Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,039)

Search Parameters:
Keywords = optical simulations

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 5036 KB  
Article
Angles-Only Navigation via Optical Satellite Measurement with Prior Altitude Constrained
by Dongkai Dai, Yuanman Ni, Ying Yu, Jiaxuan Li and Shiqiao Qin
Sensors 2025, 25(19), 6149; https://doi.org/10.3390/s25196149 (registering DOI) - 4 Oct 2025
Abstract
This paper presents an angles-only navigation (AON) method utilizing optical observations of a single satellite with known ephemeris and prior altitude constraints given by an altimeter or known topography, which can enable near-ground platforms to achieve autonomous navigation in GNSS-denied environments. By leveraging [...] Read more.
This paper presents an angles-only navigation (AON) method utilizing optical observations of a single satellite with known ephemeris and prior altitude constraints given by an altimeter or known topography, which can enable near-ground platforms to achieve autonomous navigation in GNSS-denied environments. By leveraging a star tracker to measure the line-of-sight (LOS) direction of a satellite against a star background, the observer’s location is resolved via triangulation under geometric constraints. Theoretical error models are derived to analyze the influence of satellite position errors, LOS direction errors, and altitude uncertainties on geolocation accuracy. Numerical simulations validate the error propagation mechanisms, demonstrating that geolocation error is primarily determined by the perpendicular projection of orbital error relative to the LOS, increases linearly with LOS distance, and is sensitive to altitude errors at low elevation angles. Ground-based experiments conducted using Globalstar satellites achieve geolocation accuracy within 250 m (RMS), consistent with theoretical predictions. The proposed method offers a practical, low-cost solution for high-precision passive navigation in maritime and terrestrial applications. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

14 pages, 3409 KB  
Article
Synergistic ATO/SiO2 Composite Coatings for Transparent Superhydrophobic and Thermal-Insulating Performance
by Guodong Qin, Lei Li and Qier An
Coatings 2025, 15(10), 1160; https://doi.org/10.3390/coatings15101160 (registering DOI) - 4 Oct 2025
Abstract
Multifunctional coatings integrating high transparency, thermal insulation, and self-cleaning properties are critically needed for optical devices and energy-saving applications, yet simultaneously optimizing these functions remains challenging due to material and structural limitations. This study designed a superhydrophobic transparent thermal insulation coating via synergistic [...] Read more.
Multifunctional coatings integrating high transparency, thermal insulation, and self-cleaning properties are critically needed for optical devices and energy-saving applications, yet simultaneously optimizing these functions remains challenging due to material and structural limitations. This study designed a superhydrophobic transparent thermal insulation coating via synergistic co-construction of micro–nano structures using antimony-doped tin oxide (ATO) and SiO2 nanoparticles dispersed in an epoxy resin matrix, with surface modification by perfluorodecyltriethoxysilane (PFDTES) and γ-glycidyl ether oxypropyltrimethoxysilane (KH560). The optimal superhydrophobic transparent thermal insulating (SHTTI) coating, prepared with 0.6 g SiO2 and 0.8 g ATO (SHTTI-0.6-0.8), achieved a water contact angle (WCA) of 162.4°, sliding angle (SA) of 3°, and visible light transmittance of 72% at 520 nm. Under simulated solar irradiation, it reduced interior temperature by 7.3 °C compared to blank glass. The SHTTI-0.6-0.8 coating demonstrated robust mechanical durability by maintaining superhydrophobicity through 40 abrasion cycles, 30 tape-peel tests, and sand impacts, combined with chemical stability, effective self-cleaning capability, and exceptional anti-icing performance that prolonged freezing time to 562 s versus 87 s for blank glass. This work provides a viable strategy for high-performance multifunctional coatings through rational component ratio optimization. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Figure 1

