Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = ocean scalar field

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 5267 KB  
Article
Remote-Sensed Spatio-Temporal Study of the Tropical Cyclone Freddy Exceptional Case
by Giuseppe Ciardullo, Leonardo Primavera, Fabrizio Ferrucci, Fabio Lepreti and Vincenzo Carbone
Remote Sens. 2025, 17(6), 981; https://doi.org/10.3390/rs17060981 - 11 Mar 2025
Viewed by 1273
Abstract
Dynamical processes during the different stages of evolution of tropical cyclones play crucial roles in their development and intensification, making them one of the most powerful natural forces on Earth. Given their classification as extreme atmospheric events resulting from multiple interacting factors, it [...] Read more.
Dynamical processes during the different stages of evolution of tropical cyclones play crucial roles in their development and intensification, making them one of the most powerful natural forces on Earth. Given their classification as extreme atmospheric events resulting from multiple interacting factors, it is significant to study their dynamical behavior and the nonlinear effects generated by emerging structures during scales and intensity transitions, correlating them with the surrounding environment. This study investigates the extraordinary and record-breaking case of Tropical Cyclone Freddy (2023 Indian Ocean tropical season) from a purely dynamical perspective, examining the superposition of energetic structures at different spatio-temporal scales, by mainly considering thermal fluctuations over 12 days of its evolution. The tool used for this investigation is the Proper Orthogonal Decomposition (POD), in which a set of empirical basis functions is built up, retaining the maximum energetic content of the turbulent flow. The method is applied on a satellite imagery dataset acquired from the SEVIRI radiometer onboard the Meteosat Second Generation-8 (MSG-8) geostationary platform, from which the cloud-top temperature scalar field is remote sensed looking at the cloud’s associated system. For this application, considering Freddy’s very long life period and exceptionally wide path of evolution, reanalysis and tracking data archives are taken into account in order to create an appropriately dynamic spatial grid. Freddy’s eye is followed after its first shape formation with very high temporal resolution snapshots of the temperature field. The energy content in three different characteristic scale ranges is analyzed through the associated spatial and temporal component spectra, focusing both on the total period and on the transitions between different categories. The results of the analysis outline several interesting aspects of the dynamics of Freddy related to both its transitions stages and total period. The reconstructions of the temperature field point out that the most consistent vortexes are found in the outermost cyclonic regions and in proximity of the eyewall. Additionally, we find a significant consistency of the results of the investigation of the maximum intensity phase of Freddy’s life cycle, in the spatio-temporal characteristics of its dynamics, and in comparison with one analogous case study of the Faraji tropical cyclone. Full article
Show Figures

Figure 1

17 pages, 17183 KB  
Article
The Implementation of a WebGPU-Based Volume Rendering Framework for Interactive Visualization of Ocean Scalar Data
by Jiaqi Yu, Rufu Qin and Zhounan Xu
Appl. Sci. 2025, 15(5), 2782; https://doi.org/10.3390/app15052782 - 5 Mar 2025
Viewed by 1757
Abstract
Visualization contributes to an in-depth understanding of ocean variables and phenomena, and a web-based three-dimensional visualization of ocean data has gained significant attention in oceanographic research. However, many challenges remain to be addressed while performing a real-time interactive visualization of large-volume heterogeneous scalar [...] Read more.
Visualization contributes to an in-depth understanding of ocean variables and phenomena, and a web-based three-dimensional visualization of ocean data has gained significant attention in oceanographic research. However, many challenges remain to be addressed while performing a real-time interactive visualization of large-volume heterogeneous scalar datasets in a web environment. In this study, we propose a WebGPU-based volume rendering framework for an interactive visualization of ocean scalar data. The ray casting algorithm, optimized with early ray termination and adaptive sampling methods, is adopted as the core volume rendering algorithm to visualize three-dimensional gridded data preprocessed from regular and irregular gridded volume datasets generated by ocean numerical modeling, utilizing the Babylon.js rendering engine and WebGPU technology. Moreover, the framework integrates a set of interactive visual analysis tools, providing functionalities such as volume cutting, value-based spatial data filtering, and time-series animation playback, enabling users to effectively display, navigate, and explore multidimensional datasets. Finally, we conducted several experiments to evaluate the visual effects and performance of the framework. The results suggest that the proposed WebGPU-based volume rendering framework is a feasible web-based solution for visualizing and analyzing large-scale gridded ocean scalar data. Full article
(This article belongs to the Special Issue Data Visualization Techniques: Advances and Applications)
Show Figures

