Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (225)

Search Parameters:
Keywords = oil-absorption value

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 899 KB  
Article
Functional and Bioactive Characterization of Hemp Cake Proteins and Polyphenols from Non-Psychoactive Cannabis sativa
by María Quinteros, Paola Wilcaso, Carlos Ribadeneira and Edgar Vilcacundo
Processes 2025, 13(10), 3184; https://doi.org/10.3390/pr13103184 - 7 Oct 2025
Viewed by 417
Abstract
The agro-industrial residue known as hemp cake, derived from non-psychoactive Cannabis sativa L., represents a sustainable alternative for the development of protein-rich ingredients. In Ecuador, particularly in Bolívar Province, this by-product has been underutilized. However, similar challenges in the valorization of hemp residues [...] Read more.
The agro-industrial residue known as hemp cake, derived from non-psychoactive Cannabis sativa L., represents a sustainable alternative for the development of protein-rich ingredients. In Ecuador, particularly in Bolívar Province, this by-product has been underutilized. However, similar challenges in the valorization of hemp residues have also been reported in other regions, where they are often discarded or used as low-value animal feed. These issues are not exclusive to Bolívar, and since protein stability depends primarily on drying and storage rather than geographic relocation, the valorization strategies proposed in this study can be extrapolated to other production zones. Protein concentrates were extracted from freeze-dried flower cake (TL, freeze-dried hemp cake) and oven-dried flower cake (TS, oven-dried hemp cake) using isoelectric precipitation, yielding protein concentrates from freeze-dried cake (CPL) and oven-dried cake (CPS). Protein content was determined using the Dumas combustion method, the Bradford dye-binding method, and the bicinchoninic acid (BCA) method. Functional properties such as solubility, water absorption, oil absorption, foaming capacity, and foam stability were evaluated, together with total phenolic and flavonoid content and in vitro antioxidant and anti-inflammatory activity. Results demonstrated high protein values (up to 90.42%), remarkable functional properties, and strong bioactive potential, supporting hemp cake concentrates as sustainable alternatives for food, nutraceutical, and pharmaceutical applications Full article
Show Figures

Figure 1

19 pages, 1408 KB  
Article
Yellow Pea Flour Fermented with Kefir as a Valuable Ingredient for the Techno-Functional and Sensory Improvement of Gluten-Free Bread
by Débora N. López, Pamela S. Forastieri, Natalia L. Calvo, María Belén Cossia, Camila Tedaldi, Emilce E. Llopart, María Eugenia Steffolani and Valeria Boeris
Fermentation 2025, 11(9), 521; https://doi.org/10.3390/fermentation11090521 - 4 Sep 2025
Cited by 1 | Viewed by 772
Abstract
This work studies yellow pea flour (YPF) fermentation with kefir (1:1.5 mass ratio, incubated 30 h at 25 °C) for gluten-free breadmaking. Three samples were evaluated: untreated YPF, YPF mixed with kefir (UF), and fermented YPF (FF). Structural changes were minimal, but fermentation [...] Read more.
This work studies yellow pea flour (YPF) fermentation with kefir (1:1.5 mass ratio, incubated 30 h at 25 °C) for gluten-free breadmaking. Three samples were evaluated: untreated YPF, YPF mixed with kefir (UF), and fermented YPF (FF). Structural changes were minimal, but fermentation improved the flour functionality. Bulk density (g/mL) decreased from 0.54 ± 0.02 in YPF and 0.47 ± 0.01 in UF to 0.43 ± 0.01 in FF, while the water absorption capacity (g/g) increased from 1.20 ± 0.01 in YPF and 1.50 ± 0.05 in UF to 1.92 ± 0.02 in FF. YPF showed the lowest oil absorption capacity (0.90 ± 0.02 g/g), while higher values were obtained for FF and UF (averaging 1.54 g/g). The yellowness index showed a clear tendency: higher in UF (34.9 ± 0.2), intermediate in FF (32.869 ± 0.008), and lower in YPF (22.4 ± 0.1). In gluten-free bread, baking loss did not show significant differences between FF-B and UF-B (averaging 15.65%) but they were significantly lower than that of YPF-B (18.5 ± 0.5%). The highest specific volume (mL/g) was observed in FF-B (1.96 ± 0.02), followed by UF-B (1.33 ± 0.02) and YPF-B (1.08 ± 0.02). Significantly reduced “pea” sensory attributes were perceived in FF-B, while acidity perception increased. Hardness was similar among breads, although chewiness was higher in FF-B. These results suggest that kefir fermentation enhances YPF functionality in gluten-free breadmaking. Full article
(This article belongs to the Section Fermentation for Food and Beverages)
Show Figures