29 pages, 5300 KB  
Article
Piecewise Sliding-Mode-Enhanced ADRC for Robust Active Disturbance Rejection Control Against Internal and Measurement Noise
by Shengze Yang, Junfeng Ma, Dayi Zhao, Chenxiao Li and Liyong Fang
Sensors 2025, 25(19), 6109; https://doi.org/10.3390/s25196109 - 3 Oct 2025
Abstract
To address the challenges of insufficient response speed and robustness in optical attitude control systems under highly dynamic disturbances and internal uncertainties, a composite control strategy is proposed in this study. By integrating the proposed piecewise sliding control (P-SMC) with the improved active [...] Read more.
To address the challenges of insufficient response speed and robustness in optical attitude control systems under highly dynamic disturbances and internal uncertainties, a composite control strategy is proposed in this study. By integrating the proposed piecewise sliding control (P-SMC) with the improved active disturbance rejection control (ADRC), this strategy achieves complementary performance, which can not only suppress the disturbance but also converge to a bounded region fast. Under highly dynamic disturbances, the improved extended state observer (ESO) based on the EKF achieves rapid response with amplified state observations, and the Nonlinear State Error Feedback (NLSEF) generates a compensation signal to actively reject disturbances. Simultaneously, the robust sliding mode control (SMC) suppresses the effects of system nonlinearity and uncertainty. To address chattering and overshoot of the conventional SMC, this study proposes a novel P-SMC law which applies distinct reaching functions across different error bands. Furthermore, the key parameters of the composite scheme are globally optimized using the particle swarm optimization (PSO) algorithm to achieve Pareto-optimal trade-offs between tracking accuracy and disturbance rejection robustness. Finally, MATLAB simulation experiments validate the effectiveness of the proposed strategy under diverse representative disturbances. The results demonstrate improved performance in terms of response speed, overshoot, settling time and control input signals smoothness compared to conventional control algorithms (ADRC, C-ADRC, T-SMC-ADRC). The proposed strategy enhances the stability and robustness of optical attitude control system against internal uncertainties of system and sensor measurement noise. It achieves bounded-error steady-state tracking against random multi-source disturbances while preserving high real-time responsiveness and efficiency. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

34 pages, 3928 KB  
Article
Simulation of Chirped FBG and EFPI-Based EC-PCF Sensor for Multi-Parameter Monitoring in Lithium Ion Batteries
by Mohith Gaddipati, Krishnamachar Prasad and Jeff Kilby
Sensors 2025, 25(19), 6092; https://doi.org/10.3390/s25196092 - 2 Oct 2025
Abstract
The growing need for efficient and safe high-energy lithium-ion batteries (LIBs) in electric vehicles and grid storage necessitates advanced internal monitoring solutions. This work presents a comprehensive simulation model of a novel integrated optical sensor based on ethylene carbonate-filled photonic crystal fiber (EC-PCF). [...] Read more.
The growing need for efficient and safe high-energy lithium-ion batteries (LIBs) in electric vehicles and grid storage necessitates advanced internal monitoring solutions. This work presents a comprehensive simulation model of a novel integrated optical sensor based on ethylene carbonate-filled photonic crystal fiber (EC-PCF). The proposed design synergistically combines a chirped fiber Bragg grating (FBG) and an extrinsic Fabry–Pérot interferometer (EFPI) on a multiplexed platform for the multifunctional sensing of refractive index (RI), temperature, strain, and pressure (via strain coupling) within LIBs. By matching the RI of the PCF cladding to the battery electrolyte using ethylene carbonate, the design maximizes light–matter interaction for exceptional RI sensitivity, while the cascaded EFPI enhances mechanical deformation detection beyond conventional FBG arrays. The simulation framework employs the Transfer Matrix Method with Gaussian apodization to model FBG reflectivity and the Airy formula for high-fidelity EFPI spectra, incorporating critical effects like stress-induced birefringence, Transverse Electric (TE)/Transverse Magnetic (TM) polarization modes, and wavelength dispersion across the 1540–1560 nm range. Robustness against fabrication variations and environmental noise is rigorously quantified through Monte Carlo simulations with Sobol sequences, predicting temperature sensitivities of ∼12 pm/°C, strain sensitivities of ∼1.10 pm/με, and a remarkable RI sensitivity of ∼1200 nm/RIU. Validated against independent experimental data from instrumented battery cells, this model establishes a robust computational foundation for real-time battery monitoring and provides a critical design blueprint for future experimental realization and integration into advanced battery management systems. Full article
(This article belongs to the Special Issue Feature Papers in Optical Sensors 2025)
Show Figures

