Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,957)

Search Parameters:
Keywords = nutritional protein value

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 902 KB  
Article
Prognostic Value of the CALLY Index in Hypopharyngeal Cancer Treated with Definitive Chemoradiotherapy: A Retrospective Cohort Study
by Hasan Oguz Cetinayak, Barbaros Aydin, Volkan Semiz, Ece Atac Kutlu, Umut Basan and Rahmi Atıl Aksoy
Diagnostics 2025, 15(17), 2237; https://doi.org/10.3390/diagnostics15172237 - 3 Sep 2025
Abstract
Background: The hypopharyngeal region is among the most aggressive sites of head and neck squamous cell carcinoma, often presenting at an advanced stage with poor survival outcomes. However, there are only a limited number of biomarkers available to predict the prognosis of this [...] Read more.
Background: The hypopharyngeal region is among the most aggressive sites of head and neck squamous cell carcinoma, often presenting at an advanced stage with poor survival outcomes. However, there are only a limited number of biomarkers available to predict the prognosis of this aggressive disease. Recent interest has focused on immunonutritional biomarkers that may improve prognostication. The C-reactive protein–albumin–lymphocyte (CALLY) index has emerged as a composite biomarker integrating systemic inflammation, nutritional status, and immune competence. However, its clinical relevance in hypopharyngeal cancer has not been established. Methods: This retrospective, single-center study included patients with histologically confirmed hypopharyngeal squamous cell carcinoma treated with definitive chemoradiotherapy between 2010 and 2024. Patients were excluded from the study if they had incomplete laboratory data, had a concomitant malignancy, were undergoing induction chemotherapy, or had diseases affecting inflammatory and immunological markers. The CALLY index was calculated using pre-treatment laboratory values. Receiver operating characteristic (ROC) analysis determined the optimal cut-off value for overall survival (OS). Kaplan–Meier survival estimates and Cox regression analyses were used to assess associations between the CALLY index and progression-free survival (PFS), local recurrence-free survival (LRFS), and OS. Results: A total of 71 patients were included. The optimal CALLY cut-off was 1.47 (AUC = 0.70, p = 0.006). Patients with a CALLY index ≥ 1.47 had significantly improved median PFS (37 vs. 9 months, p = 0.003), LRFS (39 vs. 9 months, p = 0.002), and OS (61 vs. 11 months, p = 0.002). In multivariate analysis, the CALLY index and T stage remained independent prognostic factors of all three survival outcomes. Conclusions: The pretreatment CALLY index is a practical, accessible biomarker that independently predicts survival in hypopharyngeal cancer. Its integration into clinical practice may enhance risk stratification and guide individualized management strategies. Full article
(This article belongs to the Special Issue Advances in the Diagnosis and Management of Head and Neck Disease)
Show Figures

Figure 1

13 pages, 1020 KB  
Article
C-Reactive Protein to Albumin Ratio and Prognostic Nutrition Index as a Predictor of Periprosthetic Joint Infection and Early Postoperative Wound Complications in Patients Undergoing Primary Total Hip and Knee Arthroplasty
by Taner Karlidag, Olgun Bingol, Omer Halit Keskin, Atahan Durgal, Baris Yagbasan and Guzelali Ozdemir
Diagnostics 2025, 15(17), 2230; https://doi.org/10.3390/diagnostics15172230 - 3 Sep 2025
Abstract
Background: Postoperative wound complications following total joint arthroplasty (TJA) significantly impact patient outcomes and healthcare costs. Reliable preoperative biomarkers for identifying patients at increased risk are critical for optimizing patient management and reducing complication rates. This study evaluated the predictive utility of the [...] Read more.
Background: Postoperative wound complications following total joint arthroplasty (TJA) significantly impact patient outcomes and healthcare costs. Reliable preoperative biomarkers for identifying patients at increased risk are critical for optimizing patient management and reducing complication rates. This study evaluated the predictive utility of the C-reactive protein to albumin ratio (CAR) and the prognostic nutritional index (PNI) for periprosthetic joint infection (PJI) and postoperative wound complications in patients undergoing total hip arthroplasty (THA) and total knee arthroplasty (TKA). Methods: We retrospectively studied patients who underwent primary THA and TKA in our department from March 2019 to April 2024. The study included a total of 842 patients (568 knees and 274 hips). Preoperative blood samples were assessed for serum CRP, albumin, and total lymphocyte count, facilitating the calculation of CAR and PNI values. Patient outcomes were monitored, identifying PJI and aseptic wound complications such as persistent wound drainage, hematoma, seroma, skin erosion, and wound dehiscence within 2 weeks post-surgery. Results: The average follow-up time for patients was 39.2 months (range 13–73 months). PJI was significantly linked with elevated admission CAR and diminished PNI ratio (p < 0.001 and p < 0.001). ROC analysis demonstrated optimal predictive cut-off values for CAR at 3.1 (Area under curve [AUC]: 0.92, specificity 97.4%, sensitivity 92.3%) and PNI at 49.4 (AUC: 0.93, specificity 94.7%, sensitivity 91.7%). Furthermore, both CAR (Odds ratio [OR]: 3.84, 95% confidence interval [CI]: 1.6–9.1, p = 0.002) and PNI (OR: 21.8, 95% CI: 9–48.6, p < 0.001) were identified as two independent risk factors associated with the development of PJI following THA or TKA. Further subgroup analysis revealed distinct predictive thresholds for CAR and PNI according to surgical procedure type (TKA and THA), enhancing diagnostic accuracy. Conclusions: Preoperative admission elevated CAR and decreased PNI effectively predict PJI and postoperative wound complications in THA and TKA, supporting their utility as simple, cost-effective biomarkers in clinical practice. Incorporating CAR and PNI evaluations into preoperative assessments can enhance patient stratification and preventive strategies, thus mitigating risks and improving surgical outcomes. Full article
Show Figures

