Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,890)

Search Parameters:
Keywords = nutrient deficient

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 895 KB  
Review
Proton Pump Inhibitors (PPIs)—An Evidence-Based Review of Indications, Efficacy, Harms, and Deprescribing
by Monica Andrawes, Wessam Andrawes, Abhishek Das and Keith Siau
Medicina 2025, 61(9), 1569; https://doi.org/10.3390/medicina61091569 (registering DOI) - 31 Aug 2025
Abstract
Proton pump inhibitors (PPIs) are among the most prescribed drugs worldwide owing to their proven efficacy in symptom control and mucosal healing for acid-related disorders including gastroesophageal reflux disease (GORD), peptic ulcer disease, Helicobacter pylori eradication, functional dyspepsia, and gastroprotection in high-risk patients. [...] Read more.
Proton pump inhibitors (PPIs) are among the most prescribed drugs worldwide owing to their proven efficacy in symptom control and mucosal healing for acid-related disorders including gastroesophageal reflux disease (GORD), peptic ulcer disease, Helicobacter pylori eradication, functional dyspepsia, and gastroprotection in high-risk patients. However, long-term use beyond approved indications is increasingly common and has raised safety concerns. Observational studies link chronic PPI use to a myriad of adverse outcomes such as enteric infections (e.g., Clostridioides difficile), nutrient deficiencies (magnesium, vitamin B12), osteoporotic fractures, chronic kidney disease, dementia, and gastric and colorectal cancer. While causality is not always established, these associations warrant cautious risk–benefit assessment in patients receiving prolonged therapy. Current guidelines advocate periodic review of ongoing PPI use and emphasise deprescribing where appropriate. Strategies include dose reduction, on-demand or intermittent use, and switching to H2-receptor antagonists, particularly in patients with non-erosive reflux disease or functional dyspepsia. Tools from the National Institute for Health and Clinical Excellence, American College of Gastroenterology, and the Canadian Deprescribing Network assist clinicians in identifying candidates for tapering or discontinuation. This narrative review focuses on the concept of “PPI stewardship” by providing an evidence-based overview of PPI indications, risks, and deprescribing strategies to promote appropriate, safer, and patient-centred use of acid-suppressive therapy. Full article
(This article belongs to the Section Gastroenterology & Hepatology)
Show Figures

Figure 1

22 pages, 653 KB  
Article
Energy and Nutrient Intake Gaps and Socioeconomic Determinants of Ultra-Processed and Less-Processed Foods Consumed in Ethiopia: Evidence from National Food Consumption Survey
by Kifle Habte Balcha, Stefanie Vandevijvere, Annette van Onselen, Muthulisi Siwela, Masresha Tessema, Nqobile Monate Mkolo, Tibebu Moges, Edith J. M. Feskens, Dejen Tesfaw and Inge D. Brouwer
Nutrients 2025, 17(17), 2818; https://doi.org/10.3390/nu17172818 - 29 Aug 2025
Abstract
Introduction: Consumption of ultra-processed food (UPF) is associated with poor diet quality and a risk for non-communicable diseases (NCDs). This study explores the energy contribution of NOVA foods and the nutrient gaps. Methods: The study sourced data from the previous Ethiopian National Food [...] Read more.
Introduction: Consumption of ultra-processed food (UPF) is associated with poor diet quality and a risk for non-communicable diseases (NCDs). This study explores the energy contribution of NOVA foods and the nutrient gaps. Methods: The study sourced data from the previous Ethiopian National Food Consumption Survey (NFCS). It covered 8254 households, 8254 women of reproductive age (15–45 years old), and 7272 children (6–45 months old). Results: The most consumed UPF in children were biscuits, cookies, soft drinks, and semi-solid palm oil; while cow and human milk, whole wheat bread, a range of legumes, tubers, and cereal-based foods were among NOVA1. In both children and women, the largest dietary energy intake was from NOVA1 (74.6% and 79.0%), processed culinary ingredients (18.3% and 14.0%), processed foods (1.9% and 3.5%), and UPF (5.1% and 3.5%), respectively. Higher intake of energy from UPF was found in urban residences, wealthier households, and women with higher education. However, NOVA1 was more dominantly consumed in rural than in urban areas. Micronutrient and macronutrient gaps were observed compared to the recommended nutrient intake (RNI). The intake of fruits and vegetables was also considerably low compared to the WHO recommendation (≥400 g/day for adults, and ≥250 g/day for children). Conclusions: Adequate intake of micronutrients, fruits, and vegetables is essential to meet the RNI and could have reduced existing body micronutrient deficiencies, such as vitamin A, zinc, iodine, calcium, vitamin D, and selenium prevalence. Whether UPF intake in urban areas is associated with insufficient availability and access to NOVA1 foods or just due to the higher provision of UPF and gained popularity needs additional investigation. Further study is recommended to simulate the impact of increased fruits and vegetables and/or reduced intake of selected UPF, salts, and oils on NCD markers or mortality in the country. Full article
(This article belongs to the Section Nutrition and Public Health)
Show Figures