Figure 1

16 pages, 1003 KB  
Article
Double-Layered Microphysiological System Made of Polyethylene Terephthalate with Trans-Epithelial Electrical Resistance Measurement Function for Uniform Detection Sensitivity
by Naokata Kutsuzawa, Hiroko Nakamura, Laner Chen, Ryota Fujioka, Shuntaro Mori, Noriyuki Nakatani, Takahiro Yoshioka and Hiroshi Kimura
Biosensors 2025, 15(10), 663; https://doi.org/10.3390/bios15100663 - 2 Oct 2025
Abstract
Microphysiological systems (MPSs) have emerged as alternatives to animal testing in drug development, following the FDA Modernization Act 2.0. Double-layer channel-type MPS chips with porous membranes are widely used for modeling various organs, including the intestines, blood–brain barrier, renal tubules, and lungs. However, [...] Read more.
Microphysiological systems (MPSs) have emerged as alternatives to animal testing in drug development, following the FDA Modernization Act 2.0. Double-layer channel-type MPS chips with porous membranes are widely used for modeling various organs, including the intestines, blood–brain barrier, renal tubules, and lungs. However, these chips faced challenges owing to optical interference caused by light scattering from the porous membrane, which hinders cell observation. Trans-epithelial electrical resistance (TEER) measurement offers a non-invasive method for assessing barrier integrity in these chips. However, existing electrode-integrated MPS chips for TEER measurement have non-uniform current densities, leading to compromised measurement accuracy. Additionally, chips made from polydimethylsiloxane have been associated with drug absorption issues. This study developed an electrode-integrated MPS chip for TEER measurement with a uniform current distribution and minimal drug absorption. Through a finite element method simulation, electrode patterns were optimized and incorporated into a polyethylene terephthalate (PET)-based chip. The device was fabricated by laminating PET films, porous membranes, and patterned gold electrodes. The chip’s performance was evaluated using a perfused Caco-2 intestinal model. TEER levels increased and peaked on day 5 when cells formed a monolayer, and then they decreased with the development of villi-like structures. Concurrently, capacitance increased, indicating microvilli formation. Exposure to staurosporine resulted in a dose-dependent reduction in TEER, which was validated by immunostaining, indicating a disruption of the tight junction. This study presents a TEER measurement MPS platform with a uniform current density and reduced drug absorption, thereby enhancing TEER measurement reliability. This system effectively monitors barrier integrity and drug responses, demonstrating its potential for non-animal drug-testing applications. Full article
21 pages, 6332 KB  
Article
Numerical Simulation and Empirical Validation of Casing Stability in Coalbed Methane Wells Under Mining-Induced Stress: A Case Study of Xiaobaodang Coal Mine in Yulin-Shenmu Mining Area
by Zeke Gao, Wenping Li, Dongding Li, Yangmin Ye and Yuchu Liu
Appl. Sci. 2025, 15(19), 10674; https://doi.org/10.3390/app151910674 - 2 Oct 2025
Abstract
This study addresses the issue of coordinated development of coal, oil, and gas resources in the Yulin-Shenmu Coalfield. Taking the 132,201 working face of the Xiaobaodang No. 1 Coal Mine as a case study, the study combines FLAC3D numerical simulation with on-site [...] Read more.
This study addresses the issue of coordinated development of coal, oil, and gas resources in the Yulin-Shenmu Coalfield. Taking the 132,201 working face of the Xiaobaodang No. 1 Coal Mine as a case study, the study combines FLAC3D numerical simulation with on-site monitoring to analyze the impact of mining activities on the stability of gas well casings. Simulation results indicate that mining activities cause stress redistribution in the surrounding rock, with a maximum shear stress of 5.8 MPa, which is far below the shear strength of the casing. The maximum horizontal displacement of the wellbore is only 23 mm, with uniform overall deformation and no shear failure. On-site monitoring showed that the airtightness was intact, and the wellbore diameter test did not detect any destructive damage such as deformation or cracks. Concurrently, fiber optic strain monitoring of the inner and outer casings aligns with simulation results, confirming no significant instability caused by mining activities. The conclusion is that mining activities have a negligible impact on the stability of the gas well casing-concrete composite structure. The dual casing-cement ring structure effectively coordinates deformation to ensure safety. This finding provides a reliable technical basis for the coordinated exploitation of coal, oil and gas resources at the Xiaobaodang No. 1 Coal Mine and similar mines. Full article
Show Figures

