were detected in COPD donors compared to controls. CPa9-HNE was associated with milder disease, higher degree of air-trapping, and higher serum levels of MMP-2. Deposition of CPa9-HNE levels in lung tissue revealed no differences between groups. Taken together, CPa9-HNE was found to be a potential marker of mild COPD, but further studies are warranted to validate our findings. Full article
Show Figures

Graphical abstract

17 pages, 5140 KB  
Article
Comparative Analysis of Chitosan, Lipid Nanoparticles, and Alum Adjuvants in Recombinant SARS-CoV-2 Vaccine: An Evaluation of Their Immunogenicity and Serological Efficacy
by Majed Ghattas, Garima Dwivedi, Anik Chevrier, Trevor Scobey, Rakan El-Mayta, Melissa D. Mattocks, Dong Wang, Marc Lavertu and Mohamad-Gabriel Alameh
Vaccines 2025, 13(8), 788; https://doi.org/10.3390/vaccines13080788 - 24 Jul 2025
Viewed by 616
Abstract
Background: Chitosan, a family of polysaccharides composed of glucosamine and N-acetyl glucosamine, is a promising adjuvant candidate for eliciting potent immune response. Methods: This study compared the adjuvant effects of chitosan to those of empty lipid nanoparticles (eLNPs) and aluminum hydroxide (alum) following [...] Read more.
Background: Chitosan, a family of polysaccharides composed of glucosamine and N-acetyl glucosamine, is a promising adjuvant candidate for eliciting potent immune response. Methods: This study compared the adjuvant effects of chitosan to those of empty lipid nanoparticles (eLNPs) and aluminum hydroxide (alum) following administration of recombinant SARS-CoV-2 spike immunogen in adult mice. Mice received the adjuvanted recombinant protein vaccine in a prime-boost regimen with four weeks interval. Subsequent analyses included serological assessment of antibody responses, evaluation of T cell activity, immune cell recruitment and cytokine profiles at injection site. Results: Compared to alum, chitosan induced a more balanced Th1/Th2 response, akin to that observed with eLNPs, demonstrating its ability to modulate both the humoral and cellular immune pathways. Chitosan induced a different proinflammatory cytokine (e.g., IL-1⍺, IL-2, IL-6, and IL-7) and chemokine (e.g., Eotaxin, IP-10, MIP-1a) profile compared to eLNPs and alum at the injection site and in the draining lymph nodes. Moreover, chitosan potentiated the recruitment of innate immune cells, with neutrophils accounting for about 40% of the infiltrating cells in the muscle, representing a ~10-fold increase compared to alum and a comparable level to eLNPs. Conclusions: These findings collectively indicate that chitosan has the potential to serve as an effective adjuvant, offering comparable, and potentially superior, properties to those of currently approved adjuvants. Full article
(This article belongs to the Special Issue Advances in Vaccine Adjuvants)
Show Figures

Figure 1

37 pages, 4312 KB  
Review
Neutrophils and NETs in Pathophysiology and Treatment of Inflammatory Bowel Disease
by Marina Ortega-Zapero, Raquel Gomez-Bris, Ines Pascual-Laguna, Angela Saez and Jose M. Gonzalez-Granado
Int. J. Mol. Sci. 2025, 26(15), 7098; https://doi.org/10.3390/ijms26157098 - 23 Jul 2025
Viewed by 982
Abstract
Inflammatory Bowel Disease (IBD), which includes ulcerative colitis (UC) and Crohn’s disease (CD), results from dysregulated immune responses that drive chronic intestinal inflammation. Neutrophils, as key effectors of the innate immune system, contribute to IBD through multiple mechanisms, including the release of reactive [...] Read more.
Inflammatory Bowel Disease (IBD), which includes ulcerative colitis (UC) and Crohn’s disease (CD), results from dysregulated immune responses that drive chronic intestinal inflammation. Neutrophils, as key effectors of the innate immune system, contribute to IBD through multiple mechanisms, including the release of reactive oxygen species (ROS), pro-inflammatory cytokines, and neutrophil extracellular traps (NETs). NETs are web-like structures composed of DNA, histones, and associated proteins including proteolytic enzymes and antimicrobial peptides. NET formation is increased in IBD and has a context-dependent role; under controlled conditions, NETs support antimicrobial defense and tissue repair, whereas excessive or dysregulated NETosis contributes to epithelial injury, barrier disruption, microbial imbalance, and thrombotic risk. This review examines the roles of neutrophils and NETs in IBD. We summarize recent single-cell and spatial-omics studies that reveal extensive neutrophil heterogeneity in the inflamed gut. We then address the dual role of neutrophils in promoting tissue damage—through cytokine release, immune cell recruitment, ROS production, and NET formation—and in supporting microbial clearance and mucosal healing. We also analyze the molecular mechanisms regulating NETosis, as well as the pathways involved in NET degradation and clearance. Focus is given to the ways in which NETs disrupt the epithelial barrier, remodel the extracellular matrix, contribute to thrombosis, and influence the gut microbiota. Finally, we discuss emerging therapeutic strategies aimed at restoring NET homeostasis—such as PAD4 inhibitors, NADPH oxidase and ROS pathway modulators, and DNase I—while emphasizing the need to preserve antimicrobial host defenses. Understanding neutrophil heterogeneity and NET-related functions may facilitate the development of new therapies and biomarkers for IBD, requiring improved detection tools and integrated multi-omics and clinical data. Full article
Show Figures