Figure 1

21 pages, 2319 KB  
Article
Subsurface Banding of Poultry Manure Enhances Photosynthetic Efficiency, Yield, and Nutrient Uptake in Buckwheat
by Sina Fallah, Hossein Abedini Dastgerdi, Hans-Peter Kaul and Aliyeh Salehi
Plants 2025, 14(17), 2700; https://doi.org/10.3390/plants14172700 - 29 Aug 2025
Viewed by 15
Abstract
Manure application may improve plant growth, yield, and ecological sustainability. This study investigates optimized organic fertilizer application methods for enhancing buckwheat (Fagopyrum esculentum) productivity in semi-arid conditions. Treatments include broadcasting (Br) and subsurface banding (Ba) of poultry (PM) and cattle (CM) [...] Read more.
Manure application may improve plant growth, yield, and ecological sustainability. This study investigates optimized organic fertilizer application methods for enhancing buckwheat (Fagopyrum esculentum) productivity in semi-arid conditions. Treatments include broadcasting (Br) and subsurface banding (Ba) of poultry (PM) and cattle (CM) manure and foliar spraying (S) of manure extracts (1:5 and 1:10 ratios), urea fertilizer (UF), and a control. Subsurface-banded poultry manure (BaPM) maximized chlorophyll b (4.0 µg/mL), carotenoids (2.30 µmol/mL), anthocyanin (0.02 µmol/mL), leaf area index (2.03), seed nitrogen (3.4%), and spikes per plant (17). BaPM achieved the highest seed yield (646 kg/ha), comparable to BrPM, BaCM, and SPM(1:5). The maximum seed phosphorus content (0.43%) was observed in the BaPM, BrPM, and SCM(1:10) treatments. Dry matter peaked under UF (4870 kg/ha) and BaPM (4641 kg/ha). Banding placement improved nutrient uptake by enhancing root zone retention, while foliar poultry extract (1:5) mitigated phosphorus deficiency. These findings demonstrate that integrating certain manure types with targeted application methods—particularly subsurface banding of poultry manure—optimizes nutrient use efficiency, crop performance, and environmental sustainability in buckwheat cultivation. Full article
Show Figures

Figure 1

26 pages, 3187 KB  
Article
Sulfate Deficiency-Responsive MicroRNAs in Tomato Uncover an Expanded and Functionally Integrated Regulatory Network
by Diego Landaeta-Sepúlveda, Nathan R. Johnson, Jonathan Morales-Espinoza, Mariola Tobar, Evelyn Sánchez, José D. Fernández, Consuelo Olivares-Yáñez, Joaquín Medina, Javier Canales and Elena A. Vidal
Int. J. Mol. Sci. 2025, 26(17), 8392; https://doi.org/10.3390/ijms26178392 - 29 Aug 2025
Viewed by 41
Abstract
Sulfate availability critically influences plant growth, yet the role of small RNAs, particularly microRNAs (miRNAs), in regulating responses to sulfate deficiency remains poorly understood. Here, we conducted a temporal analysis of sulfate deficiency-responsive miRNAs in the roots and leaves of Solanum lycopersicum (tomato), [...] Read more.
Sulfate availability critically influences plant growth, yet the role of small RNAs, particularly microRNAs (miRNAs), in regulating responses to sulfate deficiency remains poorly understood. Here, we conducted a temporal analysis of sulfate deficiency-responsive miRNAs in the roots and leaves of Solanum lycopersicum (tomato), using an updated miRNA annotation in the SL4.0 genome. We found 40 differentially expressed miRNAs, including 2 novel, tomato-specific miRNAs. Tomato miRNAs showed an important time- and organ-specific regulation, similar to the described response of the mRNA transcriptome. Integration with transcriptomic data and Degradome-seq analysis highlighted both canonical and non-canonical targets for sulfate-responsive miRNAs. miR395, the most extensively studied miRNA, was found to control not only its conserved targets involved in sulfate transport and assimilation, but also genes involved in redox homeostasis, photosynthesis and chloride transport. Notably, most targets were repressed in leaves, suggesting miRNA-mediated downregulation of energy-intensive processes, while root targets were predominantly upregulated, including genes related to protein remodeling and antioxidant defense. Comparative analysis with Arabidopsis thaliana revealed a broader functional repertoire in tomato, suggesting species-specific adaptations to sulfate deficiency. Overall, our results underscore the critical role of miRNAs in fine-tuning organ-specific metabolic reprogramming during nutrient stress, expanding the current understanding of the regulatory landscape underlying sulfate deficiency in plants. Full article
Show Figures