Figure 1

31 pages, 6830 KB  
Article
Genome-Wide Identification and Expression Analysis of the Growth Regulatory Factor (GRF) and Growth-Regulating Interacting Factor (GIF) Gene Families in Cassava
by Rou Xu, Tianyu Li, Linling Zheng, Yuhua Chen, Assane Hamidou Abdoulaye, Yating Feng, Wenlong Wen and Yinhua Chen
Horticulturae 2025, 11(9), 1046; https://doi.org/10.3390/horticulturae11091046 - 2 Sep 2025
Abstract
Growth regulatory factors (GRFs) and growth-regulating interacting factors (GIFs) play significant roles in plant growth, development, and environmental stress responses. Previous studies have reported the functions of GRF and GIF genes in model plants such as Arabidopsis and rice. [...] Read more.
Growth regulatory factors (GRFs) and growth-regulating interacting factors (GIFs) play significant roles in plant growth, development, and environmental stress responses. Previous studies have reported the functions of GRF and GIF genes in model plants such as Arabidopsis and rice. Nevertheless, the GRF and GIF genes remained unexplored in cassava. Cassava (Manihot esculenta Crantz) is an important tropical economic crop. Its starchy storage roots serve as a major source of food and industrial raw materials, while its protein-rich leaves are widely consumed as leafy vegetables in Africa and other regions, offering high nutritional value and significant horticultural potential. This study identified 28 MeGRFs distributed on 13 chromosomes and 5 MeGIFs on 4 chromosomes through bioinformatic analysis and expression profiling. Promoter analysis uncovered cis-acting elements associated with growth, hormone signaling, and biotic stress responses. Under different tissues and biotic (e.g., cassava bacterial blight, CBB) and abiotic (e.g., drought, low temperature) stress conditions, GRF and GIF genes exhibited differential expression patterns. Real-time quantitative PCR analysis showed a significant expression for 11 MeGRFs and 3 MeGIFs under the Xanthomonas phaseoli pv. manihotis (Xpm) treatment. VIGS functional validation demonstrated that MeGRF28 and MeGIF4 could enhance cassava resistance to bacterial blight, and protein–protein interaction network analysis suggested that they may form a core GRF-GIF complex. This study provides a theoretical basis for understanding the functional evolution of the GRF and GIF gene families in cassava and their roles in horticultural trait development and stress resistance mechanisms. Full article
(This article belongs to the Special Issue Breeding by Design: Advances in Vegetables)
Show Figures