Figure 1

14 pages, 4889 KB  
Article
Preparation of Microlens Array Using Excimer Laser Motion Mask
by Libin Wang and Tao Chen
Appl. Sci. 2025, 15(19), 10664; https://doi.org/10.3390/app151910664 - 2 Oct 2025
Abstract
In order to optimize the preparation process of microlens arrays, improve preparation efficiency, and reduce preparation costs, 248 nm KrF excimer laser direct writing is combined with a motion mask to prepare microlens arrays on PMMA substrates. Firstly, a specific exposure mask based [...] Read more.
In order to optimize the preparation process of microlens arrays, improve preparation efficiency, and reduce preparation costs, 248 nm KrF excimer laser direct writing is combined with a motion mask to prepare microlens arrays on PMMA substrates. Firstly, a specific exposure mask based on the contour characteristics of the microlens unit was designed, and the preparation principle was analyzed. Using COMSOL Multiphysics 6.3 simulation software, a microlens preparation model was built to intuitively describe the process of preparing microlenses by the motion mask method. Secondly, a preparation system was built, and the laser processing technology was optimized. Finally, microlens arrays were prepared based on the optimized process, and an optical microscope and white-light interferometer were used to observe their morphology. The experimental results show that this method can effectively prepare cylindrical and circular microlens arrays. The width of the cylindrical microlens array unit exceeded 90 μm, the height was 7.08 μm, and the roughness was 0.09 μm. The diameter of the circular microlens array unit was φ100 μm, the height was 4 μm, and the curvature radius was 230 μm. The geometric dimensions of the mask can be adjusted to obtain microlens units of the desired size, achieving personalized preparation of microlens arrays. The excimer laser motion mask method can prepare various types of microlens arrays, and the array units have a high consistency and high surface quality, which helps to improve the efficiency, flexibility, stability, and specificity of microlens array preparation. Full article
Show Figures

Figure 1

13 pages, 1900 KB  
Article
Simulation-Based Design of a Silicon SPAD with Dead-Space-Aware Avalanche Region for Picosecond-Resolved Detection
by Meng-Jey Youh, Hsin-Liang Chen, Nen-Wen Pu, Mei-Lin Liu, Yu-Pin Chou, Wen-Ken Li and Yi-Ping Chou
Sensors 2025, 25(19), 6054; https://doi.org/10.3390/s25196054 - 2 Oct 2025
Abstract
This study presents a simulation-based design of a silicon single-photon avalanche diode (SPAD) optimized for picosecond-resolved photon detection. Utilizing COMSOL Multiphysics, we implement a dead-space-aware impact ionization model to accurately capture history-dependent avalanche behavior. A guard ring structure and tailored doping profiles are [...] Read more.
This study presents a simulation-based design of a silicon single-photon avalanche diode (SPAD) optimized for picosecond-resolved photon detection. Utilizing COMSOL Multiphysics, we implement a dead-space-aware impact ionization model to accurately capture history-dependent avalanche behavior. A guard ring structure and tailored doping profiles are introduced to improve electric field confinement and suppress edge breakdown. Simulation results show that the optimized device achieves a peak electric field of 7 × 107 V/m, a stable gain slope of −0.414, and consistent avalanche triggering across bias voltages. Transient analysis further confirms sub-20 ps response time under −6.5 V bias, validated by a full-width at half-maximum (FWHM) of ~17.8 ps. Compared to conventional structures without guard rings, the proposed design exhibits enhanced breakdown localization, reduced gain sensitivity, and improved timing response. These results highlight the potential of the proposed SPAD for integration into next-generation quantum imaging, time-of-flight LiDAR, and high-speed optical communication systems. Full article
Show Figures

