Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,208)

Search Parameters:
Keywords = organic matter degradability

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2868 KB  
Article
Research on Algae Enhancing Biogenic Methane Production from Coal
by Liu Zhu, Wangjie Diao, Yi Liu, Peilin Zhu and Chenyao Gong
Sustainability 2025, 17(17), 7960; https://doi.org/10.3390/su17177960 - 3 Sep 2025
Abstract
The low efficiency of the microbial gasification of coal limits the application of bio-coal bed methane technology. The co-fermentation of coal and biomass provides a new approach for improving the degradation rate of coal. In this study, a co-fermentation system comprising five different [...] Read more.
The low efficiency of the microbial gasification of coal limits the application of bio-coal bed methane technology. The co-fermentation of coal and biomass provides a new approach for improving the degradation rate of coal. In this study, a co-fermentation system comprising five different coal orders with five microalgae was constructed in the laboratory, and the methanogenic characteristics of coal–algae co-fermentation and its microbiological mechanism were systematically investigated in terms of gas production, soluble organic matter, and microbial community characteristics. The results showed that the combination of lignite and Nannochloropsis exhibited optimal methane production, with a methane yield of 26.43 mL/g coal. Biogenic methane yields for lignite–Porphyra and anthracite–Porphyra were 23.43 mL and 21.28 mL, respectively, demonstrating the potential for algae to enhance gas production even in high-rank coals. pH monitoring revealed that algal species played a critical role in the acidification process. Dunaliella caused a continuous pH decrease, reaching 3.76 by day 30, while Nannochloropsis maintained a neutral pH of 6.95, optimizing the fermentation environment. Significant differences in soluble organic matter were observed between the lignite and anthracite fermentation systems, with lignite systems producing more volatile fatty acids, including acetic and butyric acids. Microbial community analysis revealed that Methanosarcina, an acetic acid-utilizing methanogen, was dominant in lignite and anthracite systems, while Syntrophomonas played a key role in lignite–Nannochloropsis co-fermentation. These findings provide valuable insights into optimizing coal microbial gasification and selecting appropriate algal species to enhance methane production efficiency. Full article
Show Figures

Figure 1

19 pages, 3542 KB  
Article
Effects on Soil Organic Carbon Stock in the Context of Urban Expansion in the Andes: Quito City Case
by Karla Uvidia, Laura Salazar-Cotugno, Juan Ramón Molina, Gilson Fernandes Silva and Santiago Bonilla-Bedoya
Forests 2025, 16(9), 1409; https://doi.org/10.3390/f16091409 - 3 Sep 2025
Abstract
Urbanization is a driving force of landscape transformation. One of the ecosystems most vulnerable to urban expansion processes is montane forests located in high altitude mountainous regions. Despite their significance for biodiversity, regulation of the hydrological cycle, stability, prevention of soil erosion, and [...] Read more.
Urbanization is a driving force of landscape transformation. One of the ecosystems most vulnerable to urban expansion processes is montane forests located in high altitude mountainous regions. Despite their significance for biodiversity, regulation of the hydrological cycle, stability, prevention of soil erosion, and potential for organic carbon storage, these forest ecosystems show high vulnerability and risk due to the global urbanization process. We analyzed the potential variations produced by land cover change in some attributes related to soil organic matter in transitional forest fragments due to the expansion of a predominantly urban matrix landscape. We identified and characterized a fragment of a high montane evergreen forest in the Western Cordillera of the Northern Andes located in the urban limits of Quito. Then, we comparatively analyzed the variations in the attributes associated with soil organic carbon: soil organic matter, density, texture, nitrogen, phosphorus, and pH. We also considered the following soil coverages: forest, eucalyptus plantations, and grassland. We viewed the latter two as hinge coverages between forests and urban expansion. Finally, we estimated variations in soil organic carbon stock in the three analyzed coverages. For the montane forest fragment, we identified 253 individuals distributed among 18 species, corresponding to 10 families and 14 genera. We found significant variations in soil attributes associated with organic matter and an estimated 66% reduction in the carbon storage capacity of montane soils when they lose their natural cover and are replaced by Eucalyptus globulus plantations. Urban planning strategies should consider the conservation and restoration of natural and degraded peri-urban areas, ensuring sustainability and utilizing nature-based solutions for global climate change adaptation and mitigation. Peri-urban agroforestry systems represent an opportunity to replace and restore conventional forestry or crop plantation systems in peri-urban areas that affect the structure and function of ecosystems and, therefore, the goods and services derived from them. Full article
(This article belongs to the Special Issue Soil Carbon Storage in Forests: Dynamics and Management)
Show Figures

