Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (134)

Search Parameters:
Keywords = optical time-division multiplexing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 689 KB  
Article
Investigation of Polarization Division Multiplexed CVQKD Based on Coherent Optical Transmission Structure
by Wenpeng Gao, Jianjun Tang, Tianqi Dou, Peizhe Han, Yuanchen Hao and Weiwen Kong
Photonics 2025, 12(10), 954; https://doi.org/10.3390/photonics12100954 - 25 Sep 2025
Viewed by 339
Abstract
Employing commercial off-the-shelf coherent optical transmission components and methods to design a continuous variable quantum key distribution (CVQKD) system is a promising trend of achieving QKD with high security key rate (SKR) and cost-effectiveness. In this paper, we explore a CVQKD system based [...] Read more.
Employing commercial off-the-shelf coherent optical transmission components and methods to design a continuous variable quantum key distribution (CVQKD) system is a promising trend of achieving QKD with high security key rate (SKR) and cost-effectiveness. In this paper, we explore a CVQKD system based on the widely used polarization division multiplexed (PDM) coherent optical transmission structure and pilot-aided digital signal processing methods. A simplified pilot-aided phase noise compensation scheme based on frequency division multiplexing (FDM) is proposed, which introduces less total excess noise than classical pilot-aided schemes based on time division multiplexing (TDM). In addition, the two schemes of training symbol (TS)-aided equalization are compared to find the optimal strategy for TS insertion, where the scheme based on block insertion strategy can provide the SKR gain of around 29%, 22%, and 15% compared with the scheme based on fine-grained insertion strategy at the transmission distance of 5 km, 25 km, and 50 km, respectively. The joint optimization of pilot-aided and TS-aided methods in this work can provide a reference for achieving a CVQKD system with a high SKR and low complexity in metropolitan-scale applications. Full article
Show Figures

Figure 1

18 pages, 4306 KB  
Article
Creation of Low-Loss Triple-Ring Optical Filter via Direct Binary Search Inverse Design
by Yuchen Hu, Tong Wang, Wen Zhou and Bo Hu
Sensors 2025, 25(18), 5895; https://doi.org/10.3390/s25185895 - 20 Sep 2025
Viewed by 516
Abstract
This paper presents a triple-ring optical filter designed through direct binary search inverse design, comprising three cascaded rings in an add–drop configuration. We established a physical model using temporal coupled-mode theory to derive theoretical spectra and analyze key transmission parameters. Subsequently, we encoded [...] Read more.
This paper presents a triple-ring optical filter designed through direct binary search inverse design, comprising three cascaded rings in an add–drop configuration. We established a physical model using temporal coupled-mode theory to derive theoretical spectra and analyze key transmission parameters. Subsequently, we encoded the target transmission performance into a figure of merit to optimize the coupling coefficients between ring resonators and waveguides. We verify the theoretical parameters using three-dimensional finite-difference time-domain simulations. The optimized filter achieves a free spectral range of 86 nm, an insertion loss of 0.4 dB, an extinction ratio of 20 dB, and a narrow spectral linewidth of 0.2 nm within a compact footprint of 29 μm×46.5 μm. This device demonstrates significant application potential, particularly in laser external cavities, dense wavelength division multiplexing systems, and sensing applications. Furthermore, this work provides a systematic design framework for the precision design of photonic devices. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