Figure 1

31 pages, 6188 KB  
Article
An Underwater Passive Electric Field Positioning Method Based on Scalar Potential
by Yi Zhang, Cong Chen, Jiaqing Sun, Mingjie Qiu and Xu Wu
Mathematics 2024, 12(12), 1832; https://doi.org/10.3390/math12121832 - 12 Jun 2024
Viewed by 1479
Abstract
In order to fulfill the practical application demands of precisely localizing underwater vehicles using passive electric field localization technology, we propose a scalar-potential-based method for the passive electric field localization of underwater vehicles. This method is grounded on an intelligent differential evolution algorithm [...] Read more.
In order to fulfill the practical application demands of precisely localizing underwater vehicles using passive electric field localization technology, we propose a scalar-potential-based method for the passive electric field localization of underwater vehicles. This method is grounded on an intelligent differential evolution algorithm and is particularly suited for use in three-layer and stratified oceanic environments. Firstly, based on the potential distribution law of constant current elements in a three-layer parallel stratified ocean environment, the mathematical positioning model is established using the mirror method. Secondly, the differential evolution (DE) algorithm is enhanced with a parameter-adaptive strategy and a boundary mutation processing mechanism to optimize the key objective function in the positioning problem. Additionally, the simulation experiments of the current element in the layered model prove the effectiveness of the proposed positioning method and show that it has no special requirements for the sensor measurement array, but the large range and moderate number of sensors are beneficial to improve the positioning effect. Finally, the laboratory experiments on the positioning method proposed in this paper, involving underwater simulated current elements and underwater vehicle tracks, were carried out successfully. The results indicate that the positioning method proposed in this paper can achieve the performance requirements of independent initial value, strong anti-noise capabilities, rapid positioning speed, easy implementation, and suitability in shallow sea environments. These findings suggest a promising practical application potential for the proposed method. Full article
(This article belongs to the Special Issue Mathematical Optimization & Evolutionary Computing)
Show Figures

Figure 1

19 pages, 10532 KB  
Article
A Spherical Volume-Rendering Method of Ocean Scalar Data Based on Adaptive Ray Casting
by Weijie Li, Changxia Liang, Fan Yang, Bo Ai, Qingtong Shi and Guannan Lv
ISPRS Int. J. Geo-Inf. 2023, 12(4), 153; https://doi.org/10.3390/ijgi12040153 - 5 Apr 2023
Cited by 4 | Viewed by 2664
Abstract
There are some limitations in traditional ocean scalar field visualization methods, such as inaccurate expression and low efficiency in the three-dimensional digital Earth environment. This paper presents a spherical volume-rendering method based on adaptive ray casting to express ocean scalar field. Specifically, the [...] Read more.
There are some limitations in traditional ocean scalar field visualization methods, such as inaccurate expression and low efficiency in the three-dimensional digital Earth environment. This paper presents a spherical volume-rendering method based on adaptive ray casting to express ocean scalar field. Specifically, the minimum bounding volume based on spherical mosaic is constructed as the proxy geometry, and the depth texture of the seabed terrain is applied to determine the position of sampling points in the spatial interpolation process, which realizes the fusion of ocean scalar field and seabed terrain. Then, we propose an adaptive sampling step algorithm according to the heterogeneous depth distribution and data change rate of the ocean scalar field dataset to improve the efficiency of the ray-casting algorithm. In addition, this paper proposes a nonlinear color-mapping enhancement scheme based on the skewness characteristics of the datasets to optimize the expression effect of volume rendering, and the transparency transfer function is designed to realize volume rendering and local feature structure extraction of ocean scalar field data in the study area. Full article
Show Figures