Figure 1

23 pages, 702 KB  
Article
Comparative Evaluation of the Effectiveness of Using Quinoa Grain (Chenopodium quinoa Willd.) with High and Low Saponin Content in Broiler Chicken Feeding
by Artem Yu. Zagarin, Aleksandra V. Shitikova, Marina I. Selionova, Sergey V. Akchurin and Marianna Yu. Gladkikh
Animals 2025, 15(17), 2574; https://doi.org/10.3390/ani15172574 - 2 Sep 2025
Abstract
The aim of this study was to conduct a comparative analysis of the effects of native quinoa grain with a high saponin content and quinoa grain subjected to preliminary saponin removal with low saponin content on growth, meat quality, biochemical blood composition, and [...] Read more.
The aim of this study was to conduct a comparative analysis of the effects of native quinoa grain with a high saponin content and quinoa grain subjected to preliminary saponin removal with low saponin content on growth, meat quality, biochemical blood composition, and the expression of genes related to muscle growth, gut health, and nutrient transport in broiler chickens. The control group of chickens received a standard diet. The SAP group feed contained quinoa grain without saponin removal (saponin level—5.20%) at 3% of the “Starter” feed mass and 5% of the “Grower” and “Finisher” feeds, maintaining the same nutritional values as the control group. The SAP-FREE group feed contained quinoa grain that was pre-treated to remove saponins by washing with water for 60 min at a temperature of 50 °C (saponin level—0.24%) in the same amount as the SAP group. The research results indicated certain advantages of unprocessed quinoa grain in relation to saponin content. Specifically, in the SAP group, the broiler performance index was at the same level as the control, while the SAP-FREE group had a high mortality rate (10%), resulting in a performance index that was 23.82 units lower than the control. The use of quinoa grain with high saponin content promoted better development of thigh muscles by 9.6% compared to the control (p = 0.008) and increased yields of wing, neck, and back muscles by 2.9 abs.% (p = 0.007) compared to the use of purified quinoa grain. The fat yield decreased by 1.7 abs.% (p = 0.015) with saponin-free quinoa compared to the control and by 2% (p = 0.008) compared to the high saponin group, making this feeding system viable for producing dietary meat. Upon stopping the feeding of purified quinoa, chickens showed a 34.0% increase in AST activity (p = 0.019) and a 15.7% increase in creatinine levels (p = 0.008), likely indicating intensified protein metabolism upon cessation of the inhibiting factor of purified quinoa. Molecular genetic studies revealed a 1.6-fold increase in IGF1 gene expression (p = 0.014) in breast muscle and a 69.12-fold increase (p = 0.010) in AvBD9 in the cecum due to high-saponin quinoa grain, while purified quinoa increased GHR gene expression by 3.29 times (p = 0.039) in breast muscle and decreased IRF7 activity to 2−ΔΔCT = 0.54 (p = 0.017). The expression of transporter protein genes decreased to low or undetectable levels, indicating the presence of anti-nutritional factors and the need for further research on feeding quinoa with the addition of proteases. Thus, high-saponin quinoa grain, unlike purified quinoa, positively influences gut health and bird survival, maintaining performance levels similar to the control, suggesting the feasibility of using unprocessed quinoa in poultry nutrition, thus avoiding additional costs in feed preparation. Full article
(This article belongs to the Special Issue Alternative Protein Sources for Animal Feeds)
Show Figures

Figure 1

16 pages, 2435 KB  
Article
Nutritional, Thermal, and Energetic Characterization of Two Morphotypes of Andean Mashua (Tropaeolum tuberosum Ruiz & Pavón) Flours from Peru
by Gilmar Peña-Rojas, Vidalina Andía-Ayme, Alberto Fernández-Torres, Juan Z. Dávalos-Prado and Oscar Herrera-Calderon
Molecules 2025, 30(17), 3560; https://doi.org/10.3390/molecules30173560 - 30 Aug 2025
Viewed by 124
Abstract
Tropaeolum tuberosum (mashua) is a native Andean tuber recognized for its high nutritional and bioactive compound content. Among the various morphotypes, the black and yellow variants show potential differences in composition and functionality. This study aimed to compare the thermo-energetic, nutritional, and physicochemical [...] Read more.
Tropaeolum tuberosum (mashua) is a native Andean tuber recognized for its high nutritional and bioactive compound content. Among the various morphotypes, the black and yellow variants show potential differences in composition and functionality. This study aimed to compare the thermo-energetic, nutritional, and physicochemical characteristics of two morphotypes (black and yellow) of Tropaeolum tuberosum flour from the Peruvian Andes. Flours were obtained from tubers harvested in Ayacucho, Peru, and analyzed using elemental analysis for carbon, hydrogen, nitrogen, and sulfur (CHNS), inductively coupled plasma optical emission spectrometry (ICP-OES), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and bomb calorimetry. The empirical formula is CH1.74O0.91N0.06S0.005 for black mashua and CH1.78O0.92N0.05S0.005 for yellow mashua. Black flour exhibited higher protein (17.6% vs. 14.8%) and fat contents (8.0% vs. 6.7%), along with nearly double the iron content. Both flours showed similar starch granule morphology and gelatinization enthalpy (~2 J/g), but the black flour had higher gelatinization temperatures. Calorimetric analysis revealed a greater net calorific value (qNCV) in black mashua flour (4157 ± 22 kcal/kg) than in yellow flour (4022 ± 19 kcal/kg). The thermogravimetric profiles indicated good thermal stability with approximately 30% residual mass. These findings suggested that black mashua flour possesses superior nutritional and energy characteristics, supporting its application in functional food formulations and energy-rich gluten-free products. Full article
Show Figures