14 pages, 3345 KB  
Article
Equivalent Self-Noise Suppression of DAS System Integrated with Multi-Core Fiber Based on Phase Matching Scheme
by Jiabei Wang, Hongcan Gu, Peng Wang, Wen Liu, Gaofei Yao, Yandong Pang, Jing Wu, Dan Xu, Su Wu, Junbin Huang and Canran Xu
Appl. Sci. 2025, 15(17), 9806; https://doi.org/10.3390/app15179806 - 7 Sep 2025
Viewed by 731
Abstract
Multi-core fiber (MCF) has drawn increasing attention for its potential application in distributed acoustic sensing (DAS) due to the compact optical structure of integrating several fiber cores in the same cladding, which indicates an intrinsic space-division-multiplexed (SDM) capability in a single piece of [...] Read more.
Multi-core fiber (MCF) has drawn increasing attention for its potential application in distributed acoustic sensing (DAS) due to the compact optical structure of integrating several fiber cores in the same cladding, which indicates an intrinsic space-division-multiplexed (SDM) capability in a single piece of fiber. In this paper, a dual-channel DAS integrated with MCF is presented, of which the equivalent self-noise characteristic is analyzed. The equivalent self-noise of the system can be effectively suppressed by signal superposition with the phase matching method. Considering that the noise correlation among the cores is not zero, the signal-to-noise (SNR) gain after signal superposition is less than the theoretical value. The dual-channel DAS system is set up by a piece of 2 km long seven-core MCF, in which the dual-sensing channels are constructed by a four-core series and three-core series, respectively. The total noise correlation coefficient of the seven cores is 11.28, while the equivalent self-noise of the system can be suppressed by 6.32 dB with signal superposition. An equivalent self-noise suppression method based on a linear delay phase matching scheme is proposed for noise decorrelation in the DAS MCF system. After noise decorrelation, the suppression of the equivalent self-noise of the system can reach the theoretical value of 8.45 dB with a time delay of 1 ms, indicating a noise correlation among the seven cores of almost zero. The feasibility of the equivalent self-noise suppression method for the DAS system is verified for both single-frequency and broadband signals, which is of great significance for the detection of weak vibration signals based on a DAS system. Full article
Show Figures

Figure 1

14 pages, 4281 KB  
Article
Joint Rx IQ Imbalance Compensation and Timing Recovery for Faster-than-Nyquist WDM Systems
by Jialin You
Photonics 2025, 12(8), 825; https://doi.org/10.3390/photonics12080825 - 19 Aug 2025
Viewed by 1166
Abstract
Faster-than-Nyquist (FTN) tight filtering introduces serious inter-symbol interference (ISI) impairment, leading to an insufficient compensation range for conventional IQ imbalance compensation algorithms. Furthermore, receiver (Rx) IQ imbalance and ISI impairments significantly increase the convergence cost required by the squared Gardner phase detector (SGPD) [...] Read more.
Faster-than-Nyquist (FTN) tight filtering introduces serious inter-symbol interference (ISI) impairment, leading to an insufficient compensation range for conventional IQ imbalance compensation algorithms. Furthermore, receiver (Rx) IQ imbalance and ISI impairments significantly increase the convergence cost required by the squared Gardner phase detector (SGPD) timing recovery algorithm to establish a timing synchronization loop. This paper proposes a joint Rx IQ compensation and timing recovery scheme. By embedding a two-stage IQ imbalance compensation algorithm into the timing recovery feedback loop, the proposed scheme could effectively estimate and compensate for Rx IQ imbalance. Meanwhile, thanks to the innovative scheme, which equalizes Rx IQ imbalance and ISI during the timing feedback loop, the convergence cost of timing recovery could be reduced compared with the conventional blind frequency domain (BFD) scheme. The simulation results of 128 GBaud polarization multiplexing (PM) 16-quadrature amplitude modulation (QAM) FTN wavelength division multiplexing (WDM) transmission systems demonstrate that the proposed scheme could bring about 14%, 12.5%, and 16.6% improvements in the compensation range for Rx IQ amplitude imbalance, phase imbalance, and skew, respectively, compared with the conventional one. Meanwhile, the convergence cost is reduced by at least 31% with a 0.9 acceleration factor. In addition, 40 GBaud PM-16QAM FTN experiment results show that the proposed scheme could bring about a 0.8 dB improvement in the optical signal noise ratio (OSNR) compared with the conventional BFD scheme. Full article
(This article belongs to the Special Issue Optical Communication Networks: Challenges and Opportunities)
Show Figures

