Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (310)

Search Parameters:
Keywords = nutritional modes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 910 KB  
Article
The Fish Collagen Supplementation and Proteomic Features in Healthy Women—A Crossover Study
by Marta Stelmach-Mardas, Eliza Matuszewska-Mach, Krzysztof Kustra, Dagmara Pietkiewicz, Jan Matysiak, Dorota Hojan-Jezierska, Marcin Mardas and Leszek Kubisz
Nutrients 2025, 17(19), 3052; https://doi.org/10.3390/nu17193052 - 24 Sep 2025
Viewed by 33
Abstract
Background: Using fish collagen supplements in daily nutrition may positively influence health and healthy aging. However, their systemic, molecular-level effects on humans are not well characterized. Therefore, given the scarcity of proteomic data, this study aimed to assess the serum proteomic changes [...] Read more.
Background: Using fish collagen supplements in daily nutrition may positively influence health and healthy aging. However, their systemic, molecular-level effects on humans are not well characterized. Therefore, given the scarcity of proteomic data, this study aimed to assess the serum proteomic changes during the fish collagen supplementation in healthy women. Methods: This was a crossover interventional study. Thirty healthy women received either 5 mL of fish gel collagen (from silver carp: Hypophthalmichthys molitrix) supplementation with 200 mL of pure water for 40 days or 200 mL of pure water for 40 days only. The washout between the fish collagen and pure water supplementation was 40 days. The nutritional status and dietary intake were assessed. Proteome analyses were conducted using a MALDI-TOF mass spectrometer in a positive linear mode in the m/z 1000–10,000 range. Results: The diet of the women in this study was not well-balanced. Supplementation did not affect nutritional status. Only water content significantly increased. During the fish collagen supplementation, the following discriminative proteins were identified: Filamin-A, Filamin-B, actin, Vimentin, Tropomyosin beta chain, 40S ribosomal protein S8, ATP-dependent RNA helicase DHX8, and FERM domain-containing protein 4A. Conclusions: Changes in serum proteins may reflect broader cytoskeletal remodeling and cellular adaptation resulting from collagen intake. Full article
(This article belongs to the Special Issue Eating Behavior and Women's Health)
Show Figures

Figure 1

13 pages, 1846 KB  
Article
Enhancing Phycoerythrin Production of Marine Red Microalga Porphyridium purpureum with Low Salinity and Semi-Continuous Culture Strategy
by Chulin Li, Houbo Wu, Hualian Wu, Wenzhou Xiang, Jin Xu and Tao Li
Mar. Drugs 2025, 23(9), 361; https://doi.org/10.3390/md23090361 - 19 Sep 2025
Viewed by 232
Abstract
Porphyridium purpureum can synthesize a high phycoerythrin content, which has strong potential application in nutrition, pharmaceuticals, and cosmetics. An effective culture strategy is the key to producing biomass of P. purpureum rich in phycoerythrin. However, there are still bottlenecks in the large-scale production [...] Read more.
Porphyridium purpureum can synthesize a high phycoerythrin content, which has strong potential application in nutrition, pharmaceuticals, and cosmetics. An effective culture strategy is the key to producing biomass of P. purpureum rich in phycoerythrin. However, there are still bottlenecks in the large-scale production of Porphyridium, such as nutrient supplementation and cultivation mode. In this study, P. purpureum SCS-02, isolated from the South China Sea, was used as experimental microalga strain. The effects of different salinity (10, 20 and 34 ppt) and semi-continuous culture on accumulation of biomass and phycoerythrin were investigated. The semi-continuous culture modes include recycled culture medium mode (RM) and fresh culture medium mode (FM). The results showed that low salinity (10 ppt) could enhance the accumulation of phycoerythrin, the content and yield of which were 8.39% DW and 160 mg L−1, respectively. The yield of phycoerythrin of P. purpureum in semi-continuous culture with a 30% renewal rate of fresh culture medium was 253% higher than the batch culture. In summary, the semi-continuous culture strategy with fresh medium renewal under low salinity conditions increased the phycoerythrin yield to 641.47 mg after 30 days of cultivation, while exopolysaccharide accumulation was significantly reduced compared with batch culture. These results provide useful reference for optimizing culture strategies of P. purpureum, and may serve as a basis for future attempts to scale phycoerythrin production under industrially relevant conditions. Full article
Show Figures

