Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (36)

Search Parameters:
Keywords = oil-cooled motors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 7373 KB  
Article
Study of the Thermal Performance of Oil-Cooled Electric Motor with Different Oil-Jet Ring Configurations
by Hao Yang, Fan Wu, Jinhao Fu, Junxiong Zeng, Xiaojin Fu, Guangtao Zhai and Feng Zhang
Energies 2025, 18(16), 4302; https://doi.org/10.3390/en18164302 - 13 Aug 2025
Viewed by 446
Abstract
This study investigates the thermal performance of an oil-jet-cooled permanent magnet synchronous motor (PMSM), with a particular focus on end-winding heat dissipation. A high-fidelity numerical model that preserves the full geometric complexity of the end-winding is developed and validated against experimental temperature data, [...] Read more.
This study investigates the thermal performance of an oil-jet-cooled permanent magnet synchronous motor (PMSM), with a particular focus on end-winding heat dissipation. A high-fidelity numerical model that preserves the full geometric complexity of the end-winding is developed and validated against experimental temperature data, achieving average deviations below 7%. To facilitate efficient parametric analysis, a simplified equivalent model is constructed by replacing the complex geometry with a thermally equivalent annular region characterized by calibrated radial conductivity. Based on this model, the effects of key spray ring parameters—including orifice diameter, number of nozzles, inlet oil temperature, and flow rate—are systematically evaluated. The results indicate that reducing the orifice diameter from 4 mm to 2 mm lowers the maximum winding temperature from 162 °C to 153 °C but increases the pressure drop from 205 Pa to 913 Pa. An optimal nozzle number of 12 decreases the peak winding temperature to 155 °C compared with 162 °C for 8 nozzles, while increasing the oil flow rate from 2 L/min to 6 L/min reduces the peak winding temperature from 162 °C to 142 °C. Furthermore, a non-uniform spray ring configuration decreases maximum stator, winding, spray ring, and shaft temperatures by 5.6–9.2% relative to the baseline, albeit with a pressure drop increase from 907 Pa to 1410 Pa. These findings provide quantitative guidance for optimizing oil-jet cooling designs for PMSMs under engineering constraints. Full article
Show Figures

Figure 1

17 pages, 909 KB  
Review
Potential of Natural Esters as Immersion Coolant in Electric Vehicles
by Raj Shah, Cindy Huang, Gobinda Karmakar, Sevim Z. Erhan, Majher I. Sarker and Brajendra K. Sharma
Energies 2025, 18(15), 4145; https://doi.org/10.3390/en18154145 - 5 Aug 2025
Viewed by 601
Abstract
As the popularity of electric vehicles (EVs) continues to increase, the need for effective and efficient driveline lubricants and dielectric coolants has become crucial. Commercially used mineral oils or synthetic ester-based coolants, despite performing satisfactorily, are not environmentally friendly. The fatty esters of [...] Read more.
As the popularity of electric vehicles (EVs) continues to increase, the need for effective and efficient driveline lubricants and dielectric coolants has become crucial. Commercially used mineral oils or synthetic ester-based coolants, despite performing satisfactorily, are not environmentally friendly. The fatty esters of vegetable oils, after overcoming their shortcomings (like poor oxidative stability, higher viscosity, and pour point) through chemical modification, have recently been used as potential dielectric coolants in transformers. The benefits of natural esters, including a higher flash point, breakdown voltage, dielectric character, thermal conductivity, and most importantly, readily biodegradable nature, have made them a suitable and sustainable substitute for traditional coolants in electric transformers. Based on their excellent performance in transformers, research on their application as dielectric immersion coolants in modern EVs has been emerging in recent years. This review primarily highlights the beneficial aspects of natural esters performing dual functions—cooling as well as lubricating, which is necessary for “wet” e-motors in EVs—through a comparative study with the commercially used mineral and synthetic coolants. The adoption of natural fatty esters of vegetable oils as an immersion cooling fluid is a significant sustainable step for the battery thermal management system (BTMS) of modern EVs considering environmental safety protocols. Continued research and development are necessary to overcome the ongoing challenges and optimize esters for widespread use in the rapidly expanding electric vehicle market. Full article
Show Figures