Figure 1

25 pages, 9557 KB  
Article
Integrated GWAS and Transcriptome Analysis Reveal the Genetic and Molecular Basis of Low Nitrogen Tolerance in Maize Seedlings
by Fang Wang, Luhui Jia, Zhiming Zhong, Zelong Zhuang, Bingbing Jin, Xiangzhuo Ji, Mingxing Bai and Yunling Peng
Plants 2025, 14(17), 2689; https://doi.org/10.3390/plants14172689 - 28 Aug 2025
Viewed by 96
Abstract
Nitrogen is an essential nutrient for the growth and development of maize (Zea mays L.), and soil nitrogen deficiency is an important factor limiting maize yield. Although excessive application of nitrogen fertilizer can increase yield, it can also cause environmental problems. Therefore, [...] Read more.
Nitrogen is an essential nutrient for the growth and development of maize (Zea mays L.), and soil nitrogen deficiency is an important factor limiting maize yield. Although excessive application of nitrogen fertilizer can increase yield, it can also cause environmental problems. Therefore, screening low-nitrogen-tolerant (LNT) germplasm resources and analyzing their genetic mechanisms are of great significance for the development of efficient and environmentally friendly agriculture. In this study, 201 maize inbred lines were used as materials. Two levels of low nitrogen (LN) (0.05 mmol/L, N1) and normal nitrogen (4 mmol/L, N2) were set up. Phenotypic indicators such as seedling length, root length and biomass were measured, and they were classified into LNT type (18 samples), nitrogen-sensitive (NS) type (27 samples) and intermediate type (156 samples). A total of 47 significant SNP loci were detected through a genome-wide association study (GWAS), and 36 candidate genes were predicted. Transcriptome sequencing (RNA-seq) analysis revealed that the differentially expressed genes (753 upregulated and 620 downregulated) in LNT materials under low nitrogen stress (LNS) were significantly fewer than those in NS materials (2436 upregulated and 2228 downregulated). Further analysis using WGCNA identified a total of eight co-expression modules. Among them, the red module was significantly correlated with root length and underground fresh weight under LN conditions (r = 0.75), and three key genes for stress response (Zm00001d005264, Zm00001d053931, Zm00001d044292) were screened out. Combined with GWAS, RNA-seq and qRT-PCR verification, eight candidate genes closely related to LNT at the seedling stage of maize were finally determined, involving biological processes such as stress response, nitrogen metabolism and substance formation. This study initially revealed the molecular mechanism of maize tolerance to LN through multi-omics analysis, providing a theoretical basis and genetic resources for breeding new nitrogen-efficient maize varieties. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

28 pages, 2204 KB  
Review
Torrefaction of Lignocellulosic Biomass: A Pathway to Renewable Energy, Circular Economy, and Sustainable Agriculture
by Salini Chandrasekharan Nair, Vineetha John, Renu Geetha Bai and Timo Kikas
Sustainability 2025, 17(17), 7738; https://doi.org/10.3390/su17177738 - 28 Aug 2025
Viewed by 336
Abstract
Torrefaction, a mild thermochemical pretreatment process, is widely acknowledged as an effective strategy for enhancing the energy potential of lignocellulosic biomass. This review systematically evaluates the technological, environmental, and economic dimensions of lignocellulosic biomass torrefaction with the objective of clarifying its critical role [...] Read more.
Torrefaction, a mild thermochemical pretreatment process, is widely acknowledged as an effective strategy for enhancing the energy potential of lignocellulosic biomass. This review systematically evaluates the technological, environmental, and economic dimensions of lignocellulosic biomass torrefaction with the objective of clarifying its critical role in sustainable energy production and circular economy frameworks. Drawing from recent literature, the review covers process fundamentals, feedstock characteristics and operational parameters—typically 200–300 °C, heating rates below 50 °C per minute, ~1 h residence time, and oxygen-deficient conditions. The impacts of torrefaction on fuel properties, such as increased energy density, improved grindability and pelletability, enhanced storage stability, and reduced microbial degradation are critically assessed along with its contribution to waste valorization and renewable energy conversion. Particular emphasis is placed on the application of torrefied biomass (biochar) in sustainable agriculture, where it can enhance nutrient retention, improve soil quality and promote long-term carbon sequestration. This review identifies an unresolved research gap in aligning large-scale techno-economic feasibility with environmental impacts, specifically concerning the high process energy requirements, emission mitigation and regulatory integration. Process optimization, reactor design and supportive policy frameworks are identified as key strategies that could significantly improve the economic viability and sustainability outcomes. Overall, torrefaction demonstrates substantial potential as a scalable pathway for converting waste agricultural and forest residues into carbon-neutral biofuels. By effectively linking biomass waste valorization with renewable energy production and sustainable agricultural practices, this review offers a practical route to reducing environmental impacts while supporting the broader objectives of the global circular economy. Full article
Show Figures