Figure 1

21 pages, 9410 KB  
Article
Estimates of Hyperspectral Surface and Underwater UV Planar and Scalar Irradiances from OMI Measurements and Radiative Transfer Computations
by Alexander Vasilkov, Nickolay Krotkov, David Haffner, Zachary Fasnacht and Joanna Joiner
Remote Sens. 2022, 14(9), 2278; https://doi.org/10.3390/rs14092278 - 9 May 2022
Cited by 5 | Viewed by 3343
Abstract
Quantitative assessment of the UV effects on aquatic ecosystems requires an estimate of the in-water hyperspectral radiation field. Solar UV radiation in ocean waters is estimated on a global scale by combining extraterrestrial solar irradiance from the Total and Spectral Solar Irradiance Sensor [...] Read more.
Quantitative assessment of the UV effects on aquatic ecosystems requires an estimate of the in-water hyperspectral radiation field. Solar UV radiation in ocean waters is estimated on a global scale by combining extraterrestrial solar irradiance from the Total and Spectral Solar Irradiance Sensor (TSIS-1), satellite estimates of cloud/surface reflectivity, ozone from the Ozone Monitoring Instrument (OMI) and in-water chlorophyll concentration from the Moderate Resolution Imaging Spectroradiometer (MODIS) with radiative transfer computations in the ocean-atmosphere system. A comparison of the estimates of collocated OMI-derived surface irradiance with Marine Optical Buoy (MOBY) measurements shows a good agreement within 5% for different seasons. To estimate scalar irradiance at the ocean surface and in water, we propose scaling the planar irradiance, calculated from satellite observation, on the basis of Hydrolight computations. Hydrolight calculations show that the diffuse attenuation coefficients of scalar and planar irradiance with depth are quite close to each other. That is why the differences between the planar penetration and scalar penetration depths are small and do not exceed a couple of meters. A dominant factor defining the UV penetration depths is chlorophyll concentration. There are other constituents in water that absorb in addition to chlorophyll; the absorption from these constituents can be related to that of chlorophyll in Case I waters using an inherent optical properties (IOP) model. Other input parameters are less significant. The DNA damage penetration depths vary from a few meters in areas of productive waters to about 30–35 m in the clearest waters. A machine learning approach (an artificial neural network, NN) was developed based on the full physical algorithm for computational efficiency. The NN shows a very good performance in predicting the penetration depths (within 2%). Full article
(This article belongs to the Topic Advances in Environmental Remote Sensing)
Show Figures

Figure 1

15 pages, 4315 KB  
Article
Hydrostatic Densitometer for Monitoring Density in Freshwater to Hypersaline Water Bodies
by Ziv Mor, Hallel Lutzky, Eyal Shalev and Nadav G. Lensky
Water 2021, 13(13), 1842; https://doi.org/10.3390/w13131842 - 1 Jul 2021
Cited by 5 | Viewed by 4136
Abstract
Density, temperature, salinity, and hydraulic head are physical scalars governing the dynamics of aquatic systems. In coastal aquifers, lakes, and oceans, salinity is measured with conductivity sensors, temperature is measured with thermistors, and density is calculated. However, in hypersaline brines, the salinity (and [...] Read more.
Density, temperature, salinity, and hydraulic head are physical scalars governing the dynamics of aquatic systems. In coastal aquifers, lakes, and oceans, salinity is measured with conductivity sensors, temperature is measured with thermistors, and density is calculated. However, in hypersaline brines, the salinity (and density) cannot be determined by conductivity measurements due to its high ionic strength. Here, we resolve density measurements using a hydrostatic densitometer as a function of an array of pressure sensors and hydrostatic relations. This system was tested in the laboratory and was applied in the Dead Sea and adjacent aquifer. In the field, we measured temporal variations of vertical profiles of density and temperature in two cases, where water density varied vertically from 1.0 × 103 kg·m−3 to 1.24 × 103 kg·m−3: (i) a borehole in the coastal aquifer, and (ii) an offshore buoy in a region with a diluted plume. The density profile in the borehole evolved with time, responding to the lowering of groundwater and lake levels; that in the lake demonstrated the dynamics of water-column stratification under the influence of freshwater discharge and atmospheric forcing. This method allowed, for the first time, continuous monitoring of density profiles in hypersaline bodies, and it captured the dynamics of density and temperature stratification. Full article
(This article belongs to the Special Issue Seawater Intrusion into Coastal Aquifers)
Show Figures