Graphical abstract

12 pages, 1949 KB  
Article
Silver Ion Chelated Melamine–Cellulose Nanocomposite Aerogel with Highly Efficient Absorption of Oils and Organic Solvents
by Hongbo Gu, Xiwei Tan, Tao Yu, Yingqian Huang, Juan Zhang, Qixiang Zhang and Xiqiu Zhao
Gels 2025, 11(9), 683; https://doi.org/10.3390/gels11090683 - 27 Aug 2025
Viewed by 485
Abstract
As the world develops technologically and economically, the issue of environmental pollution has garnered increasing attention. Cellulose, the most abundant natural polymer on Earth, offers a promising solution. Cellulose-based aerogels are cost-effective, environmentally friendly, and effective at absorbing oil and organic pollutants. However, [...] Read more.
As the world develops technologically and economically, the issue of environmental pollution has garnered increasing attention. Cellulose, the most abundant natural polymer on Earth, offers a promising solution. Cellulose-based aerogels are cost-effective, environmentally friendly, and effective at absorbing oil and organic pollutants. However, their absorption capacity is still limited. It requires the new method to modify the structure of cellulose aerogel and address this problem. In this work, by chelating silver ions with melamine and cellulose nanofibers through freeze-drying, the melamine–cellulose nanocomposite (Ag+-MNC) aerogels are prepared, which are tested for their ability to absorb various oils and organic solvents. The effects of nanocellulose and Ag+ concentrations on the absorption performance of nanocomposite aerogel are evaluated. The results show that the Ag+-MNC aerogels possess the very high absorption capacities with the values of 157.58 ± 3.38, 199.47 ± 5.65, 120.96 ± 7.04, 239.40 ± 7.41, 142.83 ± 5.30, 103.30 ± 4.73, 124.03 ± 4.05, and 118.95 ± 6.53 g/g for acetone, ethyl acetate, cyclohexane, dichloromethane, ethanol, kerosene, pump oil, and waste pump oil, respectively, which are 419%, 584%, 248%, 175%, 505%, 180%, 293%, and 268% higher than pure nanocellulose aerogels. Our Ag+-MNC aerogel has potential application in the absorption of oils and organic solvents. Full article
(This article belongs to the Section Gel Processing and Engineering)
Show Figures

Graphical abstract

20 pages, 2377 KB  
Article
Exploitation of Plastic and Olive Solid Wastes for Accelerating the Biodegradation Process of Plastic
by Hassan Y. Alfaifi, Sami D. Aldress and Basheer A. Alshammari
J. Compos. Sci. 2025, 9(8), 445; https://doi.org/10.3390/jcs9080445 - 18 Aug 2025
Viewed by 732
Abstract
Recently, plastic and agricultural waste have gained attention as sustainable alternatives. Despite efforts to recycle these materials, much still ends up in landfills, raising environmental concerns. To optimize their potential, these wastes ought to be transformed into value-added products for diverse industrial applications. [...] Read more.
Recently, plastic and agricultural waste have gained attention as sustainable alternatives. Despite efforts to recycle these materials, much still ends up in landfills, raising environmental concerns. To optimize their potential, these wastes ought to be transformed into value-added products for diverse industrial applications. This work focused on producing thin composite material films using olive oil solid waste called JEFT and recycled plastic bottles. JEFT was cleaned, dried, and processed mechanically via ball milling to produce nano- and micron-sized particles. Composite films were produced via melt compounding and compression molding with a rapid cooling process for controlled crystallinity and enhanced flexibility. Their density, water absorption, tensile strength, thermal stability, water permeability, functional groups, and biodegradation were comprehensively analyzed. Results indicated that 50% JEFT in recycled plastic accelerated thermal deterioration (42.7%) and biodegradation (13.4% over 60 days), highlighting JEFT’s role in decomposition. Peak tensile strength (≈32 MPa) occurred at 5% JEFT, decreasing at higher concentrations due to agglomeration. Water absorption and permeability slightly increased with JEFT content, with only a 1% rise in water permeability for 50% JEFT composites after 60 days. JEFT maintained the recycled plastic’s surface chemistry, ensuring stability. The findings of this study suggest that JEFT/r-HDPE films show potential as greenhouse coverings, enhancing crop production and water efficiency while improving plastic biodegradation, offering a sustainable waste management solution. Full article
(This article belongs to the Section Biocomposites)
Show Figures