Graphical abstract

26 pages, 5358 KB  
Article
Effects of Spinach Addition on the Nutritional Value, Functional Properties, Microstructure and Shelf Life of Lamb Meat Dumplings
by Gulnur Nurymkhan, Almagul Nurgazezova, Galiya Tumenova, Zhibek Atambayeva, Nazerke Muslimova, Botakoz Kulushtayeva, Shugyla Zhakupbekova, Laila Bakirova, Aray Kambarova and Eleonora Okuskhanova
Appl. Sci. 2025, 15(17), 9556; https://doi.org/10.3390/app15179556 - 30 Aug 2025
Viewed by 129
Abstract
The incorporation of leafy vegetables into meat products offers a promising strategy for enhancing nutritional value and shelf-life while reducing reliance on synthetic additives. This study evaluated the substitution of lamb (Edilbaev breed) with spinach (0%, 10%, 20%, and 30%) in meat dumplings [...] Read more.
The incorporation of leafy vegetables into meat products offers a promising strategy for enhancing nutritional value and shelf-life while reducing reliance on synthetic additives. This study evaluated the substitution of lamb (Edilbaev breed) with spinach (0%, 10%, 20%, and 30%) in meat dumplings to assess effects on composition, functionality, microbial stability, lipid oxidation, and sensory quality. Spinach addition enriched the products with minerals, vitamins, and dietary fiber while moderating fat and protein content. Functional properties such as water- and fat-binding capacity were improved, contributing to lower cooking losses, and microbiological tests confirmed slower proliferation of spoilage organisms during chilled storage. Moreover, spinach components contributed to improved oxidative stability, as evidenced by lower thiobarbituric acid values and reduced acid numbers, indicating slower lipid oxidation and hydrolysis. Sensory evaluation revealed that substitution up to 20% maintained favorable appearance, texture, and taste, while higher levels diminished acceptability. Overall, incorporating spinach at a 20% substitution level provides an optimal balance of nutritional enhancement, functional performance, microbial and oxidative stability, and sensory acceptance, making it a practical approach for developing healthier lamb-based dumplings with strong potential for consumer acceptance and market application. Full article
(This article belongs to the Section Food Science and Technology)
Show Figures

Figure 1

14 pages, 1705 KB  
Article
Effect of Biostimulants on the Productivity and Nutritional Value of White Cabbage (Brassica oleracea L. var. capitata)
by Danguolė Juškevičienė, Audrius Radzevičius and Rasa Karklelienė
Horticulturae 2025, 11(9), 1020; https://doi.org/10.3390/horticulturae11091020 - 30 Aug 2025
Viewed by 241
Abstract
The study examines the influence of humic and amino acid applications on the productivity and nutritional value of white cabbage (Brassica oleracea L. var. capitata). Two cultivars, ‘Bagočiai’ and ‘Kamienna glowa’, were investigated at the Lithuanian Research Centre for Agriculture and [...] Read more.
The study examines the influence of humic and amino acid applications on the productivity and nutritional value of white cabbage (Brassica oleracea L. var. capitata). Two cultivars, ‘Bagočiai’ and ‘Kamienna glowa’, were investigated at the Lithuanian Research Centre for Agriculture and Forestry during the 2020–2021 period. The experiment was carried out in the experimental field where four different combinations of humic and amino acids were applied. Productivity and biochemical parameters were evaluated. It was determined that the application of amino and humic acids influenced the productivity of white cabbage. The obtained results showed that biostimulants enhanced the yield of heads up to 25% for cultivar ‘Bagočiai’ and 35% for ‘Kamienna Głowa’ compared with the control. The highest productivity, reaching 72.5–78.6 t ha−1 of cultivar ‘Kamienna Głowa’ and 74.9 t ha−1 to 76.2 t ha−1 of ‘Bagočiai’, was determined in the variants where amino acids and a combination of humic + amino acid were applied. The amount of vitamin C increased when plants were treated with an amino acid solution, while the highest crude protein content was found when plants were treated with humic acid. Full article
(This article belongs to the Special Issue Effects of Biostimulants on Horticultural Crop Production)
Show Figures

Graphical abstract

23 pages, 6780 KB  
Article
Fermentation of Pea Protein Isolate by Enterococcus faecalis 07: A Strategy to Enhance Flavor and Functionality
by Zhunyao Zhu, Laijing Zhu, Yanli Wang, Ruixue Cao, Yifan Ren and Xiangzhong Zhao
Foods 2025, 14(17), 3065; https://doi.org/10.3390/foods14173065 - 30 Aug 2025
Viewed by 219
Abstract
Pea protein isolate (PPI) is a plant protein with high nutritional value, but its application in food is limited by an unpleasant beany flavor. This study aimed to investigate the feasibility of improving the flavor of PPI through fermentation with Enterococcus faecalis 07. [...] Read more.
Pea protein isolate (PPI) is a plant protein with high nutritional value, but its application in food is limited by an unpleasant beany flavor. This study aimed to investigate the feasibility of improving the flavor of PPI through fermentation with Enterococcus faecalis 07. PPI was subjected to fermentation by E. faecalis 07 for different durations (0 H, 24 H, 48 H, and 72 H). After fermentation, pH, viable cell counts, free amino acid contents, electronic tongue analysis, and volatile organic compounds were determined. The results showed that fermentation significantly reduced the bitterness of PPI and enhanced its umami intensity. A total of 64 volatile organic compounds were identified in the fermented samples, 42 more than in the unfermented sample. Quantitative analysis revealed that hexanal (grass-like odor) decreased by 92% after 72 h of fermentation, 1-octen-3-ol (mushroom-like odor) decreased from 6.94 mg/kg to 1.73 mg/kg, and trans-2-octenal decreased to 0.59 mg/kg; meanwhile, aromatic compounds such as esters and ketones were produced. Along with changes in the physicochemical properties, organic acids, and free amino acid composition of PPI, correlation analysis between electronic tongue data and volatile compounds further indicated that changes in volatile components simultaneously affected the perception of five taste attributes of PPI (bitterness, sourness, sweetness, saltiness, and umami). In conclusion, this study demonstrated the feasibility of fermenting PPI with E. faecalis 07, which effectively improved its sensory attributes and physicochemical properties to a certain extent. Full article
(This article belongs to the Section Food Biotechnology)
Show Figures