Figure 1

36 pages, 1263 KB  
Review
Beyond Sugar: A Holistic Review of Sweeteners and Their Role in Modern Nutrition
by Nela Dragomir, Daniela-Mihaela Grigore and Elena Narcisa Pogurschi
Foods 2025, 14(18), 3182; https://doi.org/10.3390/foods14183182 - 12 Sep 2025
Viewed by 1299
Abstract
This manuscript provides an in-depth review of both artificial and natural sweeteners, including polyols and plant-derived alternatives, examining their sweetening potency, glycemic index, modes of action, and applications in the food sector. The rising demand for sugar substitutes, fueled by health concerns such [...] Read more.
This manuscript provides an in-depth review of both artificial and natural sweeteners, including polyols and plant-derived alternatives, examining their sweetening potency, glycemic index, modes of action, and applications in the food sector. The rising demand for sugar substitutes, fueled by health concerns such as obesity and diabetes, has prompted significant research into low-calorie and non-nutritive sweeteners. This work categorizes sweeteners into synthetic options (such as aspartame, sucralose, saccharin) and naturally occurring ones (such as stevia, monk fruit, and polyols like sorbitol, xylitol, erythritol), focusing on physico-chemical characteristics, relative sweetness (ranging from 100 to 220,0000 times sweeter than sucrose), and glycemic index, important for their use in diabetes-friendly food products. The current manuscript examines how these sweeteners interact with taste receptors to induce sweetness perception without contributing significant calories. It also discusses their health implications and controversies and limitations regarding healthy and safety data, process feasibility, market application trends, environmental stability, and commercialization challenges. The review also addresses challenges in scaling production and ensuring the economic viability of plant-based sweeteners, offering a forward-looking perspective on their commercialization in the food industry. Full article
Show Figures

Graphical abstract

25 pages, 904 KB  
Review
Edible Mushroom Cultivation in Liquid Medium: Impact of Microparticles and Advances in Control Systems
by Juan Carlos Ferrer Romero, Oana Bianca Oprea, Liviu Gaceu, Siannah María Más Diego, Humberto J. Morris Quevedo, Laura Galindo Alonso, Lilianny Rivero Ramírez and Mihaela Badea
Processes 2025, 13(8), 2452; https://doi.org/10.3390/pr13082452 - 2 Aug 2025
Cited by 1 | Viewed by 1282
Abstract
Mushrooms are eukaryotic organisms with absorptive heterotrophic nutrition, capable of feeding on organic matter rich in cellulose and lignocellulose. Since ancient times, they have been considered allies and, in certain cultures, they were seen as magical beings or food of the gods. Of [...] Read more.
Mushrooms are eukaryotic organisms with absorptive heterotrophic nutrition, capable of feeding on organic matter rich in cellulose and lignocellulose. Since ancient times, they have been considered allies and, in certain cultures, they were seen as magical beings or food of the gods. Of the great variety of edible mushrooms identified worldwide, less than 2% are traded on the market. Although mushrooms have been valued for their multiple nutritional and healing benefits, some cultures perceive them as toxic and do not accept them in their culinary practices. Despite the existing skepticism, several researchers are promoting the potential of edible mushrooms. There are two main methods of mushroom cultivation: solid-state fermentation and submerged fermentation. The former is the most widely used and simplest, since the fungus grows in its natural environment; in the latter, the fungus grows suspended without developing a fruiting body. In addition, submerged fermentation is easily monitored and scalable. Both systems are important and have their limitations. This article discusses the main methods used to increase the performance of submerged fermentation with emphasis on the modes of operation used, types of bioreactors and application of morphological bioengineering of filamentous fungi, and especially the use of intelligent automatic control technologies and the use of non-invasive monitoring in fermentation systems thanks to the development of machine learning (ML), neural networks, and the use of big data, which will allow more accurate decisions to be made in the fermentation of filamentous fungi in submerged environments with improvements in production yields. Full article
Show Figures