Figure 1

15 pages, 2931 KB  
Article
Spatial Distribution Characteristics of Soil Nutrients in the Ferralic Cambisols Watershed
by Haibin Chen, Shengquan Fang, Gengen Lin, Yuanbin Shangguan, Falian Cao and Zhibiao Chen
Nitrogen 2025, 6(3), 77; https://doi.org/10.3390/nitrogen6030077 - 1 Sep 2025
Viewed by 89
Abstract
In southern China, the long-term irrational utilization of land resources has caused severe damage to the ecology and environment of the entire region. Serious issues such as soil degradation and water erosion have led to the decline of soil quality and productivity. In [...] Read more.
In southern China, the long-term irrational utilization of land resources has caused severe damage to the ecology and environment of the entire region. Serious issues such as soil degradation and water erosion have led to the decline of soil quality and productivity. In this study, the spatial distribution characteristics of soil carbon, nitrogen, and phosphorus in Zhuxi watershed, Changting County, southern China, were analyzed by coupling geostatistics with GIS. The analysis generated several important results: (1) The concentrations of soil organic matter (OM), alkali-hydrolyzable nitrogen (AN), and available phosphorus (AP) are at moderate levels, and AP exhibits local enrichment in the downstream farmland, while the concentrations of total nitrogen (TN) and total phosphorus (TP) remain at low levels. (2) The optimal theoretical model for AN is an exponential model, while other nutrients follow spherical models. Except for AP, which has a nugget effect exceeding 75%, the nugget effects of other nutrients range between 25% and 75%, indicating that their spatial distribution is moderately correlated. According to Kriging interpolation results, the distribution of OM, TN, and AN shows a clear trend of decreasing from northeast to southwest, followed by a gradual increase, which is generally consistent with the direction of rivers. The trends of TP and AP are more irregular, generally decreasing from downstream to upstream. (3) OM, TN, and AN exhibit a negative correlation with the degree of soil erosion, indicating that soil erosion is associated with the loss of carbon and nitrogen nutrients. However, the impact on phosphorus is relatively insignificant. Full article
Show Figures

Figure 1

18 pages, 5056 KB  
Article
The First Whole Genome Sequence and Methylation Profile of Gerronema lapidescens QL01
by Yanming Qiao, Zhiyuan Jia, Yuying Liu, Na Zhang, Chun Luo, Lina Meng, Yajie Cheng, Minglei Li, Xiuchao Xie and Jianzhao Qi
J. Fungi 2025, 11(9), 647; https://doi.org/10.3390/jof11090647 - 1 Sep 2025
Viewed by 78
Abstract
Gerronema lapidescens (Lei Wan), a valued medicinal basidiomycete traditionally employed for antiparasitic and digestive ailments, faces severe conservation threats due to unsustainable wild harvesting and the absence of reliable cultivation protocols. To address this crisis and unlock its pharmacotherapeutic potential, we present the [...] Read more.
Gerronema lapidescens (Lei Wan), a valued medicinal basidiomycete traditionally employed for antiparasitic and digestive ailments, faces severe conservation threats due to unsustainable wild harvesting and the absence of reliable cultivation protocols. To address this crisis and unlock its pharmacotherapeutic potential, we present the first chromosome-scale genome assembly and comprehensive methylome profile for the wild strain G. lapidescens QL01, domesticated from the Qinling Mountains. A multi-platform sequencing strategy (Illumina and PacBio HiFi) yielded a high-quality 82.23 Mb assembly anchored to 11 chromosomes, exhibiting high completeness (98.4% BUSCO) and 46.03% GC content. Annotation predicted 15,847 protein-coding genes, with 81.12% functionally assigned. Genome-wide analysis identified 8.46 million high-confidence single-nucleotide polymorphisms (SNPs). Notably, methylation profiling revealed 3.25 million methylation events, with elevated densities on chromosomes 4, 9, and 10, suggesting roles in gene silencing and environmental adaptation. Phylogenomic analyses clarified the evolutionary status of G. lapidescens, whilst gene family evolution indicated moderate dynamics reflecting niche adaptation. Carbohydrate-Active enzymes (CAZymes) analysis identified 521 enzymes, including 211 Glycoside Hydrolases (GHs), consistent with organic matter degradation. Additionally, 3279 SSRs were catalogued as molecular markers. This foundational resource elucidates G. lapidescens’s genetic architecture, epigenetic regulation, evolutionary history, and enzymatic toolkit, underpinning future research into medicinal compound biosynthesis, environmental adaptation, germplasm conservation, and sustainable cultivation. Full article
Show Figures