Figure 1

17 pages, 3305 KB  
Article
Evolution of Blood Innate Immune Cell Phenotypes Following SARS-CoV-2 Infection in Hospitalized Patients with COVID-19
by Arnaud Dendooven, Stephane Esnault, Marie Jacob, Jacques Trauet, Emeline Delaunay, Thomas Guerrier, Amali E. Samarasinghe, Floriane Mirgot, Fanny Vuotto, Karine Faure, Julien Poissy, Marc Lambert, Myriam Labalette, Guillaume Lefèvre and Julie Demaret
Cells 2025, 14(14), 1093; https://doi.org/10.3390/cells14141093 - 17 Jul 2025
Viewed by 687
Abstract
Innate immune cells appear to have an important implication in the resolution and/or the aggravation of the COVID-19 pathogenesis after infection with SARS-CoV-2. To better appreciate the role of these cells during COVID-19, changes in blood eosinophil, the neutrophil and monocyte count, and [...] Read more.
Innate immune cells appear to have an important implication in the resolution and/or the aggravation of the COVID-19 pathogenesis after infection with SARS-CoV-2. To better appreciate the role of these cells during COVID-19, changes in blood eosinophil, the neutrophil and monocyte count, and levels of surface protein markers have been reported. However, analyses at several timepoints of multiple surface markers on granulocytes and monocytes over a period of one month after a SARS-CoV-2 infection are missing. Therefore, in this study, we performed blood eosinophil, neutrophil, and monocyte phenotyping using a list of surface proteins and flow cytometry during a period of 30 days after the hospitalization of patients with severe SARS-CoV-2 infections. Blood cell counts were reported at seven different timepoints over the 30-day period as well as measures of multiple mediators in serum using a targeted multiplex assay approach. Our results indicate a 95% drop in the blood eosinophil count by D1, with eosinophils displaying a phenotype defined as CD69/CD63/CD125high and CCR3/CD44low during the early phases of hospitalization. Conversely, by D7 the neutrophil count increased significantly and displayed an immature, activated, and immunosuppressive phenotype (i.e., 3% of CD10/CD16low and CD10lowCD177high, 6.7% of CD11bhighCD62Llow, and 1.6% of CD16highCD62Llow), corroborated by enhanced serum proteins that are markers of neutrophil activation. Finally, our results suggest a rapid recruitment of non-classical monocytes leaving CD163/CD64high and CD32low monocytes in circulation during the very early phase. In conclusion, our study reveals potential very early roles for eosinophils and monocytes in the pathogenesis of COVID-19 with a likely reprogramming of eosinophils in the bone marrow. The exact roles of the pro-inflammatory neutrophils and the functions of the eosinophils and the monocytes, as well as these innate immune cell types, interplays need to be further investigated. Full article
(This article belongs to the Special Issue Eosinophils and Their Role in Allergy and Related Diseases)
Show Figures

Graphical abstract

29 pages, 1953 KB  
Review
Targeted Biologic Therapies in Severe Asthma: Mechanisms, Biomarkers, and Clinical Applications
by Renata Maria Văruț, Dop Dalia, Kristina Radivojevic, Diana Maria Trasca, George-Alin Stoica, Niculescu Stefan Adrian, Niculescu Elena Carmen and Cristina Elena Singer
Pharmaceuticals 2025, 18(7), 1021; https://doi.org/10.3390/ph18071021 - 10 Jul 2025
Viewed by 1950
Abstract
Asthma represents a heterogeneous disorder characterized by a dynamic balance between pro-inflammatory and anti-inflammatory forces, with allergic sensitization contributing substantially to airway hyperresponsiveness and remodeling. Central to its pathogenesis are cytokines such as IL-4, IL-5, IL-13, IL-17, and IL-33, which drive recruitment of [...] Read more.
Asthma represents a heterogeneous disorder characterized by a dynamic balance between pro-inflammatory and anti-inflammatory forces, with allergic sensitization contributing substantially to airway hyperresponsiveness and remodeling. Central to its pathogenesis are cytokines such as IL-4, IL-5, IL-13, IL-17, and IL-33, which drive recruitment of eosinophils, neutrophils, and other effector cells, thereby precipitating episodic exacerbations in response to viral and environmental triggers. Conventional biomarkers, including blood and sputum eosinophil counts, IgE levels, and fractional exhaled nitric oxide, facilitate phenotypic classification and guide the emerging biologic era. Monoclonal antibodies targeting IgE (omalizumab) and IL-5 (mepolizumab, benralizumab, reslizumab, depemokimab) have demonstrated the ability to reduce exacerbation frequency and improve lung function, with newer agents such as depemokimab offering extended dosing intervals. Itepekimab, an anti-IL-33 antibody, effectively engages its target and mitigates tissue eosinophilia, while CM310-stapokibart, tralokinumab, and lebrikizumab inhibit IL-4/IL-13 signaling with variable efficacy depending on patient biomarkers. Comparative analyses of these biologics, encompassing affinity, dosing regimens, and trial outcomes, underscore the imperative of personalized therapy to optimize disease control in severe asthma. Full article
Show Figures