Figure 1

18 pages, 1336 KB  
Article
Modeling Unveils How Kleptoplastidy Affects Mixotrophy Boosting Algal Blooms
by Irena V. Telesh, Gregory J. Rodin, Hendrik Schubert and Sergei O. Skarlato
Biology 2025, 14(7), 900; https://doi.org/10.3390/biology14070900 - 21 Jul 2025
Viewed by 396
Abstract
Kleptoplastidy is a nutrition mode in which cells of protists and some multicellular organisms acquire, maintain, and exploit chloroplasts of prey algae cells as photosynthesis reactors. It is an important aspect of the mixotrophic feeding strategy, which plays a role in the formation [...] Read more.
Kleptoplastidy is a nutrition mode in which cells of protists and some multicellular organisms acquire, maintain, and exploit chloroplasts of prey algae cells as photosynthesis reactors. It is an important aspect of the mixotrophic feeding strategy, which plays a role in the formation of harmful algae blooms (HABs). We developed a new mathematical model, in which kleptoplastidy is regarded as a mechanism of enhancing mixotrophy of protists. The model is constructed using three thought (theoretical) experiments and the concept of biological time. We propose to measure the contribution of kleptoplastidy to mixotrophy using a new ecological indicator: the kleptoplastidy index. This index is a function of two dimensionless variables, one representing the ratio of photosynthetic production of acquired chloroplasts versus native chloroplasts, and the other representing the balance between autotrophic and heterotrophic feeding modes. The index is tested by data for the globally distributed, bloom-forming potentially toxic mixotrophic dinoflagellates Prorocentrum cordatum. The model supports our hypothesis that kleptoplastidy can increase the division rate of algae significantly (by 40%), thus boosting their population growth and promoting blooms. The proposed model can contribute to advancements in ecological modeling aimed at forecasting and management of HABs that deteriorate marine coastal environments worldwide. Full article
(This article belongs to the Section Theoretical Biology and Biomathematics)
Show Figures

Graphical abstract

13 pages, 1794 KB  
Article
Synergistic Enhancement of Paramylon Production in Edible Microalga Euglena gracilis via Ethanol-Guaiacol Co-Regulation
by Xinyi Yan, Hao Xu, Zhengfei Yang, Yongqi Yin, Weiming Fang, Minato Wakisaka and Jiangyu Zhu
Foods 2025, 14(14), 2457; https://doi.org/10.3390/foods14142457 - 12 Jul 2025
Viewed by 512
Abstract
Biomass-derived growth stimulants are widely recognized as green and economical solutions that can significantly enhance microalgae culture efficiency and optimize the biomanufacturing process of target products. In this paper, we investigated the effect of ethanol synergized with guaiacol (GA) on biomass and β-1,3 [...] Read more.
Biomass-derived growth stimulants are widely recognized as green and economical solutions that can significantly enhance microalgae culture efficiency and optimize the biomanufacturing process of target products. In this paper, we investigated the effect of ethanol synergized with guaiacol (GA) on biomass and β-1,3 glucan accumulation in edible microalgae, namely Euglena gracilis. The ethanol-induced mixotrophic mode significantly increased biomass and paramylon production by 12.68 and 6.43 times, respectively, compared to the autotrophic control group. GA further exerted toxic excitatory effects (hormesis) on top of ethanol mixotrophic nutrition. At the optimal concentration of 10 mg·L−1 GA, chlorophyll a, carotenoids, and paramylon production increased by 8.96%, 11.75%, and 16.67%, respectively, compared to the ethanol-treated group. However, at higher concentrations, the biomass and paramylon yield decreased significantly. This study not only establishes an effective combinatorial strategy for enhancing paramylon biosynthesis but also provides novel insights into the hormesis mechanism of phenolic compounds in microalgae cultivation. The developed approach demonstrates promising potential for sustainable production of high-value algal metabolites while reducing cultivation costs, which could significantly advance the commercialization of microalgae-based biorefineries in food and pharmaceutical industries. Full article
Show Figures

