Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,207)

Search Parameters:
Keywords = nutrient status

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1316 KB  
Article
Effects of Alternate Wetting and Drying (AWD) Irrigation on Rice Growth and Soil Available Nutrients on Black Soil in Northeast China
by Chaoyin Dou, Chen Qian, Yuping Lv and Yidi Sun
Agronomy 2025, 15(10), 2372; https://doi.org/10.3390/agronomy15102372 (registering DOI) - 10 Oct 2025
Viewed by 128
Abstract
Extensive practice has demonstrated that the continuous pursuit of high yields in the black soil region of Northeast China resulted in imbalances in soil nutrients and declines in both soil quality and water use efficiency. Alternate wetting and drying (AWD) irrigation offers a [...] Read more.
Extensive practice has demonstrated that the continuous pursuit of high yields in the black soil region of Northeast China resulted in imbalances in soil nutrients and declines in both soil quality and water use efficiency. Alternate wetting and drying (AWD) irrigation offers a promising solution for increasing rice yield and maintaining soil fertility. However, the success of this irrigation method largely depends on its scheduling. This study examined the threshold effects of AWD on rice growth, yield, and soil nutrient availability in the Sanjiang Plain, a representative black soil region in Northeast China. A two-year trial was conducted from 2023 to 2024 at the Qixing National Agricultural Science and Technology Park. “Longjing 31”, a local cultivar, was selected as the experimental material. The lower limit of soil water content under AWD was set as the experimental factor, with three levels: −10 kPa (LA), −20 kPa (MA), and −30 kPa (SA). The local traditional irrigation practice, continuous flooding, served as the control treatment (CK). Indicators of rice growth and soil nutrient content were measured and analyzed at five growth stages: tillering, jointing, heading, milk ripening, and yellow ripening. The results showed that, compared to CK, AWD had minimal impact on rice plant height and tiller number, with no significant differences (p > 0.05). However, AWD affected leaf area index (LAI), shoot dry matter (SDM), yield, and soil nutrient availability. In 2023, control had little effect on rice plant height and tiller number among the different irrigation treatments. The LAI of LA was 11.1% and 22.5% higher than that of MA and SA, respectively, while SDM in LA was 10.5% and 17.2% higher than in MA and SA. Significant differences were found between LA and MA, as well as between LA and SA, whereas no significant differences were observed between MA and SA. The light treatment is beneficial to the growth and development of rice, while the harsh growth environment caused by the moderate and severe treatments is unfavorable to rice growth. The average contents of nitrate nitrogen (NO3-N), available phosphorus (AP), and available potassium (AK) in LA were 11.4%, 8.4%, and 9.3% higher than in MA, and 16.7%, 11.5%, and 15.0% higher than in SA, respectively. Significant differences were observed between LA and SA. This is because the light treatment facilitates the release of available nutrients in the soil, while the moderate and severe treatments hinder this process. Although panicle number per unit area and grain number per panicle in LA were 7.5% and 2.3% higher than in MA, and 10.8% and 2.2% higher than in SA, these differences were not statistically significant. Seed setting rate and thousand-grain weight showed little variation across irrigation treatments. The yield of LA was 10,233.3 kg hm−2, 9.1% and 14.1% higher than that of MA and SA, respectively, with significant differences observed. Compared with the moderate and severe treatments, the light treatment increases indicators such as the number of panicles per unit area, grains per panicle, thousand-grain weight, and seed setting rate, resulting in significant differences among the treatments. Water use efficiency (WUE) decreased as the control level increased. The WUE of all AWD irrigation treatments was significantly higher than that of the control treatment (CK). Compared with CK, AWD reduces evaporation, percolation, and other water losses, leading to a significant decrease in water consumption. Meanwhile, the yield remains basically unchanged or even slightly increases, thus resulting in a higher WUE than CK. The trends in rice growth, soil nutrient indicators, and WUE in 2024 were generally consistent with those observed in 2023. In 2024, the yield of LA was 9832.7 kg hm−2, 14.9% and 17.3% higher than that of MA and SA, respectively, with significant differences observed. Based on the results, the following conclusions are drawn: (1) AWD irrigation can affect the growth of rice, alter the status of available nutrients in the soil, and thereby cause changes in yield and WUE; (2) LA is the optimal treatment for increasing rice yield, improving the availability of soil available nutrients, and improving WUE; (3) Both MA and SA enhanced WUE; however, these practices negatively impacted rice growth and the concentration of soil available nutrients, leading to a concurrent decline in yield. To increase rice yield and maintain soil fertility, LA, with an irrigation upper limit of 30 mm and a soil water potential threshold of −10 kPa, is recommended for the Sanjiang Plain region. Full article
Show Figures