Figure 1

17 pages, 1198 KB  
Article
Delay-Aware Sleep Synchronization for Sustainable 6G-PON Broadband Access
by Yazan M. Allawi, Alaelddin F. Y. Mohammed, Eman M. Moneer and Lamia O. Widaa
Electronics 2025, 14(16), 3229; https://doi.org/10.3390/electronics14163229 - 14 Aug 2025
Viewed by 421
Abstract
Time Division Multiplexing Passive Optical Networks (TDM-PONs) serve as a key enabler for the evolution of broadband access network infrastructure. As TDM-PONs adapt to support 6G networks, reducing energy consumption becomes increasingly critical. Sleep modes have been widely adopted as an effective energy-saving [...] Read more.
Time Division Multiplexing Passive Optical Networks (TDM-PONs) serve as a key enabler for the evolution of broadband access network infrastructure. As TDM-PONs adapt to support 6G networks, reducing energy consumption becomes increasingly critical. Sleep modes have been widely adopted as an effective energy-saving solution. However, their use can introduce delays that compromise performance. This issue becomes especially problematic in 6G PONs, where ultra-low latency and stringent service requirements leave minimal tolerance for delay-related inefficiencies. In this paper, we propose a novel sleep synchronization mechanism for both single and multiple TDM-PONs, allowing Optical Network Units (ONUs) to join one or more sleep/wake-up groups based on the service type and delay tolerance. Our practical design framework incorporates delay-based grouping and existing sleep modes to address the operational complexities of multi-PON systems while remaining fully compatible with current PON standards. The simulation results show that our approach satisfies the requirements of delay-sensitive traffic and achieves up to 37% energy savings. Compared to baseline methods such as adaptive scheduling and fixed-interval cyclic sleep, it offers a 15–20% improvement in the energy–delay trade-off. These results demonstrate the potential for near-term deployment of 6G PONs and lay the foundation for more advanced, delay-aware energy management strategies in next-generation optical access networks. Full article
(This article belongs to the Special Issue Fiber-Optic Communication System: Current Status and Future Prospects)
Show Figures

Figure 1

18 pages, 736 KB  
Article
Collaborative Split Learning-Based Dynamic Bandwidth Allocation for 6G-Grade TDM-PON Systems
by Alaelddin F. Y. Mohammed, Yazan M. Allawi, Eman M. Moneer and Lamia O. Widaa
Sensors 2025, 25(14), 4300; https://doi.org/10.3390/s25144300 - 10 Jul 2025
Viewed by 724
Abstract
Dynamic Bandwidth Allocation (DBA) techniques enable Time Division Multiplexing Passive Optical Network (TDM-PON) systems to efficiently manage upstream bandwidth by allowing the centralized Optical Line Terminal (OLT) to coordinate resource allocation among distributed Optical Network Units (ONUs). Conventional DBA techniques struggle to adapt [...] Read more.
Dynamic Bandwidth Allocation (DBA) techniques enable Time Division Multiplexing Passive Optical Network (TDM-PON) systems to efficiently manage upstream bandwidth by allowing the centralized Optical Line Terminal (OLT) to coordinate resource allocation among distributed Optical Network Units (ONUs). Conventional DBA techniques struggle to adapt to dynamic traffic conditions, resulting in suboptimal performance under varying load scenarios. This work suggests a Collaborative Split Learning-Based DBA (CSL-DBA) framework that utilizes the recently emerging Split Learning (SL) technique between the OLT and ONUs for the objective of optimizing predictive traffic adaptation and reducing communication overhead. Instead of requiring centralized learning at the OLT, the proposed approach decentralizes the process by enabling ONUs to perform local traffic analysis and transmit only model updates to the OLT. This cooperative strategy guarantees rapid responsiveness to fluctuating traffic conditions. We show by extensive simulations spanning several traffic scenarios, including low, fluctuating, and high traffic load conditions, that our proposed CSL-DBA achieves at least 99% traffic prediction accuracy, with minimal inference latency and scalable learning performance, and it reduces communication overhead by approximately 60% compared to traditional federated learning approaches, making it a strong candidate for next-generation 6G-grade TDM-PON systems. Full article
(This article belongs to the Special Issue Recent Advances in Optical Wireless Communications)
Show Figures

Figure 1

18 pages, 3893 KB  
Article
Creation of Low-Loss Dual-Ring Optical Filter via Temporal Coupled Mode Theory and Direct Binary Search Inverse Design
by Yuchen Hu, Tong Wang, Wen Zhou and Bo Hu
Photonics 2025, 12(7), 681; https://doi.org/10.3390/photonics12070681 - 6 Jul 2025
Viewed by 560
Abstract
We propose a dual-ring optical filter based on direct binary search inverse design. The proposed device comprises two cascaded rings in an add–drop configuration. A physical model was established using temporal coupled mode theory to derive theoretical spectra and analyze key parameters governing [...] Read more.
We propose a dual-ring optical filter based on direct binary search inverse design. The proposed device comprises two cascaded rings in an add–drop configuration. A physical model was established using temporal coupled mode theory to derive theoretical spectra and analyze key parameters governing transmission performance. Based on theoretical results, a direct binary search algorithm was implemented. The parameters of the proposed device were calculated using a three-dimensional finite-difference time-domain method for verification. The numerical results demonstrate a free spectral range of 86 nm, with insertion loss and extinction ratios of 0.3 dB and 22 dB, respectively. The proposed device has a narrow spectral linewidth of 0.3 nm within a compact footprint of 24 μm×25.5 μm. The device shows significant application potential in laser external cavities and dense wavelength division multiplexing systems. Moreover, this work provides a novel methodology for precision design of photonic devices. Full article
Show Figures