Figure 1

15 pages, 771 KB  
Article
Optimization of Bioleaching Conditions Using Acidithiobacillus ferrooxidans at Low Temperatures in a Uranium Mining Environment
by Gaukhar Turysbekova, Yerkin Bektay, Akmurat Altynbek, Dmitriy Berillo, Bauyrzhan Shiderin and Maxat Bektayev
Minerals 2025, 15(7), 727; https://doi.org/10.3390/min15070727 - 11 Jul 2025
Viewed by 633
Abstract
Systematic studies were conducted at one of the uranium deposits in Kazakhstan. Native strains of Acidithiobacillus ferrooxidans bacteria were found in leaching solutions at the deposit. The modeling of iron species in the culturing medium was analyzed using Medusa software v.2.0.5. To intensify [...] Read more.
Systematic studies were conducted at one of the uranium deposits in Kazakhstan. Native strains of Acidithiobacillus ferrooxidans bacteria were found in leaching solutions at the deposit. The modeling of iron species in the culturing medium was analyzed using Medusa software v.2.0.5. To intensify the process, the bacterial strains were propagated in laboratory conditions, and strains available in the laboratory were added. The ability of bacteria to oxidize divalent iron to trivalent iron at 8 °C in laboratory conditions was established, but the oxidation rate was low. It was found that the limiting stage of bioleaching use in deposit conditions is the temperature mode, the content of divalent iron, and oxygen. A biomass volume of 15 L was initially cultivated under laboratory conditions, and subsequently scaled up to 3 m3 in production using three 1 m3 pachucas with air aeration. In addition, pilot tests were carried out directly in production conditions and biomass in the volume of over 30 m3 was produced. The kinetics of the oxidation process of divalent iron to trivalent iron in 1 g/h under production conditions was established. The features of the bioleaching process at the field are shown as follows: since production, the solution contains the main microelements for the nutrition and reproduction of bacteria, and recommendations for the use of bioleaching are proposed. Research has established that under conditions of a shortage of divalent iron in the solution, sulfuric acid is formed due to sulfur-containing substances. It was observed that for the effective conversion of divalent iron to trivalent iron, bacteria of the provided strain and air (oxygen) supply are sufficient. The corresponding recommendations were issued during the work. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Graphical abstract

27 pages, 4515 KB  
Article
Effects of Different Farming Models on Muscle Quality, Intestinal Microbiota Diversity, and Liver Metabolism of Rice Field Eel (Monopterus albus)
by Yifan Zhao, Wenzong Zhou, Muyan Li, Yuning Zhang, Weiwei Lv, Weiwei Huang, Hang Yang, Quan Yuan and Mingyou Li
Foods 2025, 14(13), 2383; https://doi.org/10.3390/foods14132383 - 5 Jul 2025
Viewed by 983
Abstract
As consumer demand for quality fish products continues to rise, quality has become a key factor in market competition. Ecological aquaculture research is exploring various farming methods to balance high-quality demand with environmental protection. This study compared three aquaculture models—cage culture (CG), recirculating [...] Read more.
As consumer demand for quality fish products continues to rise, quality has become a key factor in market competition. Ecological aquaculture research is exploring various farming methods to balance high-quality demand with environmental protection. This study compared three aquaculture models—cage culture (CG), recirculating aquaculture (RAG), and rice–fish co-culture (RG)—by analyzing muscle quality (AOAC, GC-MS), intestinal microbiota (16S rRNA), and liver metabolism (LC-MS) to assess their effects on M. albus. In terms of muscle quality, the RG group showed increased levels of EPA and DHA, reduced muscle moisture and crude lipid content, and enhanced crude protein accumulation. The crude protein content was significantly higher in the RAG group than in the CG group (p < 0.05). The RG group also had the highest levels of total, essential, and umami amino acids, followed by the RAG and CG groups. In terms of intestinal microbiota, the RG group had the highest microbial diversity and stability, with increased abundance of Firmicutes and Bacteroidetes and decreased levels of Proteobacteria. Compared to the CG, the RAG group also showed increased microbial diversity and a reduction in pathogenic genera. Liver metabolomics analysis demonstrated that the RG group had significant advantages over the CG group in amino acid, lipid, and energy metabolism. The RAG group exhibited upregulation of glycerophospholipid metabolism and a decrease in oxidative stress marker levels. Overall, the RG group enhanced muscle quality and optimized intestinal and liver metabolism in M. albus. Full article
(This article belongs to the Section Meat)
Show Figures