Figure 1

12 pages, 1633 KB  
Article
An Optimal Preprocessing Method for Predicting the Acid Number of Lubricating Oil Based on PLSR and Infrared Spectroscopy
by Fanhao Zhou, Jie Shen, Xiaojun Li, Kun Yang and Ling Wang
Lubricants 2025, 13(8), 355; https://doi.org/10.3390/lubricants13080355 - 10 Aug 2025
Viewed by 556
Abstract
The acid number evaluates the degree of deterioration of lubricating oil. Existing methods for evaluating the performance degradation of lubricating oils are mostly based on the detection of traditional physical and chemical indicators, which often only reflect a single dimension of the degradation [...] Read more.
The acid number evaluates the degree of deterioration of lubricating oil. Existing methods for evaluating the performance degradation of lubricating oils are mostly based on the detection of traditional physical and chemical indicators, which often only reflect a single dimension of the degradation process, thus affecting the accuracy and repeatability of the results. Integrating multi-dimensional information can more comprehensively reflect the essence of degradation, which can improve the accuracy and reliability of the evaluation results. Mid-infrared spectroscopy is an effective means of monitoring the acid number. In this study, a combination of infrared spectroscopy quantitative analysis and chemometrics was used. The oil sample data was divided into training set and validation set by the Kennard–Stone method. In the experiment, a Fourier transform infrared spectrometer equipped with an attenuated total reflection accessory (ATR-FTIR) was used to collect spectral data of the samples in the wavenumber range of 1750–1700 cm−1 (this range corresponds to the characteristic absorption of carboxyl groups and is directly related to the acid number). Meanwhile, a G20S automatic potentiometric titrator was used to determine the acid number as a reference value in accordance with GB/T 7304. The study compared various preprocessing methods. A regression prediction model between the spectra and acid number was established using partial least squares regression (PLSR) within the selected wavenumber range, with the root mean square error of cross-validation (RMSECV), root mean square error of prediction (RMSEP), and coefficient of determination (R) as evaluation indicators. The experimental results showed that the PLSR model established after preprocessing with second derivative combined with seven-point smoothing exhibited the optimal performance, with an RMSECV of 0.00505, an RMSEP of 0.14%, and an R of 0.9820. Compared with the traditional titration method, this prediction method is more suitable for real-time monitoring of production lines or rapid on-site screening of equipment. It can in a timely manner warn of the deterioration trend of lubricating oil, reduce the risk of equipment wear caused by oil failure, and provide efficient technical support for lubricating oil life management. Full article
Show Figures

Figure 1

18 pages, 674 KB  
Article
Oil Extraction Systems Influence the Techno-Functional and Nutritional Properties of Pistachio Processing By-Products
by Rito J. Mendoza-Pérez, Elena Álvarez-Olmedo, Ainhoa Vicente, Felicidad Ronda and Pedro A. Caballero
Foods 2025, 14(15), 2722; https://doi.org/10.3390/foods14152722 - 4 Aug 2025
Viewed by 728
Abstract
Low-commercial-value natural pistachios (broken, closed, or immature) can be revalorised through oil extraction, obtaining a high-quality oil and partially defatted flour as by-product. This study evaluated the techno-functional and nutritional properties of the flours obtained by hydraulic press (HP) and single-screw press (SSP) [...] Read more.
Low-commercial-value natural pistachios (broken, closed, or immature) can be revalorised through oil extraction, obtaining a high-quality oil and partially defatted flour as by-product. This study evaluated the techno-functional and nutritional properties of the flours obtained by hydraulic press (HP) and single-screw press (SSP) systems, combined with pretreatment at 25 °C and 60 °C. The extraction method significantly influenced flour’s characteristics, underscoring the need to tailor processing conditions to the specific technological requirements of each food application. HP-derived flours presented lighter colour, greater tocopherol content, and higher water absorption capacity (up to 2.75 g/g), suggesting preservation of hydrophilic proteins. SSP-derived flours showed higher concentration of protein (44 g/100 g), fibre (12 g/100 g), and minerals, and improved emulsifying properties, enhancing their suitability for emulsified products. Pretreatment at 25 °C enhanced functional properties such as swelling power (~7.0 g/g) and water absorption index (~5.7 g/g). The SSP system achieved the highest oil extraction yield, with no significant effect of pretreatment temperature. The oils extracted showed high levels of unsaturated fatty acids, particularly oleic acid (~48% of ω-9), highlighting their nutritional and industrial value. The findings support the valorisation of pistachio oil extraction by-products as functional food ingredients, offering a promising strategy for reducing food waste and promoting circular economy approaches in the agri-food sector. Full article
Show Figures