Figure 1

33 pages, 5209 KB  
Review
Integrated Photonics for IoT, RoF, and Distributed Fog–Cloud Computing: A Comprehensive Review
by Gerardo Antonio Castañón Ávila, Walter Cerroni and Ana Maria Sarmiento-Moncada
Appl. Sci. 2025, 15(13), 7494; https://doi.org/10.3390/app15137494 - 3 Jul 2025
Cited by 2 | Viewed by 3379
Abstract
Integrated photonics is a transformative technology for enhancing communication and computation in Cloud and Fog computing networks. Photonic integrated circuits (PICs) enable significant improvements in data-processing speed, energy-efficiency, scalability, and latency. In Cloud infrastructures, PICs support high-speed optical interconnects, energy-efficient switching, and compact [...] Read more.
Integrated photonics is a transformative technology for enhancing communication and computation in Cloud and Fog computing networks. Photonic integrated circuits (PICs) enable significant improvements in data-processing speed, energy-efficiency, scalability, and latency. In Cloud infrastructures, PICs support high-speed optical interconnects, energy-efficient switching, and compact wavelength division multiplexing (WDM), addressing growing data demands. Fog computing, with its edge-focused processing and analytics, benefits from the compactness and low latency of integrated photonics for real-time signal processing, sensing, and secure data transmission near IoT devices. PICs also facilitate the low-loss, high-speed modulation, transmission, and detection of RF signals in scalable Radio-over-Fiber (RoF) links, enabling seamless IoT integration with Cloud and Fog networks. This results in centralized processing, reduced latency, and efficient bandwidth use across distributed infrastructures. Overall, integrating photonic technologies into RoF, Fog and Cloud computing networks paves the way for ultra-efficient, flexible, and scalable next-generation network architectures capable of supporting diverse real-time and high-bandwidth applications. This paper provides a comprehensive review of the current state and emerging trends in integrated photonics for IoT sensors, RoF, Fog and Cloud computing systems. It also outlines open research opportunities in photonic devices and system-level integration, aimed at advancing performance, energy-efficiency, and scalability in next-generation distributed computing networks. Full article
(This article belongs to the Special Issue New Trends in Next-Generation Optical Networks)
Show Figures

Figure 1

14 pages, 5764 KB  
Article
First Real-Time 267.8 Tb/S 2 × 70.76 Km Integrated Communication and Sensing Field Trial over Deployed Seven-Core Fiber Cable Using 130 Gbaud PCS-64QAM 1.2 Tb/S OTN Transponders
by Jian Cui, Leimin Zhang, Yu Deng, Zhuo Liu, Chao Wu, Bin Hao, Ting Zhang, Yuxiao Wang, Bin Wu, Chengxing Zhang, Yong Chen, Lei Shen, Jie Luo, Yan Sun, Qi Wan, Cheng Chang, Bing Yan and Ninglun Gu
Photonics 2025, 12(6), 577; https://doi.org/10.3390/photonics12060577 - 6 Jun 2025
Viewed by 719
Abstract
Ultra-high-speed integrated communication and sensing (ICS) transmission techniques are highly desired for next-generation highly reliable optical transport networks (OTNs). The inherent multiple-channel advantage of uncoupled multi-core fibers (MCFs) empowers the evolution of ICS techniques. In this paper, we demonstrate an ultra-high-speed ICS OTN [...] Read more.
Ultra-high-speed integrated communication and sensing (ICS) transmission techniques are highly desired for next-generation highly reliable optical transport networks (OTNs). The inherent multiple-channel advantage of uncoupled multi-core fibers (MCFs) empowers the evolution of ICS techniques. In this paper, we demonstrate an ultra-high-speed ICS OTN system utilizing 130 Gbaud probability constellation shaping 64-ary quadrature amplitude modulation (PCS-64QAM) 1.2 Tb/s OTN transponders and polarization-based sensing technique over a field-deployed seven-core MCF cable for the first time. A real-time 267.8 Tb/s 2 × 70.76 km transmission is achieved by only utilizing C-band signals thanks to the high-performance 1.2 Tb/s OTN transponders. Moreover, the ICS system can sense environmental impacts on the MCF cable such as shaking, striking, etc., in real time. The capacity of the transmission system can also be further enhanced by using signals in the L-band. Our work demonstrates the feasibility of simultaneously achieving ultra-high-speed data transmission and the real-time sensing of environmental disturbances over a field-deployed MCF cable, which we believe is a crucial milestone for next-generation ultra-high-speed highly reliable optical transmission networks. Full article
(This article belongs to the Special Issue Optical Networking Technologies for High-Speed Data Transmission)
Show Figures