Figure 1

19 pages, 315 KB  
Article
Food Selectivity in Children with Autism Spectrum Disorder and in Typically Developing Peers: Sensory Processing, Parental Practices, and Gastrointestinal Symptoms
by Paolo Mirizzi, Marco Esposito, Orlando Ricciardi, Domenico Bove, Roberta Fadda, Alessandro O. Caffò, Monica Mazza and Marco Valenti
Nutrients 2025, 17(17), 2798; https://doi.org/10.3390/nu17172798 - 28 Aug 2025
Viewed by 200
Abstract
Background/Objectives: Food selectivity is a prevalent and challenging issue in childhood, particularly in children with autism spectrum disorder (ASD), which may result in restricted dietary patterns and nutrient deficiencies. This study aimed to identify high-risk subgroups of children by combining food selectivity, diet, [...] Read more.
Background/Objectives: Food selectivity is a prevalent and challenging issue in childhood, particularly in children with autism spectrum disorder (ASD), which may result in restricted dietary patterns and nutrient deficiencies. This study aimed to identify high-risk subgroups of children by combining food selectivity, diet, BMI, gastrointestinal symptoms, sensory processing, and parental feeding practices in children with ASD and in typically developing children (TDC). Methods: To achieve this aim, we ran a cross-sectional, survey-based study, including 408 children (aged 3 to 12.11 years), with gender-matched groups. Both parents completed a survey on children’s diet, anthropometric curves, gastrointestinal symptoms, and the Brief Autism Mealtime Behavior Inventory (BAMBI), Short Sensory Profile (SSP), and Caregiver’s Feeding Style Questionnaire (CFSQ). Data analysis included comparative tests, correlations, and k-means cluster analysis. Results: Children with ASD exhibited significantly greater sensory processing difficulties, higher food refusal, limited food variety in the diet, and autism-related mealtime characteristics compared with TDC across all age groups. Caregivers of children with ASD reported higher controlling and contingency management feeding practices compared to the parents of the TDC. We found a strong correlation between sensory sensitivities and feeding issues. Notably, Body Mass Index (BMI) was not significantly associated with dietary restriction or gastrointestinal symptoms. Cluster analysis revealed a high-risk sub-phenotype in both groups of children with some differences, characterized by high food selectivity, taste, tactile, and smell sensitivity, gastrointestinal symptoms, and overactive parental practices. Conclusions: The early identification of this subgroup might foster more tailored, multidisciplinary, and effective assessment and clinical intervention. Full article
19 pages, 1520 KB  
Article
Impact of Vitamin B12 Supplementation on Cardiovascular Health in the Silver Star Bamboo Rat, a Species That Feeds Primarily on Bamboo
by Lei Chen, Zhoulong Chen, Yongqi Zhao, Nan Yang, Jingheng Wang, Yanni Zhao, Lijun Luo and Xiuyue Zhang
Animals 2025, 15(17), 2526; https://doi.org/10.3390/ani15172526 - 27 Aug 2025
Viewed by 147
Abstract
Specialized herbivores like giant pandas (Ailuropoda melanoleuca), red pandas (Ailurus fulgens), and bamboo rats, which primarily consume bamboo, are at risk of nutrient deficiencies, particularly vitamin B12 (VB12), potentially leading to cardiovascular diseases. This study explored the effects of [...] Read more.
Specialized herbivores like giant pandas (Ailuropoda melanoleuca), red pandas (Ailurus fulgens), and bamboo rats, which primarily consume bamboo, are at risk of nutrient deficiencies, particularly vitamin B12 (VB12), potentially leading to cardiovascular diseases. This study explored the effects of VB12 supplementation on cardiovascular health in silver star bamboo rats (Rhizomys pruinosus). We first conducted a comprehensive genome annotation of R. pruinosus, laying the foundation for in-depth evolutionary studies. Comparative transcriptomic analysis revealed that genes related to cardiovascular disease (e.g., Sgcb, Adcy2, Itga1, Itgb8, Ifng, and Gpc1) were upregulated in the livers of R. pruinosus compared to carnivorous and omnivorous rodents, indicating a higher cardiovascular disease risk. After 60 days of VB12 supplementation, liver transcriptome analysis revealed significant improvements in cardiovascular health markers, including reduced cholesterol synthesis and enhanced fatty acid metabolism. Serum biochemical assays indicated that VB12 supplementation led to reduced homocysteine levels, decreased low-density lipoprotein (LDL)-to-high-density lipoprotein (HDL) ratios, and increased the apolipoprotein A-to-apolipoprotein B ratio. These findings suggest that VB12 may mitigate cardiovascular disease risk and could be considered in the dietary management of specialized bamboo-eating species. Our study provides valuable insights into disease prevention strategies for these species with similar dietary habits. Full article
(This article belongs to the Special Issue Feed Additives in Animal Nutrition)
Show Figures