Figure 1

13 pages, 1846 KB  
Article
Effects of Dietary Potassium Diformate Supplementation on Growth Performance, Nutrient Digestibility, Gastrointestinal pH, Jejunal Morphology, Digestive Enzyme Activity, and Antioxidant Status in Weaned Piglets
by Lina Zhang, Yong Cheng, Li Lu, Songtao Zhong, Tiande Zou, Mingren Qu and Jun Chen
Animals 2025, 15(19), 2916; https://doi.org/10.3390/ani15192916 - 7 Oct 2025
Viewed by 197
Abstract
This study evaluated the effects of dietary potassium diformate supplementation on growth performance, nutrient digestibility, gastrointestinal pH, jejunal morphology, digestive enzyme activity, and antioxidant status of weaned piglets in a 28-day trial. Twenty-four weaned piglets were selected and, after a 4-day adaptation period, [...] Read more.
This study evaluated the effects of dietary potassium diformate supplementation on growth performance, nutrient digestibility, gastrointestinal pH, jejunal morphology, digestive enzyme activity, and antioxidant status of weaned piglets in a 28-day trial. Twenty-four weaned piglets were selected and, after a 4-day adaptation period, randomly assigned to 4 treatment groups (n = 6). The dietary treatments included a control diet (basal diet) and 3 diets supplemented with 0.6%, 1.2%, or 1.8% potassium diformate in the basal diet. The results indicated that the feed conversion ratio (FCR) of piglets was reduced by all three potassium diformate supplementation levels compared to the control group (p < 0.05). Additionally, the FCR was decreased in piglets fed the 1.8% potassium diformate-supplemented diet compared to those fed the 1.2% potassium diformate-supplemented diet (p < 0.05). Piglets fed the three potassium diformate-supplemented diets exhibited higher apparent total tract digestibility (ATTD) of dry matter and crude protein than the control group (p < 0.05). The 1.8% potassium diformate groups also showed increased ATTD of calcium and phosphorus compared to the control group (p < 0.05). Supplementation with 1.2% or 1.8% potassium diformate reduced the digesta pH in the proximal stomach, distal stomach, and duodenum, while increased jejunal villus height (VH), VH/crypt depth (VH/CD) ratio, and catalase and total superoxide dismutase activities in the jejunal mucosa compared to the control group (p < 0.05). The 1.2% potassium diformate group showed higher α-amylase activity than the control group (p < 0.05). Correlation analysis revealed that FCR negatively correlated with ATTD of dry matter, crude protein, calcium, phosphorus, and jejunal VH, while positively correlating with digesta pH in the proximal stomach (p < 0.05). The ATTD of dry matter negatively correlated with digesta pH in the proximal stomach, distal stomach, and duodenum, and positively correlated with jejunal VH/CD ratio and catalase activity (p < 0.05). The ATTD of crude protein negatively correlated with digesta pH in the proximal stomach, distal stomach, and duodenum (p < 0.05). Collectively, dietary supplementation with 1.8% potassium diformate reduced FCR of weaned piglets, which was associated with enhanced nutrient digestibility, reduced pH in the anterior gastrointestinal tract, and improved jejunal morphology. Full article
Show Figures

Figure 1

24 pages, 669 KB  
Review
Nutrient-Element-Mediated Alleviation of Cadmium Stress in Plants: Mechanistic Insights and Practical Implications
by Xichao Sun, Liwen Zhang, Yingchen Gu, Peng Wang, Haiwei Liu, Liwen Qiang and Qingqing Huang
Plants 2025, 14(19), 3081; https://doi.org/10.3390/plants14193081 - 6 Oct 2025
Viewed by 451
Abstract
Cadmium (Cd), a pervasive and highly phytotoxic metal pollutant, poses severe threats to agricultural productivity, ecosystem stability, and human health through its entry into the food chain. Plants have evolved intricate defense mechanisms, among which the strategic manipulation of nutrient elements emerges as [...] Read more.
Cadmium (Cd), a pervasive and highly phytotoxic metal pollutant, poses severe threats to agricultural productivity, ecosystem stability, and human health through its entry into the food chain. Plants have evolved intricate defense mechanisms, among which the strategic manipulation of nutrient elements emerges as a critical physiological and biochemical strategy for mitigating Cd stress. This comprehensive review delves deeply into the multifaceted roles of essential macronutrient elements (nitrogen, phosphorus, potassium, calcium, magnesium, sulfur), essential micronutrient elements (zinc, iron, manganese, copper) and non-essential beneficial elements (silicon, selenium) in modulating plant responses to Cd toxicity. We meticulously dissect the physiological, biochemical, and molecular underpinnings of how these nutrients influence Cd bioavailability in the rhizosphere, Cd uptake and translocation pathways, sequestration and compartmentalization within plant tissues, and the activation of antioxidant defense systems. Nutrient elements exert their influence through diverse mechanisms: competing with Cd for root uptake transporters, promoting the synthesis of complexes that reduce Cd mobility, stabilizing cell walls and plasma membranes to restrict apoplastic flow and symplastic influx, modulating redox homeostasis by enhancing antioxidant enzyme activities and non-enzymatic antioxidant pools, regulating signal transduction pathways, and influencing gene expression profiles related to metal transport, chelation, and detoxification. The complex interactions between nutrients themselves further shape the plant’s capacity to withstand Cd stress. Recent advances elucidating nutrient-mediated epigenetic regulation, microRNA involvement, and the role of nutrient-sensing signaling hubs in Cd responses are critically evaluated. Furthermore, we synthesize the practical implications of nutrient management strategies, including optimized fertilization regimes, selection of nutrient-efficient genotypes, and utilization of nutrient-enriched amendments, for enhancing phytoremediation efficiency and developing low-Cd-accumulating crops, thereby contributing to safer food production and environmental restoration in Cd-contaminated soils. The intricate interplay between plant nutritional status and Cd stress resilience underscores the necessity for a holistic, nutrient-centric approach in managing Cd toxicity in agroecosystems. Full article
(This article belongs to the Special Issue Plant Ecotoxicology and Remediation Under Heavy Metal Stress)
Show Figures