Figure 1

12 pages, 708 KB  
Article
Techno-Functional and Nutraceutical Assessment of Unprocessed and Germinated Amaranth Flours and Hydrolysates: Impact of the Reduction of Hydrolysis Time
by Alvaro Montoya-Rodríguez, Maribel Domínguez-Rodríguez, Eslim Sugey Sandoval-Sicairos, Evelia Maria Milán-Noris, Jorge Milán-Carrillo and Ada Keila Milán-Noris
Foods 2025, 14(15), 2666; https://doi.org/10.3390/foods14152666 - 29 Jul 2025
Viewed by 544
Abstract
Amaranth is a nutritional and naturally gluten-free pseudocereal with several food applications. The germination and pepsin/pancreatin hydrolysis in amaranth releases antioxidant and anti-inflammatory compounds but the hydrolysis times (270 or 360 min) are too long to scale up in the development of amaranth [...] Read more.
Amaranth is a nutritional and naturally gluten-free pseudocereal with several food applications. The germination and pepsin/pancreatin hydrolysis in amaranth releases antioxidant and anti-inflammatory compounds but the hydrolysis times (270 or 360 min) are too long to scale up in the development of amaranth functional ingredients. The aim of this study was to estimate the influence of the germination and pepsin/pancreatin hydrolysis reduction time on the techno-functional properties and nutraceutical potential of amaranth flours and hydrolysates. The germination process increased 12.5% soluble protein (SP), 23.7% total phenolics (TPC), 259% water solubility, and 26% oil absorption in germinated amaranth flours (GAFs) compared to ungerminated amaranth flours (UAFs). The ungerminated (UAFH) and germinated (GAFH) amaranth hydrolysates showed values of degree of hydrolysis up to 50% with 150 min of sequential (pepsin + pancreatin) hydrolysis. The enzymatic hydrolysis released 1.5-fold SP and 14-fold TPC in both amaranth flours. The water solubility was higher in both hydrolysates than in their unhydrolyzed flour counterparts. The reduction in hydrolysis time did not significantly affect the nutraceutical potential of GAFH, enhancing its potential for further investigations. Finally, combining germination and enzymatic hydrolysis in amaranth enhances nutraceutical and techno-functional properties, increasing the seed. Consequently, GAF or GAFH could be used to elaborate on functional or gluten-free food products. Full article
Show Figures

Figure 1

33 pages, 4464 KB  
Article
Physicochemical and Structural Characteristics of Date Seed and Starch Composite Powder as Prepared by Heating at Different Temperatures
by Muna Al-Mawali, Maha Al-Khalili, Mohammed Al-Khusaibi, Myo Tay Zar Myint, Htet Htet Kyaw, Mohammad Shafiur Rahman, Abdullahi Idris Muhammad and Nasser Al-Habsi
Polymers 2025, 17(14), 1993; https://doi.org/10.3390/polym17141993 - 21 Jul 2025
Viewed by 1360
Abstract
Date seeds, a by-product of the pitted-date industry, are often discarded as waste. This study investigated the interaction between date seed powder and starch at different concentrations (0, 1, 5, 10, and 20 g/25 g composite) and temperatures (40 °C and 70 °C). [...] Read more.
Date seeds, a by-product of the pitted-date industry, are often discarded as waste. This study investigated the interaction between date seed powder and starch at different concentrations (0, 1, 5, 10, and 20 g/25 g composite) and temperatures (40 °C and 70 °C). The results revealed that the hygroscopicity of date seed powder (9.94 g/100 g) was lower than starch (13.39 g/100 g), and its water absorption (75.8%) was also lower than starch (88.3%), leading to a reduced absorbance capacity in composites. However, the solubility increased with a higher date seed content due to its greater solubility (17.8 g/L) compared to starch (1.6 g/L). A morphological analysis showed rough, agglomerated particles in date seed powder, while starch had smooth, spherical shapes. This study also found that the composites formed larger particles at 40 °C and porous structures at 70 °C. Crystallinity decreased from 41.6% to 12.8% (40 °C) and from 24.0% to 11.3% (70 °C). A thermal analysis revealed three endothermic peaks (glass transitions and solid melting), with an additional oil-melting peak in high-seed samples. FTIR spectra showed changes in peak intensities and locations upon seed incorporation. Overall, these findings revealed that, the incorporation of date seed powder–starch composites into bakery formulations offers a promising strategy for developing fiber-enriched products, positioning them as functional ingredients with added nutritional value. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