Figure 1

26 pages, 40392 KB  
Article
Crop Health Assessment from Predicted AGB and NPK Derived from UAV Spectral Indices and Machine Learning Techniques
by Ayyappa Reddy Allu and Shashi Mesapam
Agronomy 2025, 15(9), 2059; https://doi.org/10.3390/agronomy15092059 - 27 Aug 2025
Viewed by 262
Abstract
Crop health assessment is essential for the early detection of nutrient deficiencies, diseases, and pests, allowing for timely interventions that optimize yield, reduce losses, and support sustainable agricultural practices. While traditional methods and satellite-based remote sensing offer broad scale monitoring, they often suffer [...] Read more.
Crop health assessment is essential for the early detection of nutrient deficiencies, diseases, and pests, allowing for timely interventions that optimize yield, reduce losses, and support sustainable agricultural practices. While traditional methods and satellite-based remote sensing offer broad scale monitoring, they often suffer from coarse spatial resolution, and insufficient precision at the plant level. These limitations hinder accurate and dynamic assessment of crop health, particularly for high-resolution applications such as nutrient diagnosis during different crop growth stages. This study addresses these gaps by leveraging high-resolution UAV (Unmanned Aerial Vehicle) imagery to monitor the health of paddy crops across multiple temporal stages. A novel methodology was implemented to assess the crop health condition from the predicted Above-Ground Biomass (AGB) and essential macro-nutrients (N, P, K) using vegetation indices derived from UAV imagery. Four machine learning models were used to predict these parameters based on field observed data, with Random Forest (RF) and XGBoost outperforming other algorithms, achieving high regression scores (AGB > 0.92, N > 0.96, P > 0.92, K > 0.97) and low prediction errors (AGB < 80 gm/m2, N < 0.11%, P < 0.007%, K < 0.08%). A significant contribution of this study lies in the development of decision-making rules based on threshold values of AGB and specific nutrient critical, optimum, and toxic levels for the paddy crop. These rules were used to derive crop health maps from the predicted AGB and NPK values. The resulting spatial health maps, generated using RF and XGBoost models with high classification accuracy (Kappa coefficient > 0.64), visualize intra-field variability, allowing for site-specific interventions. This research contributes significantly to precision agriculture by offering a robust, plant-level monitoring approach that supports timely, site-specific nutrient management and enhances sustainable crop production practices. Full article
Show Figures