Figure 1

20 pages, 3236 KB  
Article
Sustainable Protein-Enriched Biscuits: Effects of Mealworm Protein Powder on the Properties of Wheat Flour and Biscuit Quality
by Ao Yang, Hongrui Chen, Haixin Tian, Jianhui An, Longchen Shang, Yexing Tao and Lingli Deng
Foods 2025, 14(17), 3063; https://doi.org/10.3390/foods14173063 - 30 Aug 2025
Viewed by 255
Abstract
Mealworm (Tenebrio molitor, LINNAEUS, 1758) is a protein-rich edible insect. In this study, low-gluten wheat flour was formulated with mealworm protein powder at various concentrations (0%, 5%, 10%, 15%, and 20%) to investigate its influence on the pasting, farinographic, and extensographic [...] Read more.
Mealworm (Tenebrio molitor, LINNAEUS, 1758) is a protein-rich edible insect. In this study, low-gluten wheat flour was formulated with mealworm protein powder at various concentrations (0%, 5%, 10%, 15%, and 20%) to investigate its influence on the pasting, farinographic, and extensographic properties of low-gluten wheat flour, as well as the changes in the overall quality of the resulting biscuits (soda crackers and cookies). The viscosity of the composite flour decreased with an increasing substitution level of mealworm protein powder, and the setback significantly decreased from 69.31 ± 0.16 RVU (M0) to 19.00 ± 0.71 RVU (M20), indicating enhanced resistance to starch retrogradation. Farinographic and extensographic analyses revealed that the addition of mealworm protein powder reduced dough water absorption, significantly prolonged dough development time and stability time, and enhanced overall dough stability. However, extensibility gradually decreased, with a further reduction observed as the proofing time increased. Concurrently, the baking expansion ratio and hardness of the biscuits decreased. Specifically, for soda crackers, the baking expansion ratio decreased from 198.96 ± 3.88% (M0) to 135.74 ± 1.28% (M20), and hardness dropped from 26.40 ± 1.53 N (M0) to 6.32 ± 0.08 N (M20). For cookies, the baking expansion ratio and hardness decreased from 93.77 ± 0.72% (M0) to 86.06 ± 1.08% (M20) and from 1.76 ± 0.06 N (M0) to 1.10 ± 0.16 N (M20), respectively. The impact of mealworm protein powder (5–20%) was relatively minor in cookies but more pronounced in soda crackers, likely due to differences in formulation and processing methods. Additionally, the crunchiness of soda crackers was 3.42 times greater than that of cookies, whereas resilience was only 0.15 times that of cookies under controlled conditions. Pearson correlation analysis and principal component analysis (PCA) further elucidated the relationships between the dough properties and final product quality. Furthermore, the substitution of mealworm protein powder affected the sensory properties of the product but significantly enhanced its nutritional value, confirming the feasibility of replacing low-gluten wheat flour with mealworm protein powder and offering a theoretical foundation for its development and application in diverse biscuit formulations. Full article
(This article belongs to the Section Grain)
Show Figures