Figure 1

32 pages, 3972 KB  
Article
A Review and Case of Study of Cooling Methods: Integrating Modeling, Simulation, and Thermal Analysis for a Model Based on a Commercial Electric Permanent Magnet Synchronous Motor
by Henrry Gabriel Usca-Gomez, David Sebastian Puma-Benavides, Victor Danilo Zambrano-Leon, Ramón Castillo-Díaz, Milton Israel Quinga-Morales, Javier Milton Solís-Santamaria and Edilberto Antonio Llanes-Cedeño
World Electr. Veh. J. 2025, 16(8), 437; https://doi.org/10.3390/wevj16080437 - 4 Aug 2025
Viewed by 612
Abstract
The efficiency of electric motors is highly dependent on their operating temperature, with lower temperatures contributing to enhanced performance, reliability, and extended service life. This study presents a comprehensive review of state-of-the-art cooling technologies and evaluates their impact on the thermal behavior of [...] Read more.
The efficiency of electric motors is highly dependent on their operating temperature, with lower temperatures contributing to enhanced performance, reliability, and extended service life. This study presents a comprehensive review of state-of-the-art cooling technologies and evaluates their impact on the thermal behavior of a commercial motor–generator system in high-demand applications. A baseline model of a permanent magnet synchronous motor (PMSM) was developed using MotorCAD 2023® software, which was supported by reverse engineering techniques to accurately replicate the motor’s physical and thermal characteristics. Subsequently, multiple cooling strategies were simulated under consistent operating conditions to assess their effectiveness. These strategies include conventional axial water jackets as well as advanced oil-based methods such as shaft cooling and direct oil spray to the windings. The integration of these systems in hybrid configurations was also explored to maximize thermal efficiency. Simulation results reveal that hybrid cooling significantly reduces the temperature of critical components such as stator windings and permanent magnets. This reduction in thermal stress improves current efficiency, power output, and torque capacity, enabling reliable motor operation across a broader range of speeds and under sustained high-load conditions. The findings highlight the effectiveness of hybrid cooling systems in optimizing both thermal management and operational performance of electric machines. Full article
Show Figures

Figure 1

17 pages, 5158 KB  
Article
Centrifugal Pumping Force in Oil Injection-Based TMS to Cool High-Power Aircraft Electric Motors
by Giuseppe Di Lorenzo, Diego Giuseppe Romano, Antonio Carozza and Antonio Pagano
Energies 2025, 18(13), 3390; https://doi.org/10.3390/en18133390 - 27 Jun 2025
Viewed by 373
Abstract
One of the challenges of our age is climate change and the ways in which it affects the Earth’s global ecosystem. To face the problems linked to such an issue, the international community has defined actions aimed at the reduction in greenhouse gas [...] Read more.
One of the challenges of our age is climate change and the ways in which it affects the Earth’s global ecosystem. To face the problems linked to such an issue, the international community has defined actions aimed at the reduction in greenhouse gas emissions in several sectors, including the aviation industry, which has been requested to mitigate its environmental impact. Conventional aircraft propulsion systems depend on fossil fuels, significantly contributing to global carbon emissions. For this reason, innovative propulsion technologies are needed to reduce aviation’s impact on the environment. Electric propulsion has emerged as a promising solution among the several innovative technologies introduced to face climate change challenges. It offers, in fact, a pathway to more sustainable air travel by eliminating direct greenhouse gas emissions, enhancing energy efficiency. Unfortunately, integrating electric motors into aircraft is currently a big challenge, primarily due to thermal management-related issues. Efficient heat dissipation is crucial to maintain optimal performance, reliability, and safety of the electric motor, but aeronautic applications are highly demanding in terms of power, so ad hoc Thermal Management Systems (TMSs) must be developed. The present paper explores the design and optimization of a TMS tailored for a megawatt electric motor in aviation, suitable for regional aircraft (~80 pax). The proposed system relies on coolant oil injected through a hollow shaft and radial tubes to directly reach hot spots and ensure effective heat distribution inside the permanent magnet cavity. The goal of this paper is to demonstrate how advanced TMS strategies can enhance operational efficiency and extend the lifespan of electric motors for aeronautic applications. The effectiveness of the radial tube configuration is assessed by means of advanced Computational Fluid Dynamics (CFD) analysis with the aim of verifying that the proposed design is able to maintain system thermal stability and prevent its overheating. Full article
(This article belongs to the Special Issue Power Electronics Technology and Application)
Show Figures