Figure 1

23 pages, 2784 KB  
Article
Concentration-Dependent N-P Interactions Cause Organ-Specific Responses and Nutrient Allocation in Poplar Seedlings
by Xiaan Tang, Yi Zhang, Changhao Li, Xiaotan Zhi and Chunyan Wang
Plants 2025, 14(19), 3037; https://doi.org/10.3390/plants14193037 - 1 Oct 2025
Viewed by 372
Abstract
This study explores the complex regulatory mechanisms of nitrogen (N) and phosphorus (P) supply interactions on the growth, root architecture, and nutrient uptake of Populus × euramericana ‘Neva’ seedlings. It shows that these responses depend on nutrient concentrations and exhibit organ-specific patterns. Low [...] Read more.
This study explores the complex regulatory mechanisms of nitrogen (N) and phosphorus (P) supply interactions on the growth, root architecture, and nutrient uptake of Populus × euramericana ‘Neva’ seedlings. It shows that these responses depend on nutrient concentrations and exhibit organ-specific patterns. Low P (0 mM) and sufficient N (15–30 mM) enhances plant height and aboveground biomass by promoting P acquisition processes. At moderate N levels (5–15 mM), P supply is sufficient (0.5–1.5 mM) for root and stem growth. Nitrogen application prioritizes aboveground biomass, reducing the root-to-shoot ratio. Root architecture also responds organ-specifically: sufficient N under low P promotes fine root growth to increase P absorption; under moderate P (0.5 mM), balanced N optimizes branching; and under sufficient P (1.5 mM), N increases root thickness while reducing fine root investment. In terms of P metabolism, moderate N under low P increases P concentrations by upregulating phosphate transporter genes, while sufficient N maintains P use efficiency (PUE). For N metabolism, added P under low N (0 mM) maintains N use efficiency (NUE), while higher N levels (15–30 mM) reduce NUE due to interference in nitrogen transport and enzyme activity. This study highlights the importance of organ-specific resource allocation in adapting to N–P interactions and suggests optimizing fertilization strategies based on soil nutrient status to avoid physiological imbalance. Full article
Show Figures

Figure 1

17 pages, 3368 KB  
Article
Effects of Different Land-Use Types on Soil Properties and Microbial Communities in a Southeastern Tibetan Valley
by Ximei Zhao, Wenyan He, Fengyun Xiang, Jianqiang Zhu and Jifu Li
Agronomy 2025, 15(10), 2317; https://doi.org/10.3390/agronomy15102317 - 30 Sep 2025
Viewed by 280
Abstract
Land-use type is a key factor influencing soil properties, microbial community composition, and plant nutrient status. In this study, five land-use types (Tibetan barley, rapeseed, walnut, wheat, and weeds) were investigated in a river valley of southeastern Tibet to compare their effects on [...] Read more.
Land-use type is a key factor influencing soil properties, microbial community composition, and plant nutrient status. In this study, five land-use types (Tibetan barley, rapeseed, walnut, wheat, and weeds) were investigated in a river valley of southeastern Tibet to compare their effects on soil chemical characteristics, microbial communities, and plant nutrients. Soils under walnut trees had significantly higher available phosphorus and microbial biomass phosphorus but lower soil organic matter. Rapeseed fields had higher levels of available potassium and were dominated by the fungal genus Tausonia; rapeseed leaves also contained the highest nitrogen and potassium concentrations. Weed plots supported a distinct fungal community dominated by Helvella. Tibetan barley and wheat increased overall bacterial and fungal diversity, with wheat soils with the highest microbial biomass carbon and nitrogen. Redundancy analysis indicated that soil total nitrogen, available nitrogen, and organic matter were the main drivers of plant nutrient variation, together explaining 93.5% of the total variance. These findings demonstrate how land-use type regulates soil–microbe–plant interactions in alpine valleys and provide empirical references for agricultural management and soil improvement on the Qinghai–Tibet Plateau. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