Figure 1

25 pages, 687 KB  
Article
Chemical Profile and Mycotoxin Analyses of Corn (Argentina, Brazil, and Ukraine), Soybean Meal (USA and Argentina), and Sunflower Meal (Ukraine) Used in Poultry Feed in Morocco
by Najlae El Bouanani, Bouchaib Bencharki and Hafsa Houmairi
Analytica 2025, 6(3), 30; https://doi.org/10.3390/analytica6030030 - 30 Aug 2025
Viewed by 234
Abstract
This study analyzes the nutritional quality and mycotoxin contamination of three key feed ingredients—corn, soybean meal (SBM), and sunflower meal (SFM)—imported into Morocco during the years 2019, 2020, and 2021. Samples were collected upon reception at the plant and analyzed in triplicate under [...] Read more.
This study analyzes the nutritional quality and mycotoxin contamination of three key feed ingredients—corn, soybean meal (SBM), and sunflower meal (SFM)—imported into Morocco during the years 2019, 2020, and 2021. Samples were collected upon reception at the plant and analyzed in triplicate under standardized laboratory conditions. Chemical composition was evaluated using classical and NIR-based methods, while mycotoxin levels were assessed through ELISA and confirmed by HPLC. Corn samples from Argentina, Brazil, and Ukraine were assessed for their proximate composition and mycotoxin burden. While most nutritional parameters showed no significant differences between origins (p > 0.05), water activity (Aw) and digestible threonine content were significantly affected by origin (p < 0.01). Brazilian corn had the highest Aw (0.716), followed by Argentina (0.680), and Ukraine (0.662), a factor linked to its higher susceptibility to mold and mycotoxin development. Soybean meal from the U.S. and Argentina showed a general positive trend in favor of U.S. imports, with higher average crude protein (the CP content of American soybean meal was 46.912%, compared to 46.610% in Argentine soybean meal), fat, digestible lysine, and metabolizable energy. However, statistical differences were limited to water activity and moisture content (p < 0.05). American soybean meals are generally recognized for their consistent processing quality and superior amino acid digestibility. Sunflower meal, sourced exclusively from Ukraine, showed a steady improvement in crude protein (from 35.97% in 2019 to 36.99% in 2021) and metabolizable energy, alongside reduced crude fiber content, enhancing its nutritional value in poultry diets. The consistent use of Ukrainian SFM in Morocco reflects both supply stability and quality. Regarding mycotoxins, origin had a significant effect on several compounds. Argentine and Brazilian corn showed higher mean levels of fumonisins (1165.26 and 1019.52 ppb), ochratoxin A (2.26 and 3.02 ppb), and zearalenone (36.99 and 21.92 ppb) compared to Ukrainian corn, which consistently had the lowest levels across all major mycotoxins (e.g., fumonisins = 200 ppb; zearalenone = 4.90 ppb). Aflatoxin B1 levels remained constant at 0.2 ppb across all origins. These findings confirm the influence of geographic origin—particularly water activity—on mycotoxin risk in imported maize. Full article
Show Figures

Figure 1

31 pages, 4184 KB  
Article
Investigating the Neuroprotective, Hepatoprotective, and Antimicrobial Effects of Mushroom Extracts
by Menna-Allah E. Abdelkader, Hatungimana Mediatrice, Zhanxi Lin, Christopher Rensing, Mohamed M. Yacout, Dongmei Lin and Sarah A. Aggag
Int. J. Mol. Sci. 2025, 26(17), 8440; https://doi.org/10.3390/ijms26178440 - 29 Aug 2025
Viewed by 155
Abstract
Mushrooms, renowned for their nutritional value and bioactive compounds, offer potential health benefits, including antioxidants and anti-aging properties. Aging, characterized by cellular and tissue decline, is often associated with autophagy dysfunction, a crucial cellular cleaning process. This study aimed to investigate the neuroprotective, [...] Read more.
Mushrooms, renowned for their nutritional value and bioactive compounds, offer potential health benefits, including antioxidants and anti-aging properties. Aging, characterized by cellular and tissue decline, is often associated with autophagy dysfunction, a crucial cellular cleaning process. This study aimed to investigate the neuroprotective, hepatoprotective, and antimicrobial properties of extracts from four medicinal and edible mushrooms: Ganoderma lucidum, Hericium erinaceus, Pleurotus ostreatus, and Agaricus bisporus. The protein, total phenol, and flavonoid content of mushroom extracts were determined. Aging was induced with 120 mg/kg D-galactose and treated with 500 mg/kg mushroom extracts. The study evaluated liver enzyme levels, histopathological changes in liver and brain tissues, gene expression correlated to neurodegeneration (SEPT5-SV2B-ATXN2-PARK2), telomere length, and immunomodulatory and pro-inflammatory (IL-2-IL-4-IL-6) gene expression pathways. Additionally, the antimicrobial potential of mushroom extracts was assessed against several bacteria (Lysinibacillus odyssey, Lysinibacillus fusiformis, Klebsiella oxytoca, and Escherichia coli) using agar well diffusion and lowest minimum inhibitory concentration (MIC) methods. By exploring these diverse aspects, this study aimed to provide a foundation for a better understanding of the potential of mushrooms as natural neuroprotective, hepatoprotective, and antimicrobial agents and their potential applications in human health. Results indicated that all mushroom extracts effectively mitigated oxidative stress. Agaricus bisporus exhibited the highest protein and flavonoid content, and Pleurotus ostreatus displayed the highest phenolic content. Notably, Hericium erinaceus and Ganoderma lucidum extracts demonstrated significant neuroprotective and hepatoprotective properties against D-galactose-induced aging, as evidenced by histopathological examination. All extracts exhibited a significant decrease (p < 0.001) in liver function (serum levels of aspartate aminotransferase (GOT) and alanine aminotransferase (GPT)) and showed immunomodulatory and anti-inflammatory effects, characterized by upregulated IL-2 and IL-4 gene expression and downregulated IL-6 gene expression. Hericium erinaceus demonstrated the most pronounced upregulation (p < 0.001) of SEPT5, SV2B, and telomere length gene expression, suggesting potential anti-aging effects. Furthermore, all mushroom extracts displayed antimicrobial activity against the tested bacterial strains, except Hericium erinaceus, which exhibited antibacterial activity solely against E. coli. Agaricus bisporus exhibited the largest inhibition zones (22 ± 0.06 mm) against Lysinibacillus odyssey, while Hericium erinaceus displayed the largest inhibition zone against E. coli. The MIC value was observed with Agaricus bisporus extract against Lysinibacillus odyssey (1.95 ± 0.16 mg/mL). Lysinibacillus fusiformis exhibited the highest resistance to the tested mushroom extracts. These findings suggest that these edible and medicinal mushrooms possess a wide range of health-promoting properties, including neuroprotective, hepatoprotective, and antimicrobial activities. Further research is needed to fully understand the underlying mechanisms and optimize applications. However, our results provide a strong foundation for exploring these mushrooms as potential natural agents that promote overall health and combat age-related decline. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Figure 1