22 pages, 1532 KB  
Article
Novel Alkyl-Polyglucoside-Based Topical Creams Containing Basil Essential Oil (Ocimum basilicum L. Lamiaceae): Assessment of Physical, Mechanical, and Sensory Characteristics
by Ana Barjaktarević, Georgeta Coneac, Snežana Cupara, Olivera Kostić, Marina Kostić, Ioana Olariu, Vicenţiu Vlaia, Ana-Maria Cotan, Ştefania Neamu and Lavinia Vlaia
Pharmaceutics 2025, 17(7), 934; https://doi.org/10.3390/pharmaceutics17070934 - 19 Jul 2025
Viewed by 1336
Abstract
Background/Objectives: Basil essential oil exhibits a wide range of biological activities, including strong antimicrobial and anti-inflammatory effects. Considering the health benefits of basil essential oil (BEO) and the favorable properties of alkyl polyglucoside emulsifiers, novel Montanov™-68-based O/W creams containing BEO were developed and [...] Read more.
Background/Objectives: Basil essential oil exhibits a wide range of biological activities, including strong antimicrobial and anti-inflammatory effects. Considering the health benefits of basil essential oil (BEO) and the favorable properties of alkyl polyglucoside emulsifiers, novel Montanov™-68-based O/W creams containing BEO were developed and characterized. Additionally, the influence of the emulsifier content on the cream’s properties was evaluated. Methods: The physicochemical properties were evaluated by organoleptic examination, physical stability test, and pH and electrical conductivity measurement. The mechanical properties were investigated by rheological, textural, and consistency analyses. In addition, a sensory evaluation protocol was applied. Results: The cream formulations containing 5% and 7% Montanov™ 68 demonstrated physical stability, with no evidence of phase separation during the observation period or following accelerated aging. The pH values remained within the acceptable range for topical use, and a gradual decrease in electrical conductivity over time was observed. The rheological analyses confirmed the non-Newtonian pseudoplastic behavior with thixotropic flow characteristics. The textural analyses demonstrated that the higher emulsifier content led to increased firmness, consistency, cohesiveness, and index of viscosity. The sensory analysis revealed differences between the alkyl polyglucoside (APG)-based cream formulations only in terms of the elasticity and stickiness. Conclusions: Although the rheological analyses suggested the better spreadability of the formulation with 5% emulsifier, this was not confirmed by the sensory analysis. However, the APG-based formulations performed significantly better than the synthetic surfactant-based formulation in terms of the absorption, stickiness, and greasiness (during and after application). These results are encouraging for the further evaluation of APG-based creams containing basil essential oil for topical application. Full article
(This article belongs to the Special Issue Novel Drug Delivery Systems for the Treatment of Skin Disorders)
Show Figures