Figure 1

17 pages, 2876 KB  
Article
Research on the Oil Cooling Structure Design Method of Permanent Magnet Synchronous Motors for Electric Vehicles
by Shijun Chen, Cheng Miao, Xinyu Chen, Wei Qian and Songchao Chu
Energies 2025, 18(12), 3134; https://doi.org/10.3390/en18123134 - 14 Jun 2025
Viewed by 819
Abstract
Permanent magnet synchronous motors for electric vehicles (EVs) prioritize high power density and lightweight design, leading to elevated thermal flux density. Consequently, cooling methods and heat conduction in stator windings become critical. This paper proposes a compound cooling structure combining direct oil spray [...] Read more.
Permanent magnet synchronous motors for electric vehicles (EVs) prioritize high power density and lightweight design, leading to elevated thermal flux density. Consequently, cooling methods and heat conduction in stator windings become critical. This paper proposes a compound cooling structure combining direct oil spray cooling on stator windings and housing oil channel cooling (referred to as the winding–housing composite oil cooling system) for permanent synchronous motors in EVs. A systematic design methodology for oil jet nozzles and housing oil channels is investigated, determining the average convective heat transfer coefficient on end-winding surfaces and the heat dissipation factor of the oil channels. Finite element analysis (FEA) was employed to simulate the thermal field of a 48-slot 8-pole oil-cooled motor, with further analysis on the effects of oil temperature and flow rate on motor temperature. Based on these findings, an optimized oil-cooled structure is proposed, demonstrating enhanced thermal management efficiency. The results provide valuable references for the design of cooling systems in oil-cooled motors for EV applications. Full article
(This article belongs to the Special Issue Advances in Permanent Magnet Motor and Motor Control)
Show Figures

Figure 1

23 pages, 5411 KB  
Article
Numerical Study on the Heat Transfer Characteristics of a Hybrid Direct–Indirect Oil Cooling System for Electric Motors
by Jung-Su Park, Le Duc Tai and Moo-Yeon Lee
Symmetry 2025, 17(5), 760; https://doi.org/10.3390/sym17050760 - 14 May 2025
Viewed by 805
Abstract
Direct liquid cooling technology has the potential to enhance the thermal management performance of electric motors with continuously increasing energy density. However, direct liquid cooling technology has practical limitations for full-scale commercialization. In addition, the conventionally used indirect liquid cooling imposes higher thermal [...] Read more.
Direct liquid cooling technology has the potential to enhance the thermal management performance of electric motors with continuously increasing energy density. However, direct liquid cooling technology has practical limitations for full-scale commercialization. In addition, the conventionally used indirect liquid cooling imposes higher thermal resistance to cope with the increased thermal management performance of high power density electric motors. Therefore, this study proposes a hybrid direct–indirect oil cooling system as a next-generation cooling strategy for the enhanced thermal management of high power density electric motors. The heat transfer characteristics, including maximum winding, stator and motor housing temperatures, heat transfer coefficient, friction factor, pressure drop, and performance evaluation criteria (PEC), are investigated for different spray hole diameters, coolant oil volume flow rates, and motor heat loss levels. The computational model was validated with experimental results within a 5% error developed to evaluate heat transfer characteristics. The results show that spray hole diameter significantly influences cooling performance, with a larger diameter (1.7 mm) reducing hydraulic resistance while causing a slight increase in motor temperatures. The coolant oil volume flow rate has a major impact on heat dissipation, with an increase from 10 to 20 L/minute (LPM) reducing winding, stator, and housing temperatures by 22.05%, 22.70% and 24.02%, respectively. However, higher flow rates also resulted in an increased pressure drop, emphasizing the importance of the selection of a suitable volume flow rate based on the trade-off between cooling performance and energy consumption. Despite the increase in motor heat loss level from 2.6 kW to 8 kW, the hybrid direct–indirect oil cooling system effectively maintained all motor component temperatures below the critical threshold of 180 °C, confirming its suitability for high-performance electric motors. These findings contribute to the development and commercialization of the proposed next-generation cooling strategy for high power density electric motors for ensuring thermal stability and operational efficiency. Full article
Show Figures