28 pages, 3780 KB  
Article
Machine Learning Prediction Models of Beneficial and Toxicological Effects of Zinc Oxide Nanoparticles in Rat Feed
by Leonid Legashev, Ivan Khokhlov, Irina Bolodurina, Alexander Shukhman and Svetlana Kolesnik
Mach. Learn. Knowl. Extr. 2025, 7(3), 91; https://doi.org/10.3390/make7030091 - 29 Aug 2025
Viewed by 476
Abstract
Nanoparticles have found widespread application across diverse fields, including agriculture and animal husbandry. However, a persistent challenge in laboratory-based studies involving nanoparticle exposure is the limited availability of experimental data, which constrains the robustness and generalizability of findings. This study presents a comprehensive [...] Read more.
Nanoparticles have found widespread application across diverse fields, including agriculture and animal husbandry. However, a persistent challenge in laboratory-based studies involving nanoparticle exposure is the limited availability of experimental data, which constrains the robustness and generalizability of findings. This study presents a comprehensive analysis of the impact of zinc oxide nanoparticles (ZnO NPs) in feed on elemental homeostasis in male Wistar rats. Using correlation-based network analysis, a correlation graph weight value of 15.44 and a newly proposed weighted importance score of 1.319 were calculated, indicating that a dose of 3.1 mg/kg represents an optimal balance between efficacy and physiological stability. To address the issue of limited sample size, synthetic data generation was performed using generative adversarial networks, enabling data augmentation while preserving the statistical characteristics of the original dataset. Machine learning models based on fully connected neural networks and kernel ridge regression, enhanced with a custom loss function, were developed and evaluated. These models demonstrated strong predictive performance across a ZnO NP concentration range of 1–150 mg/kg, accurately capturing the dependencies of essential element, protein, and enzyme levels in blood on nanoparticle dosage. Notably, the presence of toxic elements and some other elements at ultra-low concentrations exhibited non-random patterns, suggesting potential systemic responses or early indicators of nanoparticle-induced perturbations and probable inability of synthetic data to capture the true dynamics. The integration of machine learning with synthetic data expansion provides a promising approach for analyzing complex biological responses in data-scarce experimental settings, contributing to the safer and more effective application of nanoparticles in animal nutrition. Full article
Show Figures

Figure 1

23 pages, 735 KB  
Review
The House Cricket (Acheta domesticus Linnaeus) in Food Industry: Farming, Technological Challenges, and Sustainability Considerations
by Viktória Ildikó Farkas, Mónika Máté, Krisztina Takács and Anna Jánosi
Appl. Sci. 2025, 15(17), 9494; https://doi.org/10.3390/app15179494 - 29 Aug 2025
Viewed by 197
Abstract
The growing global demand for alternative, sustainable protein sources has increased interest in edible insects, of which the domestic cricket (Acheta domesticus Linnaeus) is one of the most studied and exploited species. Crickets offer a rich source of protein, essential amino acids, [...] Read more.
The growing global demand for alternative, sustainable protein sources has increased interest in edible insects, of which the domestic cricket (Acheta domesticus Linnaeus) is one of the most studied and exploited species. Crickets offer a rich source of protein, essential amino acids, and micronutrients, and provide significant benefits for environmental sustainability. This in-depth review, based on recent literature, examines the nutritional composition, developmental stages, and optimal housing conditions of crickets, with a focus on their use in the food industry. It also examines the technological challenges and legal frameworks of cricket farming, including feeding strategies and climate control, as well as the regulations governing insect-based foods. It also addresses potential risks, such as allergenic reactions and concerns related to chitin, as well as the role of crickets in the circular economy. The study outlines key challenges and prospects in insect production for food and feed and identifies priorities for future research. Our research discusses the legal background and highlights current findings related to entomophagy. This article presents an in-depth review of the nutritional value, farming conditions, food applications, and regulatory landscape for crickets as food. It also explores the technological challenges and the role of crickets in sustainability. Full article
(This article belongs to the Section Food Science and Technology)
Show Figures