12 pages, 2307 KB  
Perspective
All That Glitters Ain’t Gold: The Myths and Scientific Realities About the Gut Microbiota
by Priyankar Dey
Nutrients 2025, 17(19), 3121; https://doi.org/10.3390/nu17193121 - 30 Sep 2025
Viewed by 1279
Abstract
Gut microbial modulation through diet is central to human health and disease. Despite tremendous effort in understanding the impact of nutrients and drugs on the gut microbiota, and attempts to develop dietary strategies that facilitate gut-beneficial effects, several erroneous gut microbiota-associated concepts remain [...] Read more.
Gut microbial modulation through diet is central to human health and disease. Despite tremendous effort in understanding the impact of nutrients and drugs on the gut microbiota, and attempts to develop dietary strategies that facilitate gut-beneficial effects, several erroneous gut microbiota-associated concepts remain prevalent in popular belief. This article discusses widespread misconceptions about the gut microbiota, contrasting them with contemporary scientific facts. In this article, ten prevalent myths, including the obsolete 10:1 bacteria-to-human-cell ratio, the reductive categorization of microbes as ‘good’ or ‘bad’, and the discredited universal biomarker status of the Firmicutes/Bacteroidetes ratio in relation to metabolic diseases, have been debunked. Essential facts highlighting the context-dependency of the microbiome, considerable inter-individual heterogeneity, and dynamic reactivity to dietary changes are discussed. This questions the assumptions that increased diversity always signifies health, that probiotics are intrinsically safe, that fecal microbiota transplantation is a universal remedy, or that leaky gut syndrome constitutes a clearly defined diagnosis. It is highlighted that eubiosis and dysbiosis do not possess uniform criteria, and microbiome–drug interactions are extremely individualized. The gut microbiota operates as a dynamic, adaptive ecosystem, necessitating sophisticated, evidence-based methodologies for study and therapeutic application, transcending simplistic misconceptions in favor of tailored insights and therapies. Full article
(This article belongs to the Section Prebiotics and Probiotics)
Show Figures

Figure 1

10 pages, 219 KB  
Article
Validation of a Food Frequency Questionnaire for Assessing Fatty Acid Intake in Latvian Pregnant Women
by Ksenija Nikolajeva, Vinita Cauce and Laila Meija
Nutrients 2025, 17(19), 3108; https://doi.org/10.3390/nu17193108 - 30 Sep 2025
Viewed by 288
Abstract
Objectives: During pregnancy, fat intake is crucial for fetal development and optimal outcomes, and validation instruments are essential for assessing dietary composition and nutrient intake. The aim of this research was to validate a food frequency questionnaire (FFQ) against a 7-day food [...] Read more.
Objectives: During pregnancy, fat intake is crucial for fetal development and optimal outcomes, and validation instruments are essential for assessing dietary composition and nutrient intake. The aim of this research was to validate a food frequency questionnaire (FFQ) against a 7-day food record (FR) to measure fatty acid consumption during pregnancy. Methods: From July 2020 to June 2023, 138 women at 27–40 weeks’ gestation with a mean age of 31.5 ± 4.9 years were enrolled. Data were collected from medical records; an FFQ; a questionnaire gathering data on demographics, anthropometrics, health status, lifestyle, and use of food supplements at outpatient clinics; and a 7-day food record. Correlations between FA intakes from the FFQ and 7-day FR were assessed using Spearman’s rank-order correlation. Results: For the FFQ, correlation values ranged from 0.108 to 0.527, and all were statistically significant (p < 0.05) except for tetracosanoic acid. Conclusions: The developed FFQ is an accurate, valid instrument for assessing fatty acid (FA) intake among Latvian pregnant women and is reliable for future use in epidemiological studies. Full article
(This article belongs to the Section Nutrition in Women)
16 pages, 589 KB  
Article
The Influence of Intensive Nutritional Education on the Iron Status in Infants—Randomised Controlled Study
by Kinga Ilnicka-Borowczyk, Dagmara Woźniak, Małgorzata Dobrzyńska, Tomasz Podgórski, Karol Szymanowski, Anna Blask-Osipa, Klaudia Mieloszyk and Sławomira Drzymała-Czyż
Nutrients 2025, 17(19), 3103; https://doi.org/10.3390/nu17193103 - 29 Sep 2025
Viewed by 318
Abstract
Background: Iron is an essential nutrient for the proper development of infants. Iron deficiency, a common cause of anemia—affects nearly half children under four years of age in developing countries. The aim of the study was to assess the impact of an intensive [...] Read more.
Background: Iron is an essential nutrient for the proper development of infants. Iron deficiency, a common cause of anemia—affects nearly half children under four years of age in developing countries. The aim of the study was to assess the impact of an intensive nutritional education program on the iron status of infants. Material and methods: The parents of 115 infants were randomly assigned to two groups: the study group, which received intensive nutritional education up to 12 months of age, and the control group, which received basic infant nutrition guidelines. Serum concentrations of iron metabolism parameters—among others hemoglobin, iron, ferritin, ferroportin, and total iron-binding capacity (TIBC)—were assessed at both the beginning and end of the study. Additionally, at the final time point, dietary intake of iron and components influencing its absorption (e.g., vitamin C, fiber, etc.) was evaluated based on food diaries completed by the parents. Results: At the end of the study, the study group showed a significantly higher level of hemoglobin (p = 0.0499), ferritin (p = 0.0067) and lower levels of TIBC (p = 0.0478) and ferroportin (p = 0.0410) compared to the control group. Moreover, infants in the study group demonstrated significantly higher intake of both iron (p = 0.0252) and vitamin C (p = 0.0458). Conclusions: Parental nutritional education contributes to improvements in iron metabolism indicators in infants. Full article
(This article belongs to the Section Nutritional Policies and Education for Health Promotion)
Show Figures