Figure 1

14 pages, 5879 KB  
Article
Effect of Post-Weld Heat Treatment Cooling Strategies on Microstructure and Mechanical Properties of 0.3 C-Cr-Mo-V Steel Weld Joints Using GTAW Process
by Syed Quadir Moinuddin, Mohammad Faseeulla Khan, Khaled Alnamasi, Skander Jribi, K. Radhakrishnan, Syed Shaul Hameed, V. Muralidharan and Muralimohan Cheepu
Metals 2025, 15(5), 496; https://doi.org/10.3390/met15050496 - 29 Apr 2025
Viewed by 694
Abstract
A total of 0.3%C-Cr-Mo-V steel, a high-strength alloy steel widely used in rocket motor housings, suspension systems in high-performance vehicles, etc., is noted due to its high strength-to-weight ratio. However, its high carbon equivalent (CE > 1%) makes it challenging to weld, as [...] Read more.
A total of 0.3%C-Cr-Mo-V steel, a high-strength alloy steel widely used in rocket motor housings, suspension systems in high-performance vehicles, etc., is noted due to its high strength-to-weight ratio. However, its high carbon equivalent (CE > 1%) makes it challenging to weld, as it is prone to brittle martensitic formation, which increases the risk of cracking and embrittlement. The present paper focuses on enhancing the microstructure and mechanical properties of 0.3% C-Cr-Mo-V steel by gas tungsten arc welded (GTAW) joints, utilizing post-weld heat treatment and cooling strategies (PWHTCS). A systematic experimental approach was employed to ensure a defect-free weld through dye penetrant testing (DPT) and X-ray radiography techniques. Subsequently, test specimens were extracted from the welded sections and subjected to PWHT protocols, including hardening, tempering, and rapid quenching using air and oil cooling (AC and OC, respectively) mediums. Results show that OC has enhanced tensile strength and hardness while simultaneously maintaining and improving ductility, ensuring a well-balanced combination of strength and toughness. Fractography analysis revealed ductile fracture in AC samples, whereas OC weldments exhibited a mixed ductile–brittle fracture mode. Thus, the findings demonstrate the critical role of PWHTCS, with OC, as an effective method for achieving enhanced mechanical performance and microstructural stability in high-integrity applications. Full article
(This article belongs to the Special Issue Welding and Joining of Advanced High-Strength Steels (2nd Edition))
Show Figures