Figure 1

19 pages, 8142 KB  
Article
Recommendations for Planting Sites and Cultivation Modes Suitable for High-Quality ‘Cuiguan’ Pear in Jiangxi Province
by Yanting Li, Sichao Yang, Chuanyong Xiong, Yun Wang, Xinlong Hu, Chaohua Zhou and Lei Xu
Horticulturae 2025, 11(7), 771; https://doi.org/10.3390/horticulturae11070771 - 2 Jul 2025
Viewed by 411
Abstract
The ecological region and training system are critical in determining an orchard’s microclimate and, ultimately, the quality and yield of the fruit produced. However, few studies have addressed the effects of their interactions on the commodity properties preferred by consumers, including appearance, flavor, [...] Read more.
The ecological region and training system are critical in determining an orchard’s microclimate and, ultimately, the quality and yield of the fruit produced. However, few studies have addressed the effects of their interactions on the commodity properties preferred by consumers, including appearance, flavor, and nutritional components. This study was conducted in distinct ecological regions at the county scale, with two classic cultivation modes (a traditional freestanding system with natural grassing and fruit without bagging and a flat-type trellis system with floor covering and fruit bagging) used for investigation and testing in 2020 and 2024, respectively. Significant differences in internal and external quality attributes were observed between the two groups. A sensory analysis showed that an increase in the soluble solid content and a better fruit appearance were strongly associated with higher purchase intentions. By integrating meteorological parameters, it was also found that temperature and air humidity during the month before harvest were associated with the pear phytochemical and metabolomic profiles. Planting site had a particularly notable effect on quality attributes and sensory experience, with low-latitude-harvested samples under cultivation mode 1 clustering together and showing higher overall scores, while cultivation mode 2 may be more suitable for high-latitude areas. Our results pave the way for making precise recommendations for the selection of suitable planting sites and optimum cultivation modes in Jiangxi Province to achieve high-quality ‘Cuiguan’ pears and fully exploit their planting potential. Full article
Show Figures

Figure 1

19 pages, 2467 KB  
Article
The Impact of Dietary Habits and Maternal Body Composition on Human Milk Microbiota—Polish Pilot Study
by Agnieszka Bzikowska-Jura, Anna Koryszewska-Bagińska, Małgorzata Konieczna, Jan Gawor, Robert Gromadka, Aleksandra Wesołowska and Gabriela Olędzka
Molecules 2025, 30(13), 2723; https://doi.org/10.3390/molecules30132723 - 25 Jun 2025
Viewed by 716
Abstract
Human milk (HM) is a complex biological fluid that plays a significant role in infant health, influenced by maternal dietary habits and body composition. This study aimed to explore how maternal diet and nutritional status affect the microbial composition of HM. In this [...] Read more.
Human milk (HM) is a complex biological fluid that plays a significant role in infant health, influenced by maternal dietary habits and body composition. This study aimed to explore how maternal diet and nutritional status affect the microbial composition of HM. In this pilot study, 15 mothers were recruited from a maternity ward and assessed for dietary habits through a semi-structured food frequency questionnaire and a 3-day dietary record. Maternal body composition was evaluated using bioelectrical impedance analysis. HM samples were collected for microbiota analysis, focusing on the diversity and composition of bacterial communities via 16S rRNA sequencing. The study identified that maternal nutrient intake significantly correlated with the composition of HM microbiota. Specifically, Firmicutes abundance showed positive correlations with animal protein (τ = 0.39; p = 0.043), total carbohydrates (τ = 0.39; p = 0.043), and vitamin A (τ = 0.429; p = 0.026). Bacteroidota was positively correlated with retinol (τ = 0.39; p = 0.043). Higher consumption of dietary fiber (>24 g/day) did not yield significant differences in bacterial composition compared to lower intake (<24 g/day) (p = 0.8977). Additionally, no significant differences were found in overall bacterial abundance across different maternal characteristics such as age, mode of delivery, or breastfeeding type. This study underscores the importance of maternal diet in shaping the HM microbiota, which may have implications for infant health. Dietary modifications during lactation could be a strategic approach to promote beneficial microbial colonization in HM. Further research is warranted to confirm these findings and explore the underlying mechanisms. Full article
(This article belongs to the Special Issue Research on Bioactive Compounds in Milk)
Show Figures