Figure 1

24 pages, 616 KB  
Article
Pre-Treatment Nutritional Status as a Predictor of Clinical Outcomes in Moderate-to-Severe Plaque Psoriasis Patients Undergoing Cyclosporine A Therapy
by Wojciech Kulej, Beniamin Oskar Grabarek, Martyna Stefaniak, Laura Opalska, Piotr Michalski, Aleksandra Plata-Babula and Anna Michalska-Bańkowska
Nutrients 2025, 17(19), 3098; https://doi.org/10.3390/nu17193098 - 29 Sep 2025
Viewed by 223
Abstract
Background/Objectives: Psoriasis is a chronic immune-mediated disease frequently accompanied by systemic inflammation and metabolic disturbances. Nutrition plays a crucial role in modulating inflammatory pathways, yet the impact of baseline dietary status on systemic therapy outcomes remains underexplored. Methods: A total of [...] Read more.
Background/Objectives: Psoriasis is a chronic immune-mediated disease frequently accompanied by systemic inflammation and metabolic disturbances. Nutrition plays a crucial role in modulating inflammatory pathways, yet the impact of baseline dietary status on systemic therapy outcomes remains underexplored. Methods: A total of 37 patients (20 men, 17 women; mean age 47.8 ± 4.87 years) scheduled for cyclosporine A (CsA) therapy underwent dietary assessment using 24 h recall and food frequency questionnaires. Intake was compared with dietary reference values. Psoriasis severity was measured by using the Psoriasis Area and Severity Index (PASI) and Body Surface Area (BSA) at baseline, day 42, and day 84. Mixed-effects regression models adjusted for body mass index (BMI), age, and sex assessed associations between nutrient adequacy and clinical outcomes. Results: Participants exhibited frequent dietary imbalances, including low polyunsaturated fatty acids, fiber, vitamin D, folate, and minerals such as magnesium and zinc, alongside excess saturated fat and sodium. Adequate intake of fiber, eicosapentaenoic acid (EPA)+ docosahexaenoic acid (DHA), and vitamins A and D, folate, magnesium, and zinc was independently associated with a lower baseline PASI/BSA and faster improvement during CsA therapy (p < 0.05). Higher BMI, older age, and male sex predicted poorer outcomes. Conclusions: Pre-treatment nutritional inadequacies are common in psoriasis and independently predict diminished therapeutic response to CsA. Early nutritional optimization may enhance treatment efficacy and support long-term disease control. Integrating dietary assessment in psoriasis management represents a feasible, impactful adjunct to pharmacotherapy. Full article
(This article belongs to the Section Clinical Nutrition)
Show Figures