Graphical abstract

18 pages, 2005 KB  
Article
Seaweed Pelvetia canaliculata as a Source of Bioactive Compounds for Application in Fried Pre-Coated Mackerel (Scomber scombrus) Fillets: A Functional Food Approach
by Catarina D. Freire, Madalena Antunes, Susana F. J. Silva, Marta Neves and Carla Tecelão
Appl. Sci. 2025, 15(13), 7623; https://doi.org/10.3390/app15137623 - 7 Jul 2025
Cited by 2 | Viewed by 497
Abstract
Fatty fish, such as mackerel (Scomber scombrus), are recommended as part of a healthy diet, providing essential fatty acids (FA). Fried fish is appreciated for its attributes, including a crispy texture, golden crust, and pleasant taste. However, frying increases the fat [...] Read more.
Fatty fish, such as mackerel (Scomber scombrus), are recommended as part of a healthy diet, providing essential fatty acids (FA). Fried fish is appreciated for its attributes, including a crispy texture, golden crust, and pleasant taste. However, frying increases the fat content and the caloric value of food. This study evaluated the use of pre-frying edible coatings on mackerel fillets aiming to: (i) reduce oil absorption, (ii) minimize water loss, preserving fish succulence, and (iii) prevent fat oxidation. For this purpose, alginate- and carrageenan-based coatings were supplemented with extracts of Pelvetia canaliculata (Pc), a seaweed with high potential as a source of bioactive compounds. The fried fillets were analysed for colour, texture, moisture, ash, lipid content, and FA profile. No significant differences were observed for colour and textural parameters. Fillets coated with Pc-supplemented carrageenan showed the highest moisture (an increase of 3%) and the lowest fat content (a decrease of 7,5%) compared to the control (fried uncoated fillets). Coated fillets also exhibited reduced saturated FA and increased monounsaturated FA. In general, linoleic acid (C18:2) decreased markedly, while the values for docosahexaenoic acid (C22:6, n-3) remained stable (11–12% of total FA). Moreover, the n3/n6 ratio and atherogenic indices (AI) were improved in the coated fillets. Full article
(This article belongs to the Special Issue Harnessing Microalgae and Seaweed for the Food Sector)
Show Figures

Figure 1

20 pages, 2336 KB  
Article
Improvement in Heat Transfer in Hydrocarbon and Geothermal Energy Coproduction Systems Using Carbon Quantum Dots: An Experimental and Modeling Approach
by Yurany Villada, Lady J. Giraldo, Diana Estenoz, Masoud Riazi, Juan Ordoñez, Esteban A. Taborda, Marlon Bastidas, Camilo A. Franco and Farid B. Cortés
Nanomaterials 2025, 15(12), 879; https://doi.org/10.3390/nano15120879 - 7 Jun 2025
Viewed by 939
Abstract
The main objective of this study is to improve heat transfer in hydrocarbon- and geothermal-energy coproduction systems using carbon quantum dots (CQDs). Two types of 0D nanoparticles (synthesized and commercial CQDs) were used for the formulation of nanofluids to increase the heat transfer [...] Read more.
The main objective of this study is to improve heat transfer in hydrocarbon- and geothermal-energy coproduction systems using carbon quantum dots (CQDs). Two types of 0D nanoparticles (synthesized and commercial CQDs) were used for the formulation of nanofluids to increase the heat transfer from depleted wells for the coproduction of oil and electrical energy. The synthesized and commercial CQDs were characterized in terms of their morphology, zeta potential, density, size, and heat capacity. The nanofluids were prepared using brine from an oil well of interest and two types of CQDs. The effect of the CQDs on the thermophysical properties of the nanofluids was evaluated based on their thermal conductivity. In addition, a mathematical model based on heat transfer principles to predict the effect of nanofluids on the efficiency of the organic Rankine cycle (ORC) was implemented. The synthesized and commercial CQDs had particle sizes of 25 and 16 nm, respectively. Similarly, zeta potential values of 36 and 48 mV were obtained. Both CQDs have similar functional groups and UV absorption, and the fluorescence spectra show that the study CQDs have a maximum excitation–emission signal around 360–460 nm. The characterization of the nanofluids showed that the addition of 100, 300, and 500 mg/L of CQDs increased the thermal conductivity by 40, 50, and 60 %, respectively. However, the 1000 mg/L incorporated decreased the thermal conductivities of the nanofluids. The observed behavior can be attributed to the aggregate size of the nanoparticles. Furthermore, a new thermal conductivity model for CQD-based nanofluids was developed considering brine salinity, particle size distribution, and agglomeration effects. The model showed a remarkable fit with the experimental data and predicted the effect of the nanofluid concentration on the thermal conductivity and cycle efficiency. Coupled with an ORC cycle model, CQD concentrations of approximately 550 mg/L increased the cycle efficiency by approximately 13.8% and 18.6% for commercial and synthesized CQDs, respectively. Full article
(This article belongs to the Section Theory and Simulation of Nanostructures)
Show Figures