Figure 1

14 pages, 857 KB  
Article
Rapid and Effective Recovery of Oleanolic and Maslinic Acids from Olive Leaves Using SFE and pH-Zone Centrifugal Partition Chromatography
by Lemonia Antoniadi, Apostolis Angelis, Theodora Nikou, Dimitris Michailidis and Leandros A. Skaltsounis
Molecules 2025, 30(13), 2709; https://doi.org/10.3390/molecules30132709 - 24 Jun 2025
Viewed by 635
Abstract
Olive leaves, the main byproducts of olive cultivation, are characterized by a plethora of bioactive metabolites with significant nutritional value. Their main pentacyclic triterpenes, Oleanolic Acid (OA) and Maslinic Acid (MA), are two high added-value compounds with remarkable activities. This study aimed to [...] Read more.
Olive leaves, the main byproducts of olive cultivation, are characterized by a plethora of bioactive metabolites with significant nutritional value. Their main pentacyclic triterpenes, Oleanolic Acid (OA) and Maslinic Acid (MA), are two high added-value compounds with remarkable activities. This study aimed to develop an efficient methodology for extracting and purifying OA and MA, utilizing Supercritical Fluid Extraction (SFE) and Centrifugal Partition Chromatography (CPC)—two modern, scalable, and green techniques. A total of 21 g of olive leaves were subjected to SFE using supercritical CO2 and ethanol as co-solvent. The extraction employed a step gradient mode, starting with 100% CO2 and incrementally increasing ethanol (0–10% w/w) every 20 min. Fractions rich in OA and MA (500 mg) were further purified via CPC, utilizing pH zone refining to exploit the protonation and deprotonation properties of acidic triterpenes. The biphasic solvent system consisted of n-hexane, ethyl acetate, ethanol, and water (8:2:5:5 v/v/v/v), with trifluoroacetic acid added to the stationary phase and triethylamine added to the mobile phase. This two-step process yielded 89.5 mg of OA and 28.5 mg of MA with over 95% purity, as confirmed by HPLC-ELSD and 1H-NMR. Moreover, purified compounds and SFE fractions exhibited promising elastase and collagenase inhibition, highlighting them as dermocosmetic agents. Full article
(This article belongs to the Special Issue Supercritical Fluid Extraction of Natural Bioactive Compounds)
Show Figures