Figure 1

18 pages, 2017 KB  
Article
Optimizing Sow and Litter Performance via a Comprehensive Service-to-Weaning Feeding Regimen
by Julia Cantin, Carlos Cantin, Olga Mitjana, Maria Teresa Tejedor, Carlos Gil-Rubio, Ana Maria Garrido and Maria Victoria Falceto
Animals 2025, 15(19), 2821; https://doi.org/10.3390/ani15192821 - 27 Sep 2025
Viewed by 320
Abstract
Hyperprolific genetic lines achieve large litters but are at increased risk of metabolic stress, impaired sow condition, and reduced piglet viability. This study aimed to evaluate whether a phase-specific feeding program from service to weaning improves sow metabolic status and body condition, and [...] Read more.
Hyperprolific genetic lines achieve large litters but are at increased risk of metabolic stress, impaired sow condition, and reduced piglet viability. This study aimed to evaluate whether a phase-specific feeding program from service to weaning improves sow metabolic status and body condition, and enhances offspring performance, compared with a standard program. Sixty gilts and 268 multiparous sows were randomly allocated to a control group (standard commercial diets; C) or a treatment group (phase-specific diet; T) covering early and late gestation, peripartum, and lactation. Compared to a commercial feeding strategy, four custom-made, phase-specific diets were fed as follows: for early gestation (greater amount of essential aa and fat content), late gestation (higher amount of CP and essential aa), peripartum (improved nutrient profile at lower fat and fiber content), and lactation (higher essential aa and calorie content). On gestation day 113, T gilts had greater backfat thickness (BFT) and lower blood β-hydroxybutyrate (BHBA) than C. T multiparous sows showed greater BFT and longissimus muscle depth (LMD) and lower BHBA on day 113, fewer stillborn piglets, lower incidences of neonatal diarrhea, and fewer negative lactation curves and postpartum hypophagia. On day 28 of lactation, T litters had heavier piglets, and LMD remained higher in T sows. The phase-specific feeding program improved the metabolic state, body condition, and reproductive outcomes in hyperprolific sows and enhanced offspring growth through weaning. Full article
(This article belongs to the Special Issue Best Management Practices for Breeding Sows and Boars)
Show Figures

Figure 1

33 pages, 5582 KB  
Review
The Role of Oral and Gut Microbiota in Bone Health: Insights from Bacterial Extracellular Vesicles
by Ping Liang, Xuanyu Chen, Zhikang Su, Yunlin Luo, Tao Wang, Jiang Li, Lvhua Guo and Tao Luo
Microorganisms 2025, 13(10), 2254; https://doi.org/10.3390/microorganisms13102254 - 25 Sep 2025
Viewed by 318
Abstract
Bone health is critically influenced by the oral and gut microbiota, which are among the largest microbial reservoirs in the human body. These microbiota play essential roles in maintaining bone mass through immune modulation, metabolite production, and nutrient resorption. Recent observations have underscored [...] Read more.
Bone health is critically influenced by the oral and gut microbiota, which are among the largest microbial reservoirs in the human body. These microbiota play essential roles in maintaining bone mass through immune modulation, metabolite production, and nutrient resorption. Recent observations have underscored that extracellular vesicles (EVs) derived from oral and gut microbiota may circulate to the brain and bone marrow, suggesting their integral roles in the gut–brain–bone axis and oral–brain–bone axis. This review outlines the current research status of bacterial extracellular vesicles (BEVs), including their biogenesis, classification, structural features, and cargo composition, with emphasis on factors influencing cargo heterogeneity and the consequences of cellular uptake and presentation. Oral-microbiota-derived BEVs and their cargo associated with bone health are highlighted, along with recent evidence linking BEVs to systemic dis-eases and the potential integration into the oral–gut–bone axis. Preclinical animal studies on BEV dosage, routes of administration, and disease models are summarized, together with the limitations of current approaches and strategies for engineering BEVs. Finally, an overview of translational applications and future therapeutic prospects is provided, aiming to advance the understanding of BEVs as innovative tools for the treatment and prevention of bone-related diseases. Full article
(This article belongs to the Section Molecular Microbiology and Immunology)
Show Figures