Figure 1

22 pages, 8181 KB  
Article
Virtual Control Volume Approach to the Study of Climate Causal Flows: Identification of Humidity and Wind Pathways of Influence on Rainfall in Ecuador
by Angel Vázquez-Patiño, Lenin Campozano, Daniela Ballari, Mario Córdova and Esteban Samaniego
Atmosphere 2020, 11(8), 848; https://doi.org/10.3390/atmos11080848 - 11 Aug 2020
Cited by 8 | Viewed by 3044
Abstract
Unraveling the relationship between humidity, wind, and rainfall is vitally important to understand the dynamics of water vapor transport. In recent years, the use of causal networks to identify causal flows has gained much ground in the field of climatology to provide new [...] Read more.
Unraveling the relationship between humidity, wind, and rainfall is vitally important to understand the dynamics of water vapor transport. In recent years, the use of causal networks to identify causal flows has gained much ground in the field of climatology to provide new insights about physical processes and hypothesize previously unknown ones. In this paper, the concept of a virtual control volume is proposed, which resembles the Eulerian description of a vector field, but is based on causal flows instead. A virtual control surface is used to identify the influence of surrounding climatic processes on the control volume (i.e., the study region). Such an influence is characterized by using a causal inference method that gives information about its direction and strength. The proposed approach was evaluated by inferring and spatially delineating areas of influence of humidity and wind on the rainfall of Ecuador. It was possible to confirm known patterns of influence, such as the influence of the Pacific Ocean on the coast and the influence of the Atlantic Ocean on the Amazon. Moreover, the approach was able to identify plausible new hypotheses, such as the influence of humidity on rainfall in the northern part of the boundary between the Andes and the Amazon, as well as the origin (the Amazon or the tropical Atlantic) and the altitude at which surrounding humidity and wind influence rainfall within the control volume. These hypotheses highlight the ability of the approach to exploit a large amount of scalar data and identify pathways of influence between climatic variables. Full article
(This article belongs to the Section Meteorology)
Show Figures

Graphical abstract

21 pages, 17301 KB  
Article
High-Frequency Radar Observations of Surface Circulation Features along the South-Western Australian Coast
by Simone Cosoli, Charitha Pattiaratchi and Yasha Hetzel
J. Mar. Sci. Eng. 2020, 8(2), 97; https://doi.org/10.3390/jmse8020097 - 5 Feb 2020
Cited by 17 | Viewed by 4235
Abstract
A new merged high-frequency radar (HFR) data set collected using SeaSonde and WERA (WEllen RAdar) systems was used to examine the ocean surface circulation at diurnal, seasonal and inter-annual time scales along the south-west coast of Australia (SWWA), between 29°–32° S. Merging was [...] Read more.
A new merged high-frequency radar (HFR) data set collected using SeaSonde and WERA (WEllen RAdar) systems was used to examine the ocean surface circulation at diurnal, seasonal and inter-annual time scales along the south-west coast of Australia (SWWA), between 29°–32° S. Merging was performed after resampling WERA data on the coarser SeaSonde HFR grid and averaging data from the two HFR systems in the area of common overlap. Direct comparisons between WERA and SeaSonde vectors in their overlapping areas provided scalar and vector correlation values in the range Ru = [0.24, 0.76]; Rv = [0.39, 0.83]; ρ = [0.44, 0.75], with mean bias between velocity components in the range [−0.02, 0.28] ms−1, [−0.16, 0.16] ms−1 for the U, V components, respectively. The lower agreement between vectors was obtained in general at the boundaries of the HFR domains, where the combined effects of the bearing errors, geometrical constraints, and the limited angular field of view were predominant. The combined data set allowed for a novel characterization of the dominant features in the region, such as the warmer poleward-flowing Leeuwin Current (LC), the colder Capes Current (CC) and its northward extensions, the presence of sub-mesoscale to mesoscale eddies and their generation and aggregation areas, along with the extent offshore of the inertial-diurnal signal. The contribution of tides was weak within the entire HFR domain (<10% total variance), whilst signatures of significant inertial- and diurnal-period currents were present due to diurnal–inertial resonance. A clear discontinuity in energy and variance distribution occurred at the shelf break, which separates the continental shelf and deeper offshore regions, and defined the core of the LC. Confined between the LC and the coastline, the narrower and colder CC current was a feature during the summer months. Persistent (lifespan greater than 1 day) sub-mesoscale eddies (Rossby number O (1)) were observed at two main regions, north and south of 31.5° S, offshore of the 200 m depth contour. The majority of these eddies had diameters in the range 10–20 km with 50% more counter clockwise rotating (CCW) eddies compared to clockwise (CW) rotating eddies. The northern region was dominated by CCW eddies that were present throughout the year whilst CW eddies were prevalent in the south with lower numbers during the summer months. Full article
(This article belongs to the Special Issue Radar Technology for Coastal Areas and Open Sea Monitoring)
Show Figures