Figure 1

16 pages, 386 KB  
Article
Iodine Deficiency and Excess in Brazilian Pregnant Women: A Multicenter Cross-Sectional Study (EMDI-Brazil)
by Aline Carare Candido, Francilene Maria Azevedo, Sarah Aparecida Vieira Ribeiro, Anderson Marliere Navarro, Mariana de Souza Macedo, Edimar Aparecida Filomeno Fontes, Sandra Patricia Crispim, Carolina Abreu de Carvalho, Nathalia Pizato, Danielle Góes da Silva, Franciane Rocha de Faria, Jorge Gustavo Velásquez Meléndez, Barbosa Míriam Carmo Rodrigues, Naiara Sperandio, Renata Junqueira Pereira, Silvia Eloiza Priore and Sylvia do Carmo Castro Franceschini
Nutrients 2025, 17(17), 2753; https://doi.org/10.3390/nu17172753 - 26 Aug 2025
Viewed by 402
Abstract
Background/Objectives: Iodine is an important nutrient for the human body, used in the production of thyroid hormones. During pregnancy, a deficiency can cause miscarriage and hypothyroidism, while an excess can cause thyroid dysfunction. Therefore, the objective of this study was to evaluate the [...] Read more.
Background/Objectives: Iodine is an important nutrient for the human body, used in the production of thyroid hormones. During pregnancy, a deficiency can cause miscarriage and hypothyroidism, while an excess can cause thyroid dysfunction. Therefore, the objective of this study was to evaluate the factors associated with the iodine nutritional status of pregnant Brazilian women. Methods: This was a cross-sectional, multicenter study conducted with pregnant women over 18 years of age, users of the Unified Health System (SUS). A semi-structured questionnaire was used to obtain sociodemographic information. Iodine status was assessed by urinary iodine concentration (UIC). The iodine content of salt and homemade and industrial seasonings was determined by the titrimetric method. Dietary intake was estimated through a 24-hour dietary recall. The chi-square test and hierarchical multinomial logistic regression were used for statistical analysis. The significance level was set at p ≤ 0.05. Results: Among Brazilian pregnant women, the median UIC was 186.7 µg/L (P25: 118.05 µg/L-P75: 280.93 µg/L). Regarding iodine nutritional status, the prevalence of deficiency was 36.7% (n = 694), above the requirement was 28.7% (n = 543), and excess iodine intake was 3.6% (n = 68). We observed that non-white pregnant women were more likely (OR = 1.83; 95% CI: 1.27–2.64) to have iodine deficiency, and those who did not work were less likely (OR = 0.71; 95% CI: 0.52–0.98). Pregnant women in the last trimester of pregnancy were less likely to have iodine intake above the requirements (OR = 0.52; 95% CI: 0.31–0.88). Conclusions: A substantial proportion of pregnant women had iodine deficiency or intake above the required level. Iodine deficiency is more chance among non-white pregnant women and less chance among those not employed during pregnancy. On the other hand, pregnant women who were in their third trimester of pregnancy were less likely to have iodine intake above the required level. Full article
(This article belongs to the Special Issue Selenium and Iodine in Human Health and Disease)
Show Figures

Graphical abstract

20 pages, 3774 KB  
Article
Establishing Leaf Tissue Nutrient Standards and Documenting Nutrient Disorder Symptomology of Greenhouse-Grown Cilantro (Coriandrum sativum)
by Danielle Clade, Patrick Veazie, Jennifer Boldt, Kristin Hicks, Christopher Currey, Nicholas Flax, Kellie Walters and Brian Whipker
Appl. Sci. 2025, 15(17), 9266; https://doi.org/10.3390/app15179266 - 22 Aug 2025
Viewed by 352
Abstract
Cilantro (Coriandrum sativum L.) is a popular annual culinary herb grown for its leaves or seeds. With the increase in hydroponic herb production in controlled environments, a need exists for leaf tissue nutrient standards specific to this production system. The objective of [...] Read more.
Cilantro (Coriandrum sativum L.) is a popular annual culinary herb grown for its leaves or seeds. With the increase in hydroponic herb production in controlled environments, a need exists for leaf tissue nutrient standards specific to this production system. The objective of this study was to develop comprehensive foliar mineral nutrient interpretation ranges for greenhouse-grown cilantro. Cilantro plants were grown in a hydroponic sand culture system to induce and document nutritional disorders. Plants were supplied with a modified Hoagland’s solution, which was adjusted to individually add or omit one nutrient per treatment while holding all others constant. Deficiency and toxicity symptoms were photographed, after which the plant tissue was collected to determine plant dry weight and critical tissue nutrient concentrations. Nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), sulfur (S), boron (B), iron (Fe), and zinc (Zn) deficiencies, as well as B toxicity, were induced. Deficiencies of copper (Cu), manganese (Mn), and molybdenum (Mo) were not observed during the experiment. Additional foliar tissue analysis data (n = 463) were compiled to create nutrient interpretation ranges for 12 essential elements based on a hybrid meta-analysis Sufficiency Range Approach (SRA). This approach defines ranges for deficient, low, sufficient, high, and excessive values. For each element, the optimal distribution was selected according to the lowest Bayesian Information Criterion (BIC) value. A Normal distribution best represented K and S. A Gamma distribution best represented P, Ca, Mn, and Mo, whereas a Weibull distribution best represented N, Mg, B, Cu, Fe, and Zn. These interpretation ranges, along with descriptions of typical symptomology and critical tissue nutrient concentrations, provide useful tools for both diagnosing nutritional disorders and interpreting foliar nutrient analysis results of greenhouse-grown cilantro. Full article
(This article belongs to the Special Issue Crop Yield and Nutrient Use Efficiency)
Show Figures