Graphical abstract

16 pages, 2003 KB  
Article
Mycelium-Based Composites Derived from Lignocellulosic Residual By-Products: An Insight into Their Physico-Mechanical Properties and Biodegradation Profile
by Galena Angelova, Husein Yemendzhiev, Roumiana Zaharieva, Mariya Brazkova, Ralitza Koleva, Petya Stefanova, Radka Baldzhieva, Veselin Vladev and Albert Krastanov
Appl. Sci. 2025, 15(11), 6333; https://doi.org/10.3390/app15116333 - 5 Jun 2025
Cited by 2 | Viewed by 1436
Abstract
The bio-fabrication of sustainable mycelium-based composites (MBCs) from renewable plant by-products offers a promising approach to reducing resource depletion and supporting the transition to a circular economy. In this research, MBCs were obtained by cultivating Ganoderma resinaceum GA1M on essential oils and agricultural [...] Read more.
The bio-fabrication of sustainable mycelium-based composites (MBCs) from renewable plant by-products offers a promising approach to reducing resource depletion and supporting the transition to a circular economy. In this research, MBCs were obtained by cultivating Ganoderma resinaceum GA1M on essential oils and agricultural by-products: hexane-extracted rose flowers (HERF), steam-distilled lavender straw (SDLS), wheat straw (WS), and pine sawdust (PS), used as single or mixed substrates. The basic physical and mechanical properties revealed that MBCs perform comparably to high-efficiency thermal insulating and conventional construction materials. The relatively low apparent density, ranging from 110 kg/m3 for WS-based to 250 kg/m3 for HERF-based composites, results in thermal conductivity values between 0.043 W/mK and 0.054 W/mK. Compression stress (40–180 kPa at 10% deformation) also revealed the good performance of the composites. The MBCs had high water absorption due to open porosity, necessitating further optimization to reduce hydrophilicity and meet intended use requirements. An aerobic biodegradation test using respirometry indicated ongoing microbial decomposition for all tested bio-composites. Notably, composites from mixed HERF and WS (50:50) showed the most rapid degradation, achieving over 46% of theoretical oxygen consumption for complete mineralization. The practical applications of MBCs depend on achieving a balance between biodegradability and stability. Full article
(This article belongs to the Section Materials Science and Engineering)
Show Figures

Figure 1

16 pages, 303 KB  
Article
Physicochemical Properties, Trace Elements, and Health Risk Assessment of Edible Vegetable Oils Consumed in Romania
by Nicoleta Matei, Semaghiul Birghila, Simona Dobrinas, Alina Soceanu, Viorica Popescu and Roxana-Georgiana Zaharia (Pricopie)
Appl. Sci. 2025, 15(11), 6269; https://doi.org/10.3390/app15116269 - 3 Jun 2025
Viewed by 1540
Abstract
The concentrations of trace elements (Cd, Pb, Cu, Cr, Ni, Co, and Mn) and physicochemical parameters of eight types of edible vegetable oils (obtained from a local market in Romania) were determined using graphite furnace atomic absorption spectrometry (GF-AAS) and Association of Official [...] Read more.
The concentrations of trace elements (Cd, Pb, Cu, Cr, Ni, Co, and Mn) and physicochemical parameters of eight types of edible vegetable oils (obtained from a local market in Romania) were determined using graphite furnace atomic absorption spectrometry (GF-AAS) and Association of Official Analytical Chemists (AOAC) standard methods. The values of the physicochemical parameters show that most of the oils analyzed were within the limits established by the Codex Standards for Edible Oils, with a few exceptions (walnut oil acidity 2.080 mg/g; iodine value 72.7 g/100 g). The concentration of metals such as Cr, Ni, Co, Mn, and Cd were found to be within acceptable limits set by FAO/OMS (2002) in the edible vegetable oils, except for Cu (blend oil 0.627 mg/kg; organic extra virgin oil 0.312 mg/kg) and Pb (rice oil 0.217 mg/kg). The results obtained after health risk assessments and incremental lifetime cancer risk calculations showed that their values do not pose a health hazard, but continuous monitoring can provide data on the quality of edible vegetable oils for local consumers. A statistical test at the 0.1 probability level (p < 0.1) was used to determine the degree of association between pairs of the variables. The data corresponding to the correlation coefficients for physicochemical parameters and different metals show significant and insignificant positive/negative correlations. Full article
20 pages, 3941 KB  
Article
Ecological Packaging: Reuse and Recycling of Rosehip Waste to Obtain Biobased Multilayer Starch-Based Material and PLA for Food Trays
by Yuliana Monroy, Florencia Versino, Maria Alejandra García and Sandra Rivero
Foods 2025, 14(11), 1843; https://doi.org/10.3390/foods14111843 - 22 May 2025
Viewed by 963
Abstract
This study investigates the valorization of agri-food residues by repurposing industrial rosehip oil waste for sustainable food packaging development. Market demands for environmentally friendly alternatives to conventional packaging materials prompted the development of laminated multilayer materials for trays through thermo-compression, using modified cassava [...] Read more.
This study investigates the valorization of agri-food residues by repurposing industrial rosehip oil waste for sustainable food packaging development. Market demands for environmentally friendly alternatives to conventional packaging materials prompted the development of laminated multilayer materials for trays through thermo-compression, using modified cassava starch with citric acid as a compatibilizer. Physicochemical characterization revealed appropriate surface roughness (Rz of 31–64 μm) and controlled water absorption capacities of the composite materials (contact angle of 85–95°), properties critical for food quality preservation and safety. The incorporation of polylactic acid (PLA) films in the laminates significantly enhanced the mechanical performance, increasing the stress resistance by 5 to 10 times, and improved moisture resistance, showing a 78–82% reduction in the materials’ water absorption capacity and an almost 50% decrease in water content and solubility, depending on the processing method. Results indicated that these biocomposite laminates represent a viable alternative to conventional polystyrene foam trays for food packaging. Two distinct multilayer manufacturing processes were comparatively evaluated to optimize production efficiency by reducing the energy consumption and processing time. This research contributes to circular economy principles by transforming agricultural waste into value-added laminated materials with commercial potential. Full article
Show Figures