Figure 1

33 pages, 1064 KB  
Article
Characterization of the Light Field and Apparent Optical Properties in the Ocean Euphotic Layer Based on Hyperspectral Measurements of Irradiance Quartet
by Linhai Li, Dariusz Stramski and Mirosław Darecki
Appl. Sci. 2018, 8(12), 2677; https://doi.org/10.3390/app8122677 - 19 Dec 2018
Cited by 12 | Viewed by 4511
Abstract
Although the light fields and apparent optical properties (AOPs) within the ocean euphotic layer have been studied for many decades through extensive measurements and theoretical modeling, there is virtually a lack of simultaneous high spectral resolution measurements of plane and scalar downwelling and [...] Read more.
Although the light fields and apparent optical properties (AOPs) within the ocean euphotic layer have been studied for many decades through extensive measurements and theoretical modeling, there is virtually a lack of simultaneous high spectral resolution measurements of plane and scalar downwelling and upwelling irradiances (the so-called irradiance quartet). We describe a unique dataset of hyperspectral irradiance quartet, which was acquired under a broad range of environmental conditions within the water column from the near-surface depths to about 80 m in the Gulf of California. This dataset enabled the characterization of a comprehensive suite of AOPs for realistic non-uniform vertical distributions of seawater inherent optical properties (IOPs) and chlorophyll-a concentration (Chl) in the common presence of inelastic radiative processes within the water column, in particular Raman scattering by water molecules and chlorophyll-a fluorescence. In the blue and green spectral regions, the vertical patterns of AOPs are driven primarily by IOPs of seawater with weak or no discernible effects of inelastic processes. In the red, the light field and AOPs are strongly affected or totally dominated by inelastic processes of Raman scattering by water molecules, and additionally by chlorophyll-a fluorescence within the fluorescence emission band. The strongest effects occur in the chlorophyll-a fluorescence band within the chlorophyll-a maximum layer, where the average cosines of the light field approach the values of uniform light field, irradiance reflectance is exceptionally high approaching 1, and the diffuse attenuation coefficients for various irradiances are exceptionally low, including the negative values for the attenuation of upwelling plane and scalar irradiances. We established the empirical relationships describing the vertical patterns of some AOPs in the red spectral region as well as the relationships between some AOPs which can be useful in common experimental situations when only the downwelling plane irradiance measurements are available. We also demonstrated the applicability of irradiance quartet data in conjunction with Gershun’s equation for estimating the absorption coefficient of seawater in the blue-green spectral region, in which the effects of inelastic processes are weak or negligible. Full article
(This article belongs to the Special Issue Outstanding Topics in Ocean Optics)
Show Figures

Figure 1

14 pages, 5573 KB  
Article
Impact of Sea Ice Drift Retrieval Errors, Discretization and Grid Type on Calculations of Ice Deformation
by Jakob Griebel and Wolfgang Dierking
Remote Sens. 2018, 10(3), 393; https://doi.org/10.3390/rs10030393 - 3 Mar 2018
Cited by 10 | Viewed by 3860
Abstract
We studied two issues to be considered in the calculation of parameters characterizing sea ice deformation: the effect of uncertainties in an automatically retrieved sea ice drift field, and the influence of the type of drift vector grid. Sea ice deformation changes the [...] Read more.
We studied two issues to be considered in the calculation of parameters characterizing sea ice deformation: the effect of uncertainties in an automatically retrieved sea ice drift field, and the influence of the type of drift vector grid. Sea ice deformation changes the local ice mass balance and the interaction between atmosphere, ice, and ocean, and constitutes a hazard to marine traffic and operations. Due to numerical effects, the results of deformation retrievals may predict, e.g., openings and closings of the ice cover that do not exist in reality. We focus specifically on fields of ice drift obtained from synthetic aperture radar (SAR) imagery and analyze the Propagated Drift Retrieval Error (PDRE) and the Boundary Definition Error (BDE). From the theory of error propagation, the PDRE for the calculated deformation parameters can be estimated. To quantify the BDE, we devise five different grid types and compare theoretical expectation and numerical results for different deformation parameters assuming three scenarios: pure divergence, pure shear, and a mixture of both. Our findings for both sources of error help to set up optimal deformation retrieval schemes and are also useful for other applications working with vector fields and scalar parameters derived therefrom. Full article
(This article belongs to the Section Ocean Remote Sensing)
Show Figures