Figure 1

8 pages, 2358 KB  
Article
Passive Time-Division Multiplexing Fiber Optic Sensor for Magnetic Field Detection Applications in Current Introduction
by Yong Liu, Junjun Xiong, Junchang Huang, Fubin Pang, Yi Zhao and Li Xia
Photonics 2025, 12(5), 506; https://doi.org/10.3390/photonics12050506 - 19 May 2025
Cited by 1 | Viewed by 595
Abstract
Under the dual impetus of the “Dual Carbon” goals and the construction of smart grids, the development of new energy power infrastructure has been fully realized. The All-Fiber Optical Current Transformer (FOCT), leveraging its unique advantages, is in the process of supplanting traditional [...] Read more.
Under the dual impetus of the “Dual Carbon” goals and the construction of smart grids, the development of new energy power infrastructure has been fully realized. The All-Fiber Optical Current Transformer (FOCT), leveraging its unique advantages, is in the process of supplanting traditional current transformers to become the core component of power system monitoring equipment. Currently, to achieve higher precision and stability in magnetic field or current detection, FOCT structures frequently incorporate active components such as Y-waveguides and phase modulators, and closed-loop feedback systems are often used in demodulation. This has led to issues of high cost, complex demodulation, and difficult maintenance, significantly hindering the further advancement of FOCTs. Addressing the problems of high cost and complex demodulation, this paper proposes a passive multiplexing structure that achieves time-domain multiplexing of pulsed sensing signals, designs a corresponding intensity demodulation algorithm, and applies this structure to FOCTs. This enables low-cost, simple-demodulation current sensing, which can also be utilized for magnetic field detection, showcasing vast application potential. Full article
(This article belongs to the Special Issue Optical Fiber Sensors: Design and Application)
Show Figures

Figure 1

14 pages, 2088 KB  
Review
Optical Link Design for Quantum Key Distribution-Integrated Optical Access Networks
by Sunghyun Bae and Seok-Tae Koh
Photonics 2025, 12(5), 418; https://doi.org/10.3390/photonics12050418 - 27 Apr 2025
Cited by 1 | Viewed by 1385
Abstract
To achieve commercial scalability, fiber-based quantum key distribution (QKD) systems must be integrated into existing optical communication infrastructures, rather than deployed exclusively on dedicated dark fibers. Integrating QKD into optical access networks (OANs) would be particularly advantageous, as these networks provide direct connectivity [...] Read more.
To achieve commercial scalability, fiber-based quantum key distribution (QKD) systems must be integrated into existing optical communication infrastructures, rather than deployed exclusively on dedicated dark fibers. Integrating QKD into optical access networks (OANs) would be particularly advantageous, as these networks provide direct connectivity to end users for whom security is critical. Such integration can address the inherent security vulnerabilities in current OANs, which are primarily based on time-division multiplexing passive optical networks (TDM-PONs). However, integrating QKD into PONs poses significant challenges due to Raman noise and other detrimental effects induced by PON signals, which intensify as the launched power of PONs increases to support higher transmission speeds. In this study, we review recent advancements in both QKD and access network technologies, evaluate the technical feasibility of QKD-OAN integration, and propose cost-effective strategies to facilitate the widespread deployment of QKD in future access networks. Full article
(This article belongs to the Special Issue Optical Signal Processing for Advanced Communication Systems)
Show Figures