Figure 1

14 pages, 515 KB  
Article
Pharmacokinetic Characteristics of a Single Cannabidiol Dose in Oil and Treat Forms and Health Impacts After 30 Days of Administration in Dogs
by Phattharakan Kamutchat, Sasithorn Limsuwan, Nattaya Leewichit and Natthasit Tansakul
Animals 2025, 15(10), 1470; https://doi.org/10.3390/ani15101470 - 19 May 2025
Viewed by 2282
Abstract
Cannabidiol (CBD) has garnered significant interest in veterinary therapeutics, yet the pharmacokinetic and safety profiles of its various formulations remain incompletely characterized. This study compared the pharmacokinetics (PK) and health effects of CBD administered as oil (OG, 5 mg/kg) and treats (TG, 50 [...] Read more.
Cannabidiol (CBD) has garnered significant interest in veterinary therapeutics, yet the pharmacokinetic and safety profiles of its various formulations remain incompletely characterized. This study compared the pharmacokinetics (PK) and health effects of CBD administered as oil (OG, 5 mg/kg) and treats (TG, 50 mg) in 16 healthy mixed-breed dogs over 30 days. Plasma CBD concentrations were measured using liquid chromatography–tandem mass spectrometry (LC-MS/MS), and the PK parameters were analyzed using non-compartmental methods. The CBD-infused rice bran oil formulation (OG) achieved a significantly higher dose-normalized maximum plasma concentration (Cmax, 58.40 vs. 21.29 kg·ng/mL/mg) and area under the curve (AUC0-inf, 305.85 vs. 141.75 h·kg·ng/mL/mg) compared to the treats (TG). The treat formulation exhibited relative reductions in bioavailability, with AUC and Cmax values approximately 2.2- and 2.7-fold lower than the oil group. The terminal half-life (~9.66 h OG vs. 8.52 h TG) and time to peak (2.38 h OG vs. 3.63 h TG) did not differ significantly. CBD accumulation occurred with repeated dosing but declined rapidly post-cessation. The hematological and biochemical analyses revealed no clinically adverse effects, though minor erythrocyte and eosinophil fluctuations were noted. The oil formulation demonstrated superior absorption, while both forms were well-tolerated. These findings highlight the impact of formulation on CBD absorption and support further research into optimized delivery methods for veterinary applications. Full article
(This article belongs to the Section Companion Animals)
Show Figures

Figure 1

Back to TopTop