Figure 1

14 pages, 2267 KB  
Article
Acidification and Nutrient Imbalances Drive Fusarium Wilt Severity in Banana (Musa spp.) Grown on Tropical Latosols
by Tao Jing, Kai Li, Lixia Wang, Mamdouh A. Eissa, Bingyu Cai, Tianyan Yun, Yingdui He, Ahmed A. El Baroudy, Zheli Ding, Yongzan Wei, Yufeng Chen, Wei Wang, Dengbo Zhou, Xiaoping Zang and Jianghui Xie
J. Fungi 2025, 11(9), 611; https://doi.org/10.3390/jof11090611 - 22 Aug 2025
Viewed by 873
Abstract
Fusarium wilt, caused by Fusarium oxysporum f. sp. cubense (FOC), remains a major constraint to global banana (Musa spp.) production, especially in tropical regions. Although soil conditions are known to modulate disease expression, the specific physicochemical drivers of FOC prevalence under field [...] Read more.
Fusarium wilt, caused by Fusarium oxysporum f. sp. cubense (FOC), remains a major constraint to global banana (Musa spp.) production, especially in tropical regions. Although soil conditions are known to modulate disease expression, the specific physicochemical drivers of FOC prevalence under field conditions are not well understood. This study investigated the relationships between soil properties and the Fusarium wilt incidence across 47 banana farms on Hainan Island, China, a tropical region dominated by highly weathered tropical soil (latosols). The disease incidence (%PDI) and FOC abundance were quantified, alongside key soil parameters, including the pH, organic carbon, cation exchange capacity, and macro- and micronutrient availability. The soils were predominantly acidic (mean pH 4.93), with low levels of organic carbon and exchangeable calcium (Ca) and elevated levels of available phosphorus (P), potassium (K), and magnesium (Mg). The Fusarium wilt incidence ranged from 1% to 78%, with significantly higher levels observed in younger plantations (<5 years old). Statistical analyses revealed strong negative correlations between the PDI and the soil pH, exchangeable Ca and Mg, and available K. Principal component analysis further confirmed the suppressive role of the pH and base cations in the disease dynamics. Farms older than five years exhibited better soil fertility indices and lower disease pressure, suggesting a temporal improvement in soil-mediated disease suppression. These findings underscore the critical role of soil acidification and nutrient imbalances, particularly Ca, Mg, and K deficiencies, in promoting FOC pathogenicity. Enhancing soil health offers a promising and sustainable strategy for managing Fusarium wilt in tropical banana production systems. Full article
(This article belongs to the Special Issue Current Research in Soil Borne Plant Pathogens)
Show Figures