Graphical abstract

14 pages, 1864 KB  
Article
Simulations and Analysis of Spatial Transmission Efficiency of Wireless Optical Communications Across Sea–Air Media
by Yingying Li, Zhuang Liu, Shuwan Yu, Qiang Fu, Yingchao Li, Chao Wang and Haodong Shi
Optics 2025, 6(4), 47; https://doi.org/10.3390/opt6040047 - 1 Oct 2025
Abstract
Wireless optical communication technology offers advantages, such as high-data transmission rates, confidentiality, and robust anti-interception capabilities, making it highly promising for cross-sea–air interface communication applications. However, to our knowledge, no studies have been conducted on the spatial transmission efficiency of light after it [...] Read more.
Wireless optical communication technology offers advantages, such as high-data transmission rates, confidentiality, and robust anti-interception capabilities, making it highly promising for cross-sea–air interface communication applications. However, to our knowledge, no studies have been conducted on the spatial transmission efficiency of light after it passes through ocean waves. To address this issue, a seawater-wave–atmosphere model based on Gerstner waves was constructed. Using the Monte Carlo method, the optical power distributions of the laser light passing through the sea–air interface at the first- and second-level sea scales were simulated. The optimal positions for deploying one to three receiving optical systems were analyzed, and a laser communication receiving system was designed. Furthermore, simulations were conducted to determine the optical transmission efficiency of the designed optical receiver system. At the first-level sea scale, the optimal position for a single-point detector was (0°, ±5.61°), whereas those for the two detectors were (0°, ±5.61°) and (0°, ±5.68°). At the second-level sea scale, the optimal position for a single-point detector was (0°, ±3.17°), and the optimal positions for the two detectors were (0°, ±3.1°) and (0°, ±2.98°). Under the designed conditions, the optical transmission efficiency for a single detector at the first- and second-level sea scales was 0.74–0.88%, respectively, while it was 0.79–1.09% in the two-detector case. At the second-level sea scale, the optical transmission efficiency for a single detector was 0.37–2.09% and 0.50–1.97% in the two-detector case. Full article
Show Figures

Figure 1

18 pages, 3872 KB  
Article
Predicting the Bandgap of Graphene Based on Machine Learning
by Qinze Yu, Lingtao Zhan, Xiongbai Cao, Tingting Wang, Haolong Fan, Zhenru Zhou, Huixia Yang, Teng Zhang, Quanzhen Zhang and Yeliang Wang
Physchem 2025, 5(4), 41; https://doi.org/10.3390/physchem5040041 - 1 Oct 2025
Abstract
Over the past decade, two-dimensional materials have become a research hotspot in chemistry, physics, materials science, and electrical and optical engineering due to their excellent properties. Graphene is one of the earliest discovered 2D materials. The absence of a bandgap in pure graphene [...] Read more.
Over the past decade, two-dimensional materials have become a research hotspot in chemistry, physics, materials science, and electrical and optical engineering due to their excellent properties. Graphene is one of the earliest discovered 2D materials. The absence of a bandgap in pure graphene limits its application in digital electronics where switching behavior is essential. In the present study, researchers have proposed a variety of methods for tuning the graphene bandgap. Machine learning methodologies have demonstrated the capability to enhance the efficiency of materials research by automating the recording of characteristic parameters from the discovery and preparation of 2D materials, property calculations, and simulations, as well as by facilitating the extraction and summarization of governing principles. In this work, we use first principle calculations to build a dataset of graphene band gaps under various conditions, including the application of a perpendicular external electric field, nitrogen doping, and hydrogen atom adsorption. Support Vector Machine (SVM), Random Forest (RF), and Multi-Layer Perceptron (MLP) Regression were utilized to successfully predict the graphene bandgap, and the accuracy of the models was verified using first principles. Finally, the advantages and limitations of the three models were compared. Full article
Show Figures