Figure 1

13 pages, 3649 KB  
Article
Real-Time Unrepeated Long-Span Field Trial over Deployed 4-Core Fiber Cable Using Commercial 130-Gbaud PCS-16QAM 800 Gb/s OTN Transceivers
by Jian Cui, Chao Wu, Zhuo Liu, Yu Deng, Bin Hao, Leimin Zhang, Ting Zhang, Yuxiao Wang, Bin Wu, Chengxing Zhang, Jiabin Wang, Baoluo Yan, Li Zhang, Yong Chen, Xuechuan Chen, Hu Shi, Lei Shen, Lei Zhang, Jie Luo, Yan Sun, Qi Wan, Cheng Chang, Bing Yan and Ninglun Guadd Show full author list remove Hide full author list
Photonics 2025, 12(4), 319; https://doi.org/10.3390/photonics12040319 - 29 Mar 2025
Viewed by 711
Abstract
The space-division multiplexed (SDM) transmission technique based on uncoupled multi-core fibers (MCF) shows great implementation potential due to its huge transmission capacity and compatibility with existing transceivers. In this paper, we demonstrate a real-time single-span 106 km field trial over deployed 4-core MCF [...] Read more.
The space-division multiplexed (SDM) transmission technique based on uncoupled multi-core fibers (MCF) shows great implementation potential due to its huge transmission capacity and compatibility with existing transceivers. In this paper, we demonstrate a real-time single-span 106 km field trial over deployed 4-core MCF cable using commercial 800 Gb/s optical transport network (OTN) transceivers. The transceivers achieved a modulation rate of 130 Gbaud with the optoelectronic multiple-chip module (OE-MCM) packaging technique, which enabled the adoption of a highly noise-tolerant probability constellation shaping a 16-array quadrature amplitude modulation (PCS-16QAM) modulation format for 800 Gb/s OTN transceivers, and could realize unrepeated long-span transmission. The 4-core 800 Gb/s transmission systems achieved a real-time transmission capacity of 256 Tb/s with fully loaded 80-wavelength channels over the C+L band. The performance of different kinds of 800 G OTN transceivers with different modulation formats under this long-span unrepeated optical transmission system is also estimated and discussed. This field trial demonstrates the feasibility of applying uncoupled MCF with 800 Gb/s OTN transceivers in unrepeated long-span transmission scenarios and promotes its field implementation in next-generation high-speed optical interconnection systems. Full article
(This article belongs to the Special Issue Optical Networking Technologies for High-Speed Data Transmission)
Show Figures

Figure 1

13 pages, 3864 KB  
Article
First Real-Time 221.9 Pb/S∙Km Transmission Capability Demonstration Using Commercial 138-Gbaud 400 Gb/S Backbone OTN System over Field-Deployed Seven-Core Fiber Cable with Multiple Fusion Splicing
by Jian Cui, Yu Deng, Zhuo Liu, Yuxiao Wang, Chen Qiu, Zhi Li, Chao Wu, Bin Hao, Leimin Zhang, Ting Zhang, Bin Wu, Chengxing Zhang, Weiguang Wang, Yong Chen, Kang Li, Feng Gao, Lei Shen, Lei Zhang, Jie Luo, Yan Sun, Qi Wan, Cheng Chang, Bing Yan and Ninglun Guadd Show full author list remove Hide full author list
Photonics 2025, 12(3), 269; https://doi.org/10.3390/photonics12030269 - 14 Mar 2025
Cited by 2 | Viewed by 861
Abstract
The core-division-multiplexed (CDM) transmission technique utilizing uncoupled multi-core fiber (MCF) is considered a promising candidate for next-generation long-haul optical transport networks (OTNs) due to its high-capacity potential. For the field implementation of MCF, it is of great significance to explore its long-haul transmission [...] Read more.
The core-division-multiplexed (CDM) transmission technique utilizing uncoupled multi-core fiber (MCF) is considered a promising candidate for next-generation long-haul optical transport networks (OTNs) due to its high-capacity potential. For the field implementation of MCF, it is of great significance to explore its long-haul transmission capability using high-speed OTN transceivers over deployed MCF cable. In this paper, we investigate the real-time long-haul transmission capability of a deployed seven-core MCF cable using commercial 138-Gbaud 400 Gb/s backbone OTN transceivers with a dual-polarization quadrature phase shift keying (DP-QPSK) modulation format. Thanks to the highly noise-tolerant DP-QPSK modulation format enabled by the high baud rate, a real-time 256 Tb/s transmission over a 990.64 km (14 × 70.76 km) deployed seven-core fiber cable with more than 600 fusion splices is field demonstrated for the first time, which achieves a real-time capacity–distance product of 221.9 Pb/s∙km. Specifically, the long-haul CDM transmission is simulated by cascading the fiber cores of two segments of 70.76 km seven-core fibers. And dynamic gain equalizers (DGEs) are utilized to mitigate the impacts of stimulated Raman scattering (SRS) and the uneven gain spectra of amplifiers in broadband transmissions by equalizing the power of signals with different wavelengths. This field trial demonstrates the feasibility of applying uncoupled MCF in long-haul OTN transmission systems and will contribute to its field implementation in terrestrial fiber cable systems. Full article
(This article belongs to the Special Issue Optical Networking Technologies for High-Speed Data Transmission)
Show Figures