Graphical abstract

9 pages, 442 KB  
Article
Systemic Inflammation Index (SII) as a Predictor of Mortality in Intensive Care Units
by Ömer Emgin, Elif Rana Kılıç, İmren Taşkıran, Engin Haftacı, Adnan Ata and Mehmet Yılmaz
Biomedicines 2025, 13(7), 1669; https://doi.org/10.3390/biomedicines13071669 - 8 Jul 2025
Viewed by 590
Abstract
Background: The Systemic Inflammation Index (SII), associated with increased systemic inflammation and adverse outcomes, has been demonstrated to be efficacious and a significant biomarker in different patient populations. This investigation aims to examine the correlation between the admission SII, a relatively new biomarker, [...] Read more.
Background: The Systemic Inflammation Index (SII), associated with increased systemic inflammation and adverse outcomes, has been demonstrated to be efficacious and a significant biomarker in different patient populations. This investigation aims to examine the correlation between the admission SII, a relatively new biomarker, and 28-day mortality outcomes in intensive care units (ICUs). Methods: This retrospective cohort analysis was undertaken in a tertiary-level ICU in Turkey from 3 April 2024 through 31 December 2024. Baseline demographic data, clinical characteristics, and laboratory parameters were recorded. Inflammatory parameters such as SII, NLR, and PLR were calculated at the time of ICU admission. SII = neutrophil count (103/ill) × PLT count (103/μL)/lymphocyte count, NLR = neutrophil count (103/μL)/lymphocyte count (103/μL), and PLR = PLT (103/μL)/lymphocyte count (103/μL). Results: In this study, a total of 702 patients who met the eligibility criteria were recruited. The study’s overall mortality rate for 28 days was 36.9% with 259 deaths. The median age of the cohort was 70 years (57–80), with 41.6% of the participants being female. The SII was markedly elevated in non-survivors compared to survivors (p = 0.010). The analysis revealed that the SII/1000 was an independent predictor of elevated mortality risk (OR 1.029, 95% CI 1.001–1.057, p = 0.042). Conclusions: The identification of the Systemic Inflammation Index on admission to the ICUs is of critical importance. The SII has been demonstrated to serve as a significant and independent predictor of mortality. There is a need for prospective and large-scale studies to generalize this finding to other populations or for more widespread use in clinical practice. Full article
(This article belongs to the Section Molecular and Translational Medicine)
Show Figures