Figure 1

17 pages, 384 KB  
Article
Validating a Revised Oral Frailty 5-Item Checklist (OF-5) to Detect Pre-Symptomatic Brain Changes in Cognitively Unimpaired Older Adults
by Makoto Murahashi, Kenjiro Ono, Moeko Noguchi-Shinohara, Mai Ishimiya-Jokaji, Kentaro Ide, Toshihiro Kawano, Shusuke Tokuchi, Risako Suzuki, Mikana Isa, Shuichi Kawashiri and Hiroyuki Nakamura
Nutrients 2025, 17(19), 3058; https://doi.org/10.3390/nu17193058 - 25 Sep 2025
Viewed by 292
Abstract
Objective: Oral frailty is associated with an increased risk of cognitive decline, yet practical tools for early identification remain limited. The Oral Frailty 5-item Checklist (OF-5), recently standardized in Japan, does not account for severe tooth loss, which is a known risk factor [...] Read more.
Objective: Oral frailty is associated with an increased risk of cognitive decline, yet practical tools for early identification remain limited. The Oral Frailty 5-item Checklist (OF-5), recently standardized in Japan, does not account for severe tooth loss, which is a known risk factor for brain atrophy. We developed a revised version of the OF-5 that includes the criterion of having nine or fewer teeth. This study aimed to validate the revised OF-5 as a screening tool for detecting early brain structural changes related to dementia risk in cognitively unimpaired older adults. Methods: We analyzed 732 cognitively unimpaired participants from a population-based Japanese cohort (baseline 2016–2018). Oral frailty was assessed using both the original OF-5 and the revised OF-5. Brain volumes were measured by MRI and processed with FreeSurfer. Associations between oral frailty status and regional brain volumes were tested using multivariable-adjusted models, with further adjustment for nutrient intake and food consumption. Results: The revised OF-5, which adds severe tooth loss (≥9 teeth) as a criterion, showed greater sensitivity in detecting dementia-related brain changes than the original version. With the original OF-5, oral frailty was associated only with reduced fusiform gyrus volume (1.088% vs. 1.109% of estimated total intracranial volume [eTIV]; p < 0.05). In contrast, the revised OF-5 detected broader changes: orally frail participants showed significantly higher white matter hyperintensity (WMH) volume (0.366% vs. 0.302% of eTIV; p < 0.05) and smaller volumes in the medial temporal lobe (1.824% vs. 1.856%), pars triangularis (0.401% vs. 0.412%), and fusiform gyrus (1.080% vs. 1.111%)—all p < 0.05 (FWE-corrected). These associations persisted after adjusting for nutrient intake and food consumption. Conclusions: The revised OF-5 improves identification of pre-symptomatic brain changes in cognitively healthy older adults, independent of nutrition. It may serve as a simple and practical tool for early screening of dementia risk in clinical and community settings. Full article
Show Figures

Figure 1

18 pages, 3715 KB  
Article
Ecological Risk Assessment of Storm-Flood Processes in Shallow Urban Lakes Based on Resilience Theory
by Congxiang Fan, Haoran Wang, Yongcan Chen, Wenyan He and Hong Zhang
Water 2025, 17(19), 2809; https://doi.org/10.3390/w17192809 - 24 Sep 2025
Viewed by 194
Abstract
Urban shallow lakes are sentinel ecosystems whose stability is increasingly threatened by acute, sediment-laden storm floods. While chronic nutrient loading has been extensively studied, rapid risk assessment tools for short-pulse disturbances are still missing. Our aim was to develop a resilience-based, process-linked framework [...] Read more.
Urban shallow lakes are sentinel ecosystems whose stability is increasingly threatened by acute, sediment-laden storm floods. While chronic nutrient loading has been extensively studied, rapid risk assessment tools for short-pulse disturbances are still missing. Our aim was to develop a resilience-based, process-linked framework that couples depth-averaged hydrodynamics, advection-diffusion sediment transport and light-driven macrophyte habitat suitability to quantify hour-scale ecological risk and week-scale recovery. The ecological risk model integrates a depth-averaged hydrodynamic module, an advection–diffusion sediment transport routine, and species-specific light-suitability functions. We tested the model against field observations from Xinglong Lake (Chengdu, China) under 5-year and 50-year design storms. Ecological risk exhibited a clear west-to-east gradient. Under the 5-year storm, high-risk cells (complete inhibition) formed a narrow band at the eastern inlet and overlapped 82% with the SSC > 0.1 kg m−3 plume at 6 h; several western macrophyte beds returned to “suitable” status by 72 h. In contrast, the 50-year event pushed R > 0.9 over all macrophyte beds, with slow recovery after 192 h. Lake-scale risk peaked above 80% within 24 h for both return periods, but residual risk remained elevated in the 50-year scenario owing to the larger spatial footprint. The study provides a transferable early-warning tool for lake managers to decide when to trigger low-cost interventions and species-specific resilience rankings to guide targeted vegetation protection in shallow urban lakes worldwide. Full article
Show Figures