Figure 1

15 pages, 390 KB  
Article
Childhood Obesity and Overweight Are Associated with Higher Risk of Depression and Anxiety: A Cross-Sectional Study in Children Aged 6–9 Years
by Konstantinos Papadimitriou, Maria Mentzelou, Sousana K. Papadopoulou, Georgios Antasouras, Georgia-Eirini Deligiannidou, Olga Alexatou, Apostolia Ntovoli, Evmorfia Psara, Vasiliki G. Papadopoulou and Constantinos Giaginis
Life 2025, 15(6), 968; https://doi.org/10.3390/life15060968 - 18 Jun 2025
Viewed by 1300
Abstract
Background/Objectives: The global prevalence of childhood obesity and overweight is steadily increasing, representing a pressing public health concern due to its persistence during adolescence and adulthood and its association with elevated morbidity and mortality risks. This cross-sectional study was designed to examine the [...] Read more.
Background/Objectives: The global prevalence of childhood obesity and overweight is steadily increasing, representing a pressing public health concern due to its persistence during adolescence and adulthood and its association with elevated morbidity and mortality risks. This cross-sectional study was designed to examine the potential association between overweight/obesity and the presence of depressive and anxiety symptoms in children aged 6 to 9 years. Methods: A total of 4098 children from various urban and rural regions in Greece were enrolled. Data was collected through maternal questionnaires capturing sociodemographic characteristics, perinatal outcomes, anthropometric measurements, breastfeeding practices, and physical activity levels. Children fulfilled the Children’s Depression Inventory (CDI) and the State-Trait Anxiety Inventory for Children—State form (STAIC-S) to evaluate symptoms of depression and anxiety, respectively. Results: Childhood overweight/obesity was independently and significantly associated with a more than two-fold increased likelihood of presenting depressive and anxiety symptoms. Childhood overweight/obesity was also significantly associated with maternal obesity, gestational weight gain, childbirth weight, mode of delivery, exclusive breastfeeding, and children’s physical activity. Conclusions: Overweight and obesity in children aged 6–9 years are significantly associated with an elevated risk of psychological distress, including depression and anxiety. These findings underscore the need for targeted public health policies and nutritional interventions aimed at promoting healthy lifestyle practices from early childhood. Educational efforts should also support new mothers in adopting and sustaining health-promoting behaviors to mitigate the long-term consequences of childhood obesity. Full article
(This article belongs to the Section Physiology and Pathology)
Show Figures

Figure 1

18 pages, 1570 KB  
Article
Effects of Two Culture Modes on Muscular Nutrition Content and Volatile Flavor in Chinese Longsnout Catfish (Leiocassis longirostris)
by Luo Zhou, Yingbing Su, Daiqin Yang, Qiong Shi, Tilin Yi and Zhengyong Wen
Biology 2025, 14(6), 694; https://doi.org/10.3390/biology14060694 - 13 Jun 2025
Viewed by 679
Abstract
Thus far, various aquaculture modes have been developed to facilitate the rapid growth of the aquaculture industry and thus meet the heavy demand for aquatic products for human consumption. However, the effects of different culture modes on fish muscular nutritional content and volatile [...] Read more.
Thus far, various aquaculture modes have been developed to facilitate the rapid growth of the aquaculture industry and thus meet the heavy demand for aquatic products for human consumption. However, the effects of different culture modes on fish muscular nutritional content and volatile flavor are rarely reported. In the present study, we evaluated the differences in muscular nutrition content and dietary flavor between Chinese longsnout catfish (Leiocassis longirostris) groups cultured in two different modes, i.e., flow-through water tanks (CWWL) and traditional ponds (CWWC). Our statistical results showed that a significantly higher crude protein content and lower crude fat levels were observed in the CWWL group than in the CWWC group (p < 0.05). Similarly, the contents of total aromatic amino acids (Total ∑TAA) and total dicarboxylic amino acids (Total ∑DAA) were also significantly higher in the CWWL group. Among the fatty acids, long-chain polyunsaturated fatty acids (LC-PUFAs), including eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and arachidonic acid (ARA), were recorded at 1.44%, 2.5%, and 9.09%, respectively, in the CWWL group, which were dramatically higher than in the CWWC group. Conversely, the contents of volatile compounds, including 2-tridecanone, dimethyl trisulfide, and isophorone, in the CWWC group were also significant higher, which, however, may contribute to an unpleasant sensory experience. Conversely, other compounds like 2-methylbutanal and 2,3-butanedione were prevalent in the CWWL group, which can induce rich nutty and buttery flavors and thus enhance the freshness of flavor profiles. In conclusion, Chinese longsnout catfish cultured in flow-through tanks show higher nutritional value and better sensory flavor in comparison with those raised in ponds. These findings not only provide novel insights into the potential effects of aquaculture modes on muscular nutrition content and dietary flavor for Chinese longsnout catfish but also lay a solid foundation for optimizing practical culture modes to improve the global aquaculture industry. Full article
(This article belongs to the Section Biochemistry and Molecular Biology)
Show Figures