Figure 1

14 pages, 1522 KB  
Article
Tunable Strong Plasmon-Exciton Coupling in a Low-Loss Nanocuboid Dimer with Monolayer WS2
by Fan Wu and Zhao Chen
Nanomaterials 2025, 15(19), 1497; https://doi.org/10.3390/nano15191497 - 30 Sep 2025
Abstract
Strong coupling between plasmons and excitons in two-dimensional materials offers a powerful route for manipulating light–matter interactions at the nanoscale, with potential applications in quantum optics, nanophotonics, and polaritonic devices. Here, we design and numerically investigate a low-loss coupling platform composed of a [...] Read more.
Strong coupling between plasmons and excitons in two-dimensional materials offers a powerful route for manipulating light–matter interactions at the nanoscale, with potential applications in quantum optics, nanophotonics, and polaritonic devices. Here, we design and numerically investigate a low-loss coupling platform composed of a silver nanocuboid dimer and monolayer of WS2 using finite-difference time-domain (FDTD) simulations. The dimer supports a subradiant bonding plasmonic mode with a linewidth as narrow as 60 meV. This ultralow-loss feature enables strong coupling with monolayer WS2 at relatively low coupling strengths. FDTD simulations combined with the coupled oscillator model reveal a Rabi splitting of ~60 meV and characteristic anticrossing behavior in the dispersion relations. Importantly, we propose and demonstrate two independent tuning mechanisms—loss engineering through nanocuboid tilt and coupling-strength modulation through the number of WS2 layers—that enable transitions between weak and strong coupling regimes. This work provides a low-loss and tunable plasmonic platform for studying and controlling strong light–matter interactions in plasmon-two-dimensional material systems, with potential for room-temperature quantum and optoelectronic devices. Full article
(This article belongs to the Special Issue Photonics and Plasmonics of Low-Dimensional Materials)
12 pages, 3386 KB  
Article
Effect of Grain Size on Polycrystalline Copper Finish Quality of Ultra-Precision Cutting
by Chuandong Zhang, Xinlei Yue, Kaiyuan You and Wei Wang
Micromachines 2025, 16(10), 1133; https://doi.org/10.3390/mi16101133 - 30 Sep 2025
Abstract
Polycrystalline copper optics are widely utilized in infrared systems due to their exceptional electrical and thermal conductivity combined with favorable machining characteristics. The grain size profoundly influences both surface quality consistency and fundamental material removal behavior during processing. This investigation employs multiscale numerical [...] Read more.
Polycrystalline copper optics are widely utilized in infrared systems due to their exceptional electrical and thermal conductivity combined with favorable machining characteristics. The grain size profoundly influences both surface quality consistency and fundamental material removal behavior during processing. This investigation employs multiscale numerical modeling to simulate nanoscale cutting processes in polycrystalline copper with controlled grain structures, coupled with experimental ultra-precision machining validation. Comprehensive analysis of stress distribution, subsurface damage formation, and cutting force evolution reveals that refined grain structures promote more homogeneous plastic deformation, resulting in superior surface finish with reduced roughness and diminished grain boundary step formation. However, the enhanced grain boundary density in fine-grained specimens necessitates increased cutting energy input. These findings establish critical process–structure–property relationships essential for advancing precision manufacturing of copper-based optical systems. Full article
(This article belongs to the Special Issue Ultra-Precision Micro Cutting and Micro Polishing)
45 pages, 2671 KB  
Article
Mathematical Model for Economic Optimization of Tower-Type Solar Thermal Power Generation Systems via Coupled Monte Carlo Ray-Tracing and Multi-Mechanism Heat Loss Equations
by Juanen Li, Yao Chen and Huanhao Su
Mathematics 2025, 13(19), 3132; https://doi.org/10.3390/math13193132 - 30 Sep 2025
Abstract
With the global energy transition and decarbonization goals, tower-type solar thermal power generation is increasingly important for dispatchable clean energy due to its high efficiency, thermal storage capacity, and regulation performance. However, current research focuses on ideal conditions, ignoring real geographical constraints on [...] Read more.
With the global energy transition and decarbonization goals, tower-type solar thermal power generation is increasingly important for dispatchable clean energy due to its high efficiency, thermal storage capacity, and regulation performance. However, current research focuses on ideal conditions, ignoring real geographical constraints on heliostat layout and environmental impacts on receiver performance. More practical scene modeling and performance evaluation methods are urgently needed. To address these issues, we propose a heliostat field simulation algorithm based on heat loss mechanisms and real site characteristics. The algorithm includes optical performance evaluation (cosine efficiency, shading, truncation, atmospheric transmittance) and heat loss mechanisms (radiation, convection, conduction) for realistic net heat output estimation. Experiments revealed the following: (1) higher central towers improve optical efficiency by increasing solar elevation angle; (2) radiation losses dominate at high power and tower height, while convection losses dominate at low power and tower height. Using the Economic-Integrated Score (EIS) optimization algorithm, we achieved optimal tower and receiver configuration with 40.22% average improvement over other configurations (maximum 3.9× improvement). This provides a scientific design basis for improving tower-type solar thermal systems’ adaptability and economy in different geographical environments. Full article
(This article belongs to the Special Issue Advances and Applications in Intelligent Computing)
Show Figures