Figure 1

19 pages, 1741 KB  
Article
Towards Site-Specific Management: UAV- and Ground-Based Assessment of Intra-Field Variability in SHD Almond Orchards
by Mauro Lo Cascio, Pierfrancesco Deiana, Alessandro Deidda, Costantino Sirca, Giovanni Nieddu, Mario Santona, Donatella Spano, Filippo Gambella and Luca Mercenaro
Agronomy 2025, 15(9), 2241; https://doi.org/10.3390/agronomy15092241 - 22 Sep 2025
Viewed by 287
Abstract
Through highly detailed data acquisition, a precision agriculture approach leads to the optimization of inputs, improving, for instance, water and nutrient use efficiency. High-resolution vigor mapping in perennial orchards provides the spatial detail required to achieve such targeted management. This exploratory case study [...] Read more.
Through highly detailed data acquisition, a precision agriculture approach leads to the optimization of inputs, improving, for instance, water and nutrient use efficiency. High-resolution vigor mapping in perennial orchards provides the spatial detail required to achieve such targeted management. This exploratory case study characterizes the spatial variability of vegetative vigor in a young SHD almond orchard in southern Sardinia by integrating high-resolution unmanned aerial vehicle (UAV) imagery and Normalized Difference Vegetation Index (NDVI) mapping with two consecutive seasons of ground measurements; the NDVI raster was subsequently used to delineate three distinct vigor zones. The NDVI was selected as a reference index because of its well-assessed performance in field-variability studies. Field measurements, during the kernel-filling period, included physiological assessments (stem water potential (Ψstem), SPAD, photosynthetic rates), morphological evaluations, soil properties, yield, and quality analyses. High vigor zones exhibited better physiological conditions (Ψstem = −1.60 MPa in 2023, SPAD = 38.77 in 2022), and greater photosynthetic rates (15.31 μmol CO2 m−2 s−1 in 2023), alongside more favorable soil conditions. Medium vigor zones showed intermediate characteristics, and balanced soil textures, producing a higher number of smaller almonds. Low vigor zones exhibited the poorest performance, including the most negative water status (Ψstem of −1.94 MPa in 2023), lower SPAD values (30.67 in 2023), and coarse-textured soils, leading to reduced yields. By combining UAV-based NDVI mapping with ground measurements, these results highlight the value of precision agriculture in intra-field variability identification, providing a basis for future studies that will test site-specific management strategies in SHD orchards. Full article
Show Figures

Figure 1

17 pages, 2447 KB  
Article
Faba Bean–Oat Mixtures Modify Rhizosphere Microbiota and Nutrient–Biomass Regulation on the Qinghai–Tibetan Plateau
by Huilin Yan, Xin Jin, Panda Ye, Changcai Teng and Yujiao Liu
Agronomy 2025, 15(9), 2236; https://doi.org/10.3390/agronomy15092236 - 22 Sep 2025
Viewed by 406
Abstract
Grass–legume mixtures are increasingly recognized for their potential to enhance soil health and forage productivity through belowground biotic interactions. In this study, we evaluated the effects of Vicia faba L. (faba bean 4060)–Avena sativa L. (oat ‘Baylor II’) mixtures on biomass, soil [...] Read more.
Grass–legume mixtures are increasingly recognized for their potential to enhance soil health and forage productivity through belowground biotic interactions. In this study, we evaluated the effects of Vicia faba L. (faba bean 4060)–Avena sativa L. (oat ‘Baylor II’) mixtures on biomass, soil properties, and bacterial community dynamics. Results showed that mixtures significantly reduced the fresh weight of faba bean (6.2 kg/m2) compared to monoculture (8.8 kg/m2, p < 0.001), while oat biomass increased under mixtures (3.2 kg m−2 vs. 2.8 kg m−2, p < 0.01). Available phosphorus (AP) and available potassium (AK) significantly decreased in the rhizosphere of both mixtures, whereas alkali-hydrolyzable nitrogen (AN) significantly increased, particularly in oat. Mixtures significantly enhanced bacterial richness, evenness, and Shannon diversity in faba bean (p < 0.01) but had no significant effect on oat diversity metrics. NMDS indicated distinct shifts in bacterial community structures under mixtures. Acidobacteriota and Vicinamibacteraceae were enriched in faba bean mixtures, whereas Actinobacteriota decreased in both forages under mixtures. Source Tracker analysis suggested substantial microbial exchange between species, with over 40% of the bacterial community in mixed roots originating from the partner monoculture. Although microbial community stability tended to decline under mixtures, differences were not significant. Niche breadth was significantly expanded in faba bean mixtures. Community assembly processes remained predominantly stochastic; however, mixtures slightly shifted the balance toward deterministic processes. Structural equation model revealed that soil physicochemical properties had a significant negative effect on diversity (β = −0.371, p = 0.007), and diversity had a significant negative effect on freshweight (β = −0.770, p < 0.001), suggesting that bacterial diversity may play a mediating role in the relationship between soil properties and plant fresh weight (β = 0.285, p = 0.011). These findings demonstrate that mixture-induced changes in soil nutrient status and microbial community characteristics collaboratively mediate plant performance through altered community assembly and diversity–function relationships. Full article
(This article belongs to the Section Innovative Cropping Systems)
Show Figures

Figure 1

Back to TopTop