Figure 1

24 pages, 13687 KB  
Article
Nanofluids as Coolants to Improve the Thermal Management System of a High-Power Aircraft Electric Motor
by Giuseppe Di Lorenzo, Diego Giuseppe Romano, Antonio Carozza and Antonio Pagano
Electronics 2025, 14(5), 911; https://doi.org/10.3390/electronics14050911 - 25 Feb 2025
Cited by 1 | Viewed by 1162
Abstract
Electrification has become increasingly common in aerospace due to climate change concerns. After successful applications in general aviation aircraft, electrification is now addressing subregional (up to 19 passengers) and regional aircraft (around 80 passengers). Megawatt-class electric motors are needed both to drive propellers [...] Read more.
Electrification has become increasingly common in aerospace due to climate change concerns. After successful applications in general aviation aircraft, electrification is now addressing subregional (up to 19 passengers) and regional aircraft (around 80 passengers). Megawatt-class electric motors are needed both to drive propellers and to act as high-power generators in hybrid–electric propulsion systems. Power levels for this class of aircraft require a proper design of heat management systems capable of dissipating a much higher quantity of heat than that dissipated by traditional cooling systems. The technical solution here explored is based on the addition into a diathermic base liquid of nanoparticles, which can increase (by up to 30%) the thermal conductivity of the refrigerant, also providing large surface area enhancing the heat transfer capacity of base liquids. The Italian Aerospace Research Centre (CIRA), as part of the European research initiative Optimised Electric Network Architectures and Systems for More-Electric Aircraft (ORCHESTRA), developed a thermal management system (TMS) based on impinging jets technology for a 1 MW electric motor. In this work, a numerical verification of the possibility for nanofluids to improve the heat exchange efficiency of a submerged oil impinging jets TMS designed to directly cool the inner components of a 1 MW motor is conducted. Investigations aimed to analyse two nanoparticle types (alumina and graphite) added to diathermic oil with concentrations between 1% and 5% by volume. The application of nanofluids significantly increases final thermal conductivity with respect to conventional coolants, a 60% improvement in heat transfer at a fixed mass flow rate is achieved. Electric motor maximum temperatures are approximately 10% lower than those achieved with solely diathermic oil. This result is significant as a safety margin is needed in all cases where a sudden increase in power occurs. Full article
(This article belongs to the Special Issue Advanced Design in Electrical Machines)
Show Figures

Graphical abstract

13 pages, 5435 KB  
Article
Design, Analysis, and Comparison of Electric Vehicle Electric Oil Pump Motor Rotors Using Ferrite Magnet
by Huai-Cong Liu
World Electr. Veh. J. 2025, 16(1), 50; https://doi.org/10.3390/wevj16010050 - 20 Jan 2025
Cited by 1 | Viewed by 1597
Abstract
With the recent proliferation of electric vehicles, there is increasing attention on drive motors that are powerful and efficient, with a higher power density. To meet such high power density requirements, the cooling technology used for drive motors is particularly important. To further [...] Read more.
With the recent proliferation of electric vehicles, there is increasing attention on drive motors that are powerful and efficient, with a higher power density. To meet such high power density requirements, the cooling technology used for drive motors is particularly important. To further optimize the cooling effects, the use of direct oil-cooling technology for drive motors is gaining more attention, especially regarding the requirements for electric vehicle electric oil pumps (EOPs) in motor cooling. In such high-temperature environments, it is also necessary for the EOP to maintain its performance under high temperatures. This research explores the feasibility of using high-temperature-resistant ferrite magnets in the rotors of EOPs. For a 150 W EOP motor with the same stator size, three different rotor configurations are proposed: a surface permanent magnet (SPM) rotor, an interior permanent magnet (IPM) rotor, and a spoke-type IPM rotor. While the rotor sizes are the same, to maximize the power density while meeting the rotor’s mechanical strength requirements, the different rotor configurations make the most use of ferrite magnets (weighing 58 g, 51.8 g, and 46.3 g, respectively). Finite element analysis (FEA) was used to compare the performance of these models with that of the basic rotor design, considering factors such as the no-load back electromotive force, no-load voltage harmonics (<10%), cogging torque (<0.1 Nm), load torque, motor loss, and efficiency (>80%). Additionally, a comprehensive analysis of the system efficiency and energy loss was conducted based on hypothetical electric vehicle traction motor parameters. Finally, by manufacturing a prototype motor and conducting experiments, the effectiveness and superiority of the finite element method (FEM) design results were confirmed. Full article
Show Figures