Graphical abstract

20 pages, 7666 KB  
Article
Scalar Flux Kinematics
by Larry Pratt, Roy Barkan and Irina Rypina
Fluids 2016, 1(3), 27; https://doi.org/10.3390/fluids1030027 - 25 Aug 2016
Cited by 10 | Viewed by 5965
Abstract
The first portion of this paper contains an overview of recent progress in the development of dynamical-systems-based methods for the computation of Lagrangian transport processes in physical oceanography. We review the considerable progress made in the computation and interpretation of key material features [...] Read more.
The first portion of this paper contains an overview of recent progress in the development of dynamical-systems-based methods for the computation of Lagrangian transport processes in physical oceanography. We review the considerable progress made in the computation and interpretation of key material features such as eddy boundaries, and stable and unstable manifolds (or their finite-time approximations). Modern challenges to the Lagrangian approach include the need to deal with the complexity of the ocean submesoscale and the difficulty in computing fluxes of properties other than volume. We suggest a new approach that reduces complexity through time filtering and that directly addresses non-material, residual scalar fluxes. The approach is “semi-Lagrangian” insofar as it contemplates trajectories of a velocity field related to a residual scalar flux, usually not the fluid velocity. Two examples are explored, the first coming from a canonical example of viscous adjustment along a flat plate and the second from a numerical simulation of a turbulent Antarctic Circumpolar Current in an idealized geometry. Each example concentrates on the transport of dynamically relevant scalars, and the second illustrates how substantial material exchange across a baroclinically unstable jet coexists with zero residual buoyancy flux. Full article
(This article belongs to the Collection Geophysical Fluid Dynamics)
Show Figures

Figure 1

28 pages, 3975 KB  
Article
Using Satellite Data to Represent Tropical Instability Waves (TIWs)-Induced Wind for Ocean Modeling: A Negative Feedback onto TIW Activity in the Pacific
by Rong-Hua Zhang, Zhongxian Li and Jinzhong Min
Remote Sens. 2013, 5(6), 2660-2687; https://doi.org/10.3390/rs5062660 - 24 May 2013
Cited by 3 | Viewed by 6562
Abstract
Recent satellite data and modeling studies indicate a pronounced role Tropical Instability Waves (TIW)-induced wind feedback plays in the tropical Pacific climate system. Previously, remotely sensed data were used to derive a diagnostic model for TIW-induced wind stress perturbations (τTIW), which [...] Read more.
Recent satellite data and modeling studies indicate a pronounced role Tropical Instability Waves (TIW)-induced wind feedback plays in the tropical Pacific climate system. Previously, remotely sensed data were used to derive a diagnostic model for TIW-induced wind stress perturbations (τTIW), which was embedded into an ocean general circulation model (OGCM) to take into account TIW-induced ocean-atmosphere coupling in the tropical Pacific. While the previous paper by Zhang (2013) is concerned with the effect on the mean ocean state, the present paper is devoted to using the embedded system to examine the effects on TIW activity in the ocean, with τTIW being interactively determined from TIW-scale sea surface temperature (SSTTIW) fields generated in the OGCM, written as τTIW = αTIW·F(SSTTIW), where αTIW is a scalar parameter introduced to represent the τTIW forcing intensity. Sensitivity experiments with varying αTIW (representing TIW-scale wind feedback strength) are performed to illustrate a negative feedback induced by TIW-scale air-sea coupling and its relationship with TIW variability in the ocean. Consistent with previous modeling studies, TIW wind feedback tends to have a damping effect on TIWs in the ocean, with a general inverse relationship between the τTIW intensity and TIWs. It is further shown that TIW-scale coupling does not vary linearly with αTIW: the coupling increases linearly with intensifying τTIW forcing at low values of αTIW (in a weak τTIW forcing regime); it becomes saturated at a certain value of αTIW; it decreases when αTIW goes above a threshold value as the τTIW forcing increases further. This work presents a clear demonstration of using satellite data to effectively represent TIW-scale wind feedback and its multi-scale interactions with large-scale ocean processes in the tropical Pacific. Full article
Show Figures

Back to TopTop