Figure 1

18 pages, 359 KB  
Review
Nitrogen-Driven Orchestration of Lateral Root Development: Molecular Mechanisms and Systemic Integration
by Xichao Sun, Yingchen Gu, Yingqi Liu, Zheng Liu and Peng Wang
Biology 2025, 14(8), 1099; https://doi.org/10.3390/biology14081099 - 21 Aug 2025
Viewed by 403
Abstract
N, as plants’ most essential nutrient, profoundly shapes root system architecture (RSA), with LRs being preferentially regulated. This review synthesizes the intricate molecular mechanisms underpinning N sensing, signaling, and its integration into developmental pathways governing LR initiation, primordium formation, emergence, and elongation. We [...] Read more.
N, as plants’ most essential nutrient, profoundly shapes root system architecture (RSA), with LRs being preferentially regulated. This review synthesizes the intricate molecular mechanisms underpinning N sensing, signaling, and its integration into developmental pathways governing LR initiation, primordium formation, emergence, and elongation. We delve deeply into the roles of specific transporters (NRT1.1, nitrate transporter 2.1 (NRT2.1)), transcription factors (Arabidopsis nitrate regulated 1 (ANR1), NLP7, TGACG motif-binding factor (TGA), squamosa promoter-binding protein-like 9 (SPL9)) and intricate hormone signaling networks (auxin, abscisic acid, cytokinins, ethylene) modulated by varying N availability (deficiency, sufficiency, excess) and chemical forms (NO3, NH4+, organic N). Emphasis is placed on the systemic signaling pathways, including peptide-mediated long-distance communication (CEP—C-terminally encoded peptide receptor 1 (CEPR1)) and the critical role of the shoot in modulating root responses. Furthermore, we explore the emerging significance of carbon–nitrogen (C/N) balance, post-translational modifications (ubiquitination, phosphorylation), epigenetic regulation, and the complex interplay with other nutrients (phosphorus (P), sulfur (S)) and environmental factors in shaping N-dependent LR plasticity. Recent advances utilizing single-cell transcriptomics and advanced imaging reveal unprecedented cellular heterogeneity in LR responses to N. Understanding this sophisticated regulatory network is paramount for developing strategies to enhance nitrogen use efficiency (NUE) in crops. This synthesis underscores how N acts as a master regulator, dynamically rewiring developmental programs through molecular hubs that synchronize nutrient sensing with root morphogenesis—a key adaptive strategy for resource acquisition in heterogeneous soils. Full article
(This article belongs to the Section Plant Science)
19 pages, 2523 KB  
Review
The Effect of Boron on Fruit Quality: A Review
by Javier Giovanni Álvarez-Herrera, Marilcen Jaime-Guerrero and Gerhard Fischer
Horticulturae 2025, 11(8), 992; https://doi.org/10.3390/horticulturae11080992 - 21 Aug 2025
Viewed by 454
Abstract
Boron (B) is a crucial micronutrient for the initial formation, development, and final quality of fruits, as it affects their physical and chemical properties and helps prevent various functional disorders. Recently, numerous physiological disorders in fruits have been reported, which have been linked [...] Read more.
Boron (B) is a crucial micronutrient for the initial formation, development, and final quality of fruits, as it affects their physical and chemical properties and helps prevent various functional disorders. Recently, numerous physiological disorders in fruits have been reported, which have been linked to B deficiency. However, there is still uncertainty about whether these issues are directly related to B, other nutrients, their combinations, or environmental conditions. This review aims to compile current and accurate information on how B is absorbed by plants, its role in the cell wall and membrane, its impact on flowering and fruit set, and its influence on physical and chemical properties, as well as its role in preventing physiological disorders. This review examines the latest studies on B published in major scientific journals (Elsevier, Springer, MDPI, Frontiers, Hindawi, Wiley, and SciELO). Boron is mobile in the xylem and slightly mobile in the phloem, and it plays a crucial role in pollination and fruit set. It reduces mass loss, maintains firmness, improves color, and results in larger, heavier fruits. Also, boron increases soluble solids, regulates total titratable acidity and pH, decreases respiration rate, and stabilizes ascorbic acid by delaying its breakdown. It also helps prevent disorders such as splitting, cork spots, internal rot, shot berry in grapes, blossom end rot, and segment drying in citrus. Foliar or soil application of B enhances fruit yield and post-harvest quality. Full article
(This article belongs to the Section Postharvest Biology, Quality, Safety, and Technology)
Show Figures

Figure 1

27 pages, 1567 KB  
Review
NR4A1 Acts as a Nutrient Sensor That Inhibits the Effects of Aging
by Stephen Safe
Nutrients 2025, 17(16), 2709; https://doi.org/10.3390/nu17162709 - 21 Aug 2025
Viewed by 794
Abstract
Orphan nuclear receptor 4A1 (NR4A1) is a member of the NR4A subfamily that was initially discovered as an intermediate early gene expressed in response to stressors, including inflammatory agents. This review addresses the hypothesis that NR4A1 is a key nutrient sensor that contributes [...] Read more.
Orphan nuclear receptor 4A1 (NR4A1) is a member of the NR4A subfamily that was initially discovered as an intermediate early gene expressed in response to stressors, including inflammatory agents. This review addresses the hypothesis that NR4A1 is a key nutrient sensor that contributes to the anti-aging and health-protective effects of receptor ligands, dietary phenolics, and other diet-derived compounds. There is evidence in animal models including humans that NR4A1 serves as an important gene that decreases the rate of aging and its associated diseases. For example, in humans and mice, NR4A1 expression decreases with age and loss of NR4A1 enhances disease susceptibility, and survival curves show that NR4A1-deficient mice live 4 months less than wild-type animals. An extensive comparison of inflammatory diseases, immune dysfunction, and fibrosis in multiple tissues shows that in NR4A1−/− mice and rats these diseases and injuries are enhanced compared to wild-type NR4A1−/− animals. There is evidence showing that structurally diverse NR4A1 ligands reverse the induced adverse effects in NR4A1 wild-type mice. This raises an important question regarding the mechanisms of NR4A1-dependent inhibition of the aging process and the potential for this receptor as a nutrient sensor. It has been well established that polyphenolics, including flavonoids, resveratrol, and other compounds in the diet, are health-protective and decrease the aging process. Recent studies show that resveratrol and flavonoids such as quercetin and kaempferol bind NR4A1 and exhibit protective NR4A1-dependent inhibition of endometriosis and cancer. These limited studies support a role for NR4A1 as a potential dietary sensor of nutrients that are known to be health-protective and a potential nutrient target for improving health. Full article
(This article belongs to the Section Geriatric Nutrition)
Show Figures

Graphical abstract

Back to TopTop