Figure 1

17 pages, 9712 KB  
Article
Oil Cooling Method for Internal Heat Sources in the Outer Rotor Hub Motor of ElectricVehicle and Thermal Characteristics Research
by Fulai Guo and Chengning Zhang
Energies 2024, 17(24), 6312; https://doi.org/10.3390/en17246312 - 14 Dec 2024
Cited by 4 | Viewed by 1302
Abstract
The heat dissipation of wheel hub motors is difficult due to the limited installation space and harsh working environment, which will lead to an increase in the operating temperature of the motor. Excessive motor temperature will limit the further increase in the power [...] Read more.
The heat dissipation of wheel hub motors is difficult due to the limited installation space and harsh working environment, which will lead to an increase in the operating temperature of the motor. Excessive motor temperature will limit the further increase in the power density and torque density of the motor. Taking the outer rotor hub motor as the research object, a heat dissipation structure is designed by passing oil through the stator core, slot wedge, and the motor end, mainly the cooling stator core, slot winding, and the end winding from inside of the motor. The internal heat is mainly carried away through lubricating oil by convective heat transfer and heat conduction. The heat distribution model of the motor based on the new cooling structure is established using the centralized parameter heat network method. The Motor-CAD software is used to build the motor 3d model and simulate the motor temperature field, and the temperature distribution in the motor under the rated working condition is analyzed. The temperature rising test of the motor prototype are performed on a bench built in the laboratory. The experimental results are consistent with the simulation results of the temperature field, which verify the rationality of the model. Full article
(This article belongs to the Section E: Electric Vehicles)
Show Figures

Figure 1

14 pages, 5035 KB  
Article
Model-Based Angular Position Sensorless Drives of Main Electric Oil Pumps for e-Axles in HEV and BEV
by Chinchul Choi and Jongbeom Kim
Energies 2024, 17(19), 4962; https://doi.org/10.3390/en17194962 - 4 Oct 2024
Cited by 2 | Viewed by 1242
Abstract
This paper describes an approach in improving the performance of the position sensorless control of electric oil pumps with a permanent magnet synchronous motor. Electric oil pumps are widely applied for the lubricating and cooling of e-Axles in HEV and BEV which operate [...] Read more.
This paper describes an approach in improving the performance of the position sensorless control of electric oil pumps with a permanent magnet synchronous motor. Electric oil pumps are widely applied for the lubricating and cooling of e-Axles in HEV and BEV which operate from −40 to 130 °C. The accuracy of the estimation obtained from the sensorless control based on the motor model depends on the accuracy of motor parameters and input values. At a lower speed and lower temperature region, the parameter variation and input measurement errors have gained greater influence over the accuracy of the estimation. This paper describes how to overcome this weakness of the sensorless drive via applying a robust position estimator with electrical parameter adaptation and compensation of a phase voltage measurement error. Experimental results with various types of pumps show the effectiveness of the proposed method. Full article
(This article belongs to the Special Issue Electric Waves to Future Mobility)
Show Figures