Figure 1

12 pages, 1430 KB  
Article
Investigation and Analysis of Microbial Diversity in Rice Husk-Based Fermentation Bed Material
by Jinbo Gao, Wei Liu, Fuwei Li, Zhaohong Wang, Guang Guo, Bing Geng, Jingshi Sun and Genglin Guo
Agriculture 2025, 15(17), 1828; https://doi.org/10.3390/agriculture15171828 - 28 Aug 2025
Viewed by 297
Abstract
The rapid expansion of the meat duck industry in China has intensified environmental challenges, particularly those related to managing high-moisture duck manure. Fermentation bed systems, utilizing rice husks as a primary substrate, offer a sustainable solution by promoting waste decomposition and improving animal [...] Read more.
The rapid expansion of the meat duck industry in China has intensified environmental challenges, particularly those related to managing high-moisture duck manure. Fermentation bed systems, utilizing rice husks as a primary substrate, offer a sustainable solution by promoting waste decomposition and improving animal welfare. This study investigated microbial diversity in rice husk-based fermentation bed materials across different usage durations to assess their ecological feasibility. Samples were collected from a duck farm in Linyi, China, after one, three, five and seven batches of duck rearing (21 days per batch). Microbial communities were analyzed using polymerase chain reaction–denaturing gradient gel electrophoresis (PCR-DGGE), followed by cluster analysis, principal component analysis (PCA) and sequencing of recovered DGGE bands. The results revealed significant shifts in microbial composition, with low similarity (18% overall) and distinct abundance patterns among groups. Bacteroidetes abundance increased with prolonged usage, while Staphylococcus aureus was only detected in the first batch. A total of 32 sequenced bands identified dominant phyla, including Actinobacteria, Proteobacteria, Firmicutes and Bacteroidetes. Group 4 (seven batches) exhibited the highest microbial diversity and richness (Shannon index: 2.68; mean abundance: 16.33 bands), which was attributed to organic matter accumulation and nutrient release during fermentation. These findings demonstrate that rice husk-based fermentation beds maintain robust microbial diversity over time, effectively supporting waste degradation and duck health. We conclude that rice husks are a viable, eco-friendly substrate for waterfowl fermentation bed systems, with periodic microbial supplementation recommended to enhance long-term efficacy. This work provides critical insights for optimizing sustainable livestock farming practices. Full article
(This article belongs to the Section Farm Animal Production)
Show Figures

Figure 1

21 pages, 2137 KB  
Article
Unraveling the Molecular Composition and Reactivity Differentiation of Algae- and Macrophyte-Derived Dissolved Organic Matter in Plateau Lakes: Insights from Optical Properties and High Resolution Mass Spectrometry Characterization
by Qiuxing Li, Runyu Zhang, Haijun Yuan, Liying Wang and Shuxia Xu
Molecules 2025, 30(17), 3510; https://doi.org/10.3390/molecules30173510 - 27 Aug 2025
Viewed by 304
Abstract
Most lacustrine dissolved organic matter (DOM) still lacks comprehensive environmental sources and molecular characterization, especially in plateau lakes. Herein, macrophytes and algae from contrasting lakes of the Yunnan-Guizhou Plateau, together with Suwannee River fulvic acid (SRFA), were used to characterize the total identified [...] Read more.
Most lacustrine dissolved organic matter (DOM) still lacks comprehensive environmental sources and molecular characterization, especially in plateau lakes. Herein, macrophytes and algae from contrasting lakes of the Yunnan-Guizhou Plateau, together with Suwannee River fulvic acid (SRFA), were used to characterize the total identified DOM (Bulk-DOM) and low-molecular-weight DOM (LMW-DOM, <200 Da). To address this, we combined spectroscopy with Fourier transform ion cyclotron resonance (FT-ICR) and Orbitrap mass spectrometry (MS). Algae-derived DOM (ADOM) exhibited endogenous DOM characteristics, while macrophyte-derived DOM (MDOM) showed the characteristics of endogenous and terrigenous DOM. ADOM contained numerous heteroatoms, with high proportions of proteins, carbohydrates, and lipids. The chemical structures of ADOM were more aliphatic and degradable than that of MDOM. Conversely, MDOM and SRFA had higher degree of humification and aromaticity and showed greater resistance to microbial degradation. The capability of Orbitrap MS to characterize P-containing molecules was superior to FT-ICR MS. Moreover, significant differences were found between FT-ICR and Orbitrap MS in weighted average carbon atom number, weighted average mass-to-charge ratio, carbohydrates, and P-containing compounds. LMW-DOM accounted for approximately 10% of Bulk-DOM. Compared to Bulk-DOM, LMW-DOM was more active than Bulk-DOM because of the reduced state and more N-containing compounds. This study provides a valuable perspective to reveal the molecular characteristics and behaviors of ADOM and MDOM, which has crucial implications for carbon cycling in aquatic ecosystems. Full article
(This article belongs to the Special Issue Current Advances in Environmental Analytical