Figure 1

17 pages, 2526 KB  
Article
The Effect of Selenium on Rice Quality Under Different Nitrogen Levels
by Yuqi Liu, Bingchun Yan, Ya Liu, Yuzhuo Liu, Liqiang Chen, Hongfang Jiang, Yingying Feng, Jiping Gao and Wenzhong Zhang
Agronomy 2025, 15(6), 1437; https://doi.org/10.3390/agronomy15061437 - 12 Jun 2025
Cited by 1 | Viewed by 754
Abstract
Selenium (Se) is a trace element that is beneficial in enhancing the quality of rice production. However, research on the effects of Se on rice quality under varying nitrogen (N) levels is limited and requires further investigation. This experiment utilized a randomized block [...] Read more.
Selenium (Se) is a trace element that is beneficial in enhancing the quality of rice production. However, research on the effects of Se on rice quality under varying nitrogen (N) levels is limited and requires further investigation. This experiment utilized a randomized block design, incorporating an N fertilizer reduction and efficient application mode, with two N levels, CN (225 kg·hm−2) and LN (180 kg·hm−2), and three Se levels, HSe (0.12 kg·hm−2), LSe (0.06 kg·hm−2), and 0Se (0.00 kg·hm−2). The results indicated that the effects of Se on rice processing quality differ under different N levels. Selenium adversely affected the processing quality under the CN level, whereas it demonstrated some improvement at the LN level. Furthermore, Se application increased the Se content in rice by 46.48–141.82% and enhanced the taste value by 14.88–22.73%. It significantly improved the nutritional and cooking qualities of rice and positively influenced its appearance. Although N levels induced variations, their overall impact remained beneficial. Considering various indicators, applying 0.06 kg·hm−2 of Na2SeO3 under the LN level yielded optimal results. This study provides valuable insights into the effects of Se on rice quality under different N levels. It provides a more scientific basis for the application of selenium fertilizer in rice. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

13 pages, 1770 KB  
Article
Zea mays-Derived Protein Hydrolysate and Diverse Application Modes Differentially Compose Crop Production and Fruit Quality of Strawberry Cultivated Under Tunnel
by Fabiana Mancuso, Lorena Vultaggio, Leo Sabatino, Pietro Bellitto, Georgia Ntatsi, Enrica Allevato, Gaetano Giuseppe La Placa, Salvatore La Bella and Beppe Benedetto Consentino
Agronomy 2025, 15(6), 1314; https://doi.org/10.3390/agronomy15061314 - 27 May 2025
Viewed by 1033
Abstract
Agriculture is presently facing several ecological concerns related to the upsurging request for premium-value food produced in compliance with natural horticultural tools. The use of natural substances, such as biostimulants, principally protein hydrolysates (PHs), could be useful to maximize overall vegetable plant fitness. [...] Read more.
Agriculture is presently facing several ecological concerns related to the upsurging request for premium-value food produced in compliance with natural horticultural tools. The use of natural substances, such as biostimulants, principally protein hydrolysates (PHs), could be useful to maximize overall vegetable plant fitness. However, the mode of application (foliar spray or fertigation) could affect biostimulant efficiency. The current research was conducted to evaluate the effect of a Zea mays-derived PH (Surnan®, SPAA, Pescara, Italy) and its mode of application (foliar spray and/or fertigation) on yield traits, mineral profile, nutritional and functional components, along with NUE of “Florida fortuna” strawberry cultivated under tunnel. The findings showed that the corn-based PH effectively enhanced yield and number of marketable fruits per plant (NMFP) compared with the control (+20.1% and +25.4%, respectively). Fruits from biostimulated plants also showed a higher fruit lightness and ascorbic acid and anthocyanin concentration than fruits from control plots. Furthermore, Surnan® PH increased nitrogen use efficiency (NUE) of strawberry plants. Captivatingly, plants biostimulated via fertigation showed the highest fruit potassium (K) concentration, while those exposed to the foliar spray had the highest fruit phenolic concentration. Generally, our findings recommended that the application of Zea mays-derived PH via foliar spray could be considered a suitable tool to increase functional traits of strawberry grown under tunnel. Full article
(This article belongs to the Section Horticultural and Floricultural Crops)
Show Figures

Figure 1

Back to TopTop