Figure 1

12 pages, 8620 KB  
Article
Picosecond-Level Synchronization over Optical Free Space Link Using White Rabbit
by Peng Zhang, Dong Hou, Ke Liu, Wenjian Zhou, Minghong Li and Lujun Fang
Electronics 2025, 14(5), 970; https://doi.org/10.3390/electronics14050970 - 28 Feb 2025
Viewed by 2819
Abstract
White Rabbit (WR) time synchronization has an accuracy up to a sub-nanosecond level. However, the current application scenario of WR is limited to wired transmission links. In this paper, we have proposed a time synchronization technique over a free space link using WR. [...] Read more.
White Rabbit (WR) time synchronization has an accuracy up to a sub-nanosecond level. However, the current application scenario of WR is limited to wired transmission links. In this paper, we have proposed a time synchronization technique over a free space link using WR. In the WR-based free space synchronization scheme, we replace the original WDM (Wavelength Division Multiplexing) with single-wavelength transmission to reduce the asymmetry of the path and design a high-power optical transceiver module to improve the transmission power. With the scheme, a free space synchronization experiment with a transmission distance of 50 m is conducted. The experimental results show that the RMS (root mean square) time drift of this free space synchronization system is 20.5 ps over a 24 h period, and the TDEV (Time Deviation) of the time synchronization is 14.3 ps at 1 s and 3.9 ps at 20,000 s. The experiment proves that it will be convenient to complete the free space time synchronization network between clock sites with the proposed technique in the future application of complex environments. Full article
(This article belongs to the Special Issue Applications of MEMS and QCM in Smart Sensor Systems)
Show Figures

Figure 1

11 pages, 2029 KB  
Communication
Efficient Frequency-Domain Block Equalization for Mode-Division Multiplexing Systems
by Yifan Shen, Jianyong Zhang, Shuchao Mi, Guofang Fan and Muguang Wang
Photonics 2025, 12(2), 161; https://doi.org/10.3390/photonics12020161 - 17 Feb 2025
Viewed by 767
Abstract
In this paper, an adaptive frequency-domain block equalizer (FDBE) implementing the adaptive moment estimation (Adam) algorithm is proposed for mode-division multiplexing (MDM) optical fiber communication systems. By packing all frequency components into frequency-dependent blocks of a specified size B, we define an [...] Read more.
In this paper, an adaptive frequency-domain block equalizer (FDBE) implementing the adaptive moment estimation (Adam) algorithm is proposed for mode-division multiplexing (MDM) optical fiber communication systems. By packing all frequency components into frequency-dependent blocks of a specified size B, we define an adaptive equalization matrix to simultaneously compensate for multiple frequency components at each block, which is computed iteratively using the Adam, recursive least squares (RLS) and least mean squares (LMS) algorithms. Simulations show that the proposed FDBE using the Adam algorithm outperforms those using the LMS and RLS algorithms in terms of adaptation speed and symbol error rate (SER) performance. The FDBE using the Adam algorithm with B=1 has the fastest adaption time, requiring about ntr=100 and ntr=900 less training blocks than the RLS algorithm at the SER of 3.8×103 for the accumulated mode-dependent loss (MDL) of ξ=1 dB and ξ=5 dB, respectively. The Adam algorithm with B=16 and B=8 has 0.4 dB and 0.3 dB SNR better than the RLS algorithm with B=4 for MDL and ξ=1 dB and ξ=55 dB, respectively. Full article
(This article belongs to the Special Issue Advanced Fiber Laser Technology and Its Application)
Show Figures

Figure 1

Back to TopTop