Figure 1

31 pages, 18458 KB  
Article
Cooling of 1 MW Electric Motors through Submerged Oil Impinging Jets for Aeronautical Applications
by Giuseppe Di Lorenzo, Diego Giuseppe Romano, Antonio Carozza and Antonio Pagano
Aerospace 2024, 11(7), 585; https://doi.org/10.3390/aerospace11070585 - 17 Jul 2024
Cited by 5 | Viewed by 3853
Abstract
Electrification of aircraft is a very challenging task as the demand for energy and power is high. While the storage and generation of electrical energy are widely studied due to the limited specific energy and specific power of batteries and fuel cells, electric [...] Read more.
Electrification of aircraft is a very challenging task as the demand for energy and power is high. While the storage and generation of electrical energy are widely studied due to the limited specific energy and specific power of batteries and fuel cells, electric machines (power electronics and motors) which have years of experience in many industrial fields must be improved when applied to aviation: they generally have a high efficiency but the increase in power levels determines significant thermal loads which, unlike internal combustion engines (ICE), cannot be rejected with the exhaust. There is therefore a need for thermal management systems (TMSs) with the main objective of maintaining operating temperatures below the maximum level required by electric machines. Turboprop aircraft, such as the ATR 72 or the Dash 8-Q400, are commonly used for regional transport and are equipped with two gas turbine engines whose combined power is in the order of 4 MW. Electric and hybrid propulsion systems for these aircraft are being studied by several leading commercial aviation industries and start-ups, and the 1MW motor size seems to be the main option as it could be used in different aircraft configurations, particularly those that exploit distributed electric propulsion. With reference to the topics mentioned above, the present work presents the design of a TMS for a high-power motor/generator whose electrical architecture is known. Once integrated with the electrical part, the TMS must allow a weight/power ratio of 14 kW/kg (or 20 kW/kg at peak power) while maintaining the temperature below the limit temperature with reasonable safety margins. Submerged jet oil is the cooling technique here applied with a focus on diathermic oil. Parameters affecting cooling, like rotor speed and filling factor, are analysed with advanced CFD. Full article
(This article belongs to the Special Issue Electric Machines for Electrified Aircraft Propulsion)
Show Figures

Figure 1

14 pages, 5646 KB  
Article
The Effects of the Lubricant Properties and Surface Finish Characteristics on the Tribology of High-Speed Gears for EV Transmissions
by Boris Zhmud, Morteza Najjari and Boris Brodmann
Lubricants 2024, 12(4), 112; https://doi.org/10.3390/lubricants12040112 - 29 Mar 2024
Cited by 7 | Viewed by 3147
Abstract
Electric vehicle (EV) transmissions operate at high speeds. High-speed operation puts higher demands on bearings, seals, and gears. Bearings in EV transmissions are prone to electrically induced bearing damage and may exhibit signs of pitting and fluting. Surface-initiated rolling contact fatigue is another [...] Read more.
Electric vehicle (EV) transmissions operate at high speeds. High-speed operation puts higher demands on bearings, seals, and gears. Bearings in EV transmissions are prone to electrically induced bearing damage and may exhibit signs of pitting and fluting. Surface-initiated rolling contact fatigue is another common problem gaining increased attention lately. Most EV transmissions require a coupling between an oil-lubricated gearbox to an electrical motor that runs with minimal lubrication at very high rpm. The high mechanical and thermal stresses the seals are exposed to under starved lubrication conditions have a detrimental impact on their service life. Hence, proper lubrication is critical. In general, EV transmission fluids call for a somewhat different spectrum of properties compared to conventional ATFs. Gear tribology simulations open new ways to the design and optimization of lubrication for EV transmissions. Additionally, such simulations can also provide valuable insights into the effects of different oil properties on cooling and lubrication efficiencies, thereby helping in matching the lubricant and hardware characteristics for optimal performance. In the present communication, we demonstrate the effects of different lubricants and surface finishing technologies on the tribology of high-speed gears using tribological tests and advanced thermal elastohydrodynamic (TEHD) simulations. The important roles of lubricity additives and surface finish optimization are highlighted in conjunction with a move towards ultralow viscosity EV transmission fluids. Full article
Show Figures