Figure 1

24 pages, 966 KB  
Review
Bioactive Food Proteins: Bridging Nutritional and Functional Benefits with Sustainable Protein Sources
by Manuela Machado, Israel Bautista-Hérnandez, Ricardo Gómez-García, Sara Silva and Eduardo M. Costa
Foods 2025, 14(17), 3035; https://doi.org/10.3390/foods14173035 - 29 Aug 2025
Viewed by 166
Abstract
Bioactive food proteins play multifunctional roles in human health and functional food development. Beyond their nutritional value, these proteins contain peptide sequences capable of exerting physiological effects, such as antioxidant, anti-hypertensive, immunomodulatory, and anti-inflammatory activities. This review summarises the processing and functional technologies [...] Read more.
Bioactive food proteins play multifunctional roles in human health and functional food development. Beyond their nutritional value, these proteins contain peptide sequences capable of exerting physiological effects, such as antioxidant, anti-hypertensive, immunomodulatory, and anti-inflammatory activities. This review summarises the processing and functional technologies applied to bioactive proteins; the increasing use of alternative protein sources including plants, microorganisms, and insects; and how these proteins exert their activity. Advances in high-tech production methods—such as fermentation and cultured meat—are also discussed, alongside current challenges related to safety, regulation, and consumer acceptance. Bibliometric and patent analyses further demonstrate sustained innovation and interest in this field, highlighting the potential of bioactive proteins to contribute to sustainable, health-promoting food systems. Full article
(This article belongs to the Special Issue Food Proteins: Innovations for Food Technologies)
Show Figures

Figure 1

22 pages, 3153 KB  
Article
Variation of Protein and Protein Fraction Content in Wheat in Relation to NPK Mineral Fertilization
by Alina Laura Agapie, Marinel Nicolae Horablaga, Gabriela Gorinoiu, Adina Horablaga, Mihai Valentin Herbei and Florin Sala
Agronomy 2025, 15(9), 2076; https://doi.org/10.3390/agronomy15092076 - 28 Aug 2025
Viewed by 166
Abstract
Wheat is a crucial crop for human nutrition, and the demand for high-quality indicators within the “from farm to fork” concept is increasing. Based on this premise, this study examined how, at the farm level, the fertilization system can influence key quality indicators [...] Read more.
Wheat is a crucial crop for human nutrition, and the demand for high-quality indicators within the “from farm to fork” concept is increasing. Based on this premise, this study examined how, at the farm level, the fertilization system can influence key quality indicators relevant to wheat production and final products. This research was conducted under specific conditions of the Western Plain of Romania at the Agricultural Research and Development Station (ARDS), Lovrin, during 2015–2017. Fertilization involved the autumn application of phosphorus (concentrated superphosphate; 0, 40, 80, 120, 160 kg ha−1 active substance, a.s.) and potassium (potassium chloride; 0, 40, 80, 120 kg ha−1 a.s.). Nitrogen (ammonium nitrate; 0, 30, 60, 90, 120 kg ha−1 active substance) was applied in spring in two stages. The combination of these three fertilizers resulted in 18 fertilized variants (T2 to T19), tested alongside an unfertilized control (T1). The experimental variants were arranged in four randomized replications. Grain quality was assessed based on protein content (PRO, %), gluten (GLT, g 100 g−1), gliadins (Gliad, %), glutenins (Glut, g 100 g−1), high-molecular-weight glutenins (HMW, g 100 g−1), low-molecular-weight glutenins (LMW, g 100 g−1), and the gliadin/glutenin ratio (Gliad/Glut). Compared to the average values for each indicator across the experiment, certain variants produced values above the mean, with statistical significance. Variant T16 stood out by producing values above the mean for all indicators, with statistical confidence. Multivariate analysis showed that five indicators with very strong (PRO, GLT) and strong (HMW, Glut, LMW) influence grouped in PC1, while two indicators (Gliad, Gliad/Glut) with very strong and strong influence grouped in PC2. The analysis revealed varying levels of correlation between the applied fertilizers, with nitrogen (N) showing very strong and strong correlations with most indicators, while phosphorus and potassium showed moderate-to-weak correlations. Regression analysis generated mathematical models that statistically described how each indicator varied in relation to the fertilizers applied. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

Back to TopTop