Figure 1

18 pages, 5239 KB  
Article
Hybrid Reflection/Transmission Diffraction Grating Solar Sail
by Ryan M. Crum, Prateek R. Srivastava, Qing X. Wang, Tasso R. M. Sales and Grover A. Swartzlander
Photonics 2025, 12(10), 972; https://doi.org/10.3390/photonics12100972 - 30 Sep 2025
Abstract
Diffractive sail components may be used in part or whole for in-space propulsion and attitude control. A sun-facing hybrid diffractive solar sail having reflective front facets and transmissive side facets is described. This hybrid design seeks to minimize the undesirable scattering from side [...] Read more.
Diffractive sail components may be used in part or whole for in-space propulsion and attitude control. A sun-facing hybrid diffractive solar sail having reflective front facets and transmissive side facets is described. This hybrid design seeks to minimize the undesirable scattering from side facets. Predictions of radiation pressure are compared for analytical geometrical optics and numerical finite difference time domain approaches. Our calculations across a spectral irradiance band from 0.5 to 3 μm suggest the transverse force in a sun facing configuration reaches 48% when the refractive index of the sail material is 1.5. Diffraction measurements at a representative optical wavelength of 633 nm support our predictions. Full article
(This article belongs to the Special Issue Diffractive Optics and Its Emerging Applications)
Show Figures

Figure 1

21 pages, 2749 KB  
Article
Performance Analysis of an Optical System for FSO Communications Utilizing Combined Stochastic Gradient Descent Optimization Algorithm
by Ilya Galaktionov and Vladimir Toporovsky
Appl. Syst. Innov. 2025, 8(5), 143; https://doi.org/10.3390/asi8050143 - 30 Sep 2025
Abstract
Wavefront aberrations caused by thermal flows or arising from the quality of optical components can significantly impair wireless communication links. Such aberrations may result in an increased error rate in the received signal, leading to data loss in laser communication applications. In this [...] Read more.
Wavefront aberrations caused by thermal flows or arising from the quality of optical components can significantly impair wireless communication links. Such aberrations may result in an increased error rate in the received signal, leading to data loss in laser communication applications. In this study, we explored a newly developed combined stochastic gradient descent optimization algorithm aimed at compensating for optical distortions. The algorithm we developed exhibits linear time and space complexity and demonstrates low sensitivity to variations in input parameters. Furthermore, its implementation is relatively straightforward and does not necessitate an in-depth understanding of the underlying system, in contrast to the Stochastic Parallel Gradient Descent (SPGD) method. In addition, a developed switch-mode approach allows us to use a stochastic component of the algorithm as a rapid, rough-tuning mechanism, while the gradient descent component is used as a slower, more precise fine-tuning method. This dual-mode operation proves particularly advantageous in scenarios where there are no rapid dynamic wavefront distortions. The results demonstrated that the proposed algorithm significantly enhanced the total collected power of the beam passing through the 10 μm diaphragm that simulated a 10 μm fiber core, increasing it from 0.33 mW to 2.3 mW. Furthermore, the residual root mean square (RMS) aberration was reduced from 0.63 μm to 0.12 μm, which suggests a potential improvement in coupling efficiency from 0.1 to 0.6. Full article
(This article belongs to the Section Information Systems)
Show Figures

Figure 1

Back to TopTop