Figure 1

17 pages, 6606 KB  
Article
Heat Transfer Characteristics of an Electric Motor with Oil-Dripping Cooling under Overload Conditions
by Eun-Hyeok Kang, Kunal Sandip Garud, Su Cheong Park and Moo-Yeon Lee
Symmetry 2024, 16(3), 289; https://doi.org/10.3390/sym16030289 - 1 Mar 2024
Cited by 1 | Viewed by 2635
Abstract
The continuously increasing energy density of electric motors to match the performance of electric vehicles with internal-combustion-engine vehicles demands an advanced cooling strategy. Direct dripping/spray cooling is one of such potential cooling strategies to replace the conventional cooling method for achieving the desired [...] Read more.
The continuously increasing energy density of electric motors to match the performance of electric vehicles with internal-combustion-engine vehicles demands an advanced cooling strategy. Direct dripping/spray cooling is one of such potential cooling strategies to replace the conventional cooling method for achieving the desired thermal management of next-generation electric motors. In the present work, the heat transfer characteristics of an electric motor with oil-dripping cooling were experimentally investigated considering overload operating conditions. An experimental set-up comprising a 15 kW electric motor and an oil-dripping cooling system was developed. The experimental data were used to evaluate the maximum temperature, heat transfer coefficient and power consumption under the influence of a dripping hole diameter (2 mm, 3 mm, 4 mm), oil flow rate (8 LPM, 12 LPM, 16 LPM) and overload operating power (8.28 kW, 12.05 kW, 14.21 kW). The symmetrical oil distribution over the electric motor and the superior heat transfer from the electric motor to the oil was achieved when the oil-dripping cooling system was designed with the combination of a 4 mm dripping hole diameter and a 12 LPM oil flow rate. The combination of the 4 mm dripping hole diameter and 12 LPM oil flow rate showed the lowest maximum temperatures of 31.9 °C and 46.3 °C for electric motor under overload operating powers of 8.28 kW and 14.21 kW, respectively. In addition, the highest heat transfer coefficient of 7528.61 W/m2-K and lowest power consumption of 18.07 W were achieved for the oil-dripping cooling system with the combination of a 4 mm dripping hole diameter and 12 LPM oil flow rate. The best combination of the operating parameters is proposed for developing the oil-dripping cooling system that enables superior heat transfer characteristics and, thus, an enhanced thermal management of electric motors under overload conditions. Full article
Show Figures

Figure 1

19 pages, 7993 KB  
Article
Optimization Study of Cooling Channel for the Oil Cooling Air Gap Armature in a High-Temperature Superconducting Motor
by Shuai Yu, Yong Zhou, Yongmao Wang, Ji Zhang, Qi Dong, Jie Tian, Jing Chen and Feng Leng
Electronics 2024, 13(1), 97; https://doi.org/10.3390/electronics13010097 - 25 Dec 2023
Cited by 5 | Viewed by 1752
Abstract
With the continuous advancement of science and technology, the application of high-temperature superconductivity has developed rapidly. The high-temperature superconducting (HTS) motor replacing the copper coil in the traditional motor with HTS winding is increasingly used in power equipment, and the effective thermal management [...] Read more.
With the continuous advancement of science and technology, the application of high-temperature superconductivity has developed rapidly. The high-temperature superconducting (HTS) motor replacing the copper coil in the traditional motor with HTS winding is increasingly used in power equipment, and the effective thermal management of HTS winding is vital in ensuring the life and effective operation of the HTS motor. In this study, five enhancement structures of indirect oil cooling channels were designed to improve the heat dissipation capacity of the HTS motor winding, and the enhancement effects of the different structures were comprehensively evaluated through numerical simulation using Fluent software 2022R1. The best enhancement structure was selected through structural optimization. The results showed that the Nusselt number of the gap-type enhanced structure was higher than that of the V- and staggered-type structures at the same flow velocity and 68% higher than that of the bare pipe. At the same inlet flow velocity and with a pressure drop limit of 30 kPa, the performance evaluation criterion value of the gap-type structure was 39% and 63% higher than that of the staggered- and V-type structures, respectively. The gap type is the optimal enhancement structure and can effectively improve the heat dissipation of the HTS winding coil. Full article
(This article belongs to the Special Issue Applied Superconductivity in Power Systems)
Show Figures

Figure 1

Back to TopTop