Figure 1

24 pages, 5180 KB  
Article
Resolvin D2 Reduces UVB Skin Pathology by Targeting Cytokines, Oxidative Stress, and NF-κB Activation
by Ingrid C. Pinto, Priscila Saito, Camilla C. A. Rodrigues, Renata M. Martinez, Cristina P. B. Melo, Maiara Piva, Clovis M. Kumagai, David L. Vale, Telma Saraiva-Santos, Allan J. C. Bussmann, Marcela M. Baracat, Sandra R. Georgetti, Fabiana T. M. C. Vicentini, Waldiceu A. Verri and Rubia Casagrande
Antioxidants 2025, 14(7), 830; https://doi.org/10.3390/antiox14070830 - 6 Jul 2025
Viewed by 726
Abstract
UVB skin pathology is initiated by reactive oxygen species (ROS), differentiating this condition from other inflammatory diseases involving first the immune cell activation by danger or pathogen molecular patterns followed by oxidative stress. Resolvin D2 (RvD2) has been found to reduce inflammation in [...] Read more.
UVB skin pathology is initiated by reactive oxygen species (ROS), differentiating this condition from other inflammatory diseases involving first the immune cell activation by danger or pathogen molecular patterns followed by oxidative stress. Resolvin D2 (RvD2) has been found to reduce inflammation in preclinical models. However, whether or not RvD2 reduces skin pathology caused by UVB irradiation is not yet known. Therefore, the efficacy of RvD2 on skin pathology triggered by UVB irradiation in female hairless mice was assessed. RvD2 (0.3, 1 or 3 ng/mouse, i.p.) was found to protect the skin against UVB inflammation, as observed in the reduction in edema (46%), myeloperoxidase activity (77%), metalloproteinase-9 activity (39%), recruitment of neutrophils/macrophages (lysozyme+ cells, 76%) and mast cells (106%), epidermal thickening (93%), sunburn cell formation (68%), collagen fiber breakdown (55%), and production of cytokines such as TNF-α (100%). Considering the relevance of oxidative stress to UVB irradiation skin pathologies, an important observation was that the skin antioxidant capacity was recovered by RvD2 according to the results that show the ferric reducing antioxidant power (68%), cationic radical scavenges (93%), catalase activity (74%), and the levels of reduced glutathione (48%). Oxidative damage was also attenuated, as observed in the reduction in superoxide anion production (69%) and lipid hydroperoxides (71%). The RvD2 mechanism involved the inhibition of NF-κB activation, as observed in the diminished degradation of IκBα (48%) coupled with a reduction in its downstream targets that are involved in inflammation and oxidative stress, such as COX-2 (66%) and gp91phox (77%) mRNA expression. In conclusion, RvD2 mitigates the inflammatory and oxidative pathologic skin aggression that is triggered by UVB. Full article
(This article belongs to the Special Issue Antioxidants for Skin Health)
Show Figures

Figure 1

23 pages, 2746 KB  
Article
Hydration Status and Acute Kidney Injury Biomarkers in NCAA Female Soccer Athletes During Preseason Conditioning
by Daniel E. Newmire, Erica M. Filep, Jordan B. Wainwright, Heather E. Webb and Darryn S. Willoughby
Nutrients 2025, 17(13), 2185; https://doi.org/10.3390/nu17132185 - 30 Jun 2025
Viewed by 599
Abstract
Exercise training in extreme temperatures concurrent with hypohydration status may potentiate the development of acute kidney injury (AKI) in young, healthy persons. Background/Objectives: It is unknown how repeated training bouts in ambient higher temperatures and humidity may influence measures of AKI. The [...] Read more.
Exercise training in extreme temperatures concurrent with hypohydration status may potentiate the development of acute kidney injury (AKI) in young, healthy persons. Background/Objectives: It is unknown how repeated training bouts in ambient higher temperatures and humidity may influence measures of AKI. The purpose of this study was to investigate hydration status and renal biomarkers related to AKI in NCAA Division I female soccer athletes during preseason conditioning. Methods: A convenience sample of n = 21 athletes were recruited (mean ± SEM; age: 19.3 ± 0.25 y; height: 169.6 ± 1.36 cm; mass: 68.43 ± 2.46 kg; lean body mass: 45.91 ± 1.13 kg; fat mass: 22.51 ± 1.69 kg; body fat %: 32.22 ± 1.32%). The average temperature was 27.43 ± 0.19 °C, and the humidity was 71.69 ± 1.82%. Body composition, anthropometric, workload, and 14 urine samples were collected throughout the preseason training period for urine specific gravity (USG), creatinine (uCr), cystatin C (uCyst-C), and neutrophil gelatinase-associated lipocalin (uNGAL) analyses. Results: Our investigation showed that, when compared to baseline (D0), the athletes maintained a USG-average euhydrated status (1.019 ± 0.001) and were euhydrated prior to each exhibition game (D5-Pre: p = 0.03; 1.011 ± 0.001; D10-Pre: p = 0.0009; 1.009 ± 0.001); uCr was elevated on D8 (p = 0.001; 6.29 ± 0.44 mg·dL−1·LBM−1) and D10-Post (p = 0.02; 6.61 ± 0.44 mg·dL−1·LBM−1); uCyst-C was elevated on D6 through D10 (p = 0.001; ~0.42 ± 0.01 mg·dL−1); no differences were found in uNGAL concentration. The highest distance (m) displaced was found during exhibition games (D5: p = <0.0001; ~8.6 km and D10: p = <0.0001; ~9.6 km). During the preseason conditioning, the athletes maintained a euhydrated status (~1.019) via USG, an increase in uCr that averaged within a normal range (208 mg·dL−1), and an increase in uCyst-C to near AKI threshold levels (0.42 mg·L−1) for several practice sessions, followed by an adaptive decline. No differences were found in uNGAL, which may be explained by athlete variation, chosen time sample collection, and variation in training and hydration status. Conclusions: The athletes maintained a euhydrated status, and this may help explain why urinary markers did not change or meet the reference threshold for AKI. Full article
Show Figures

Figure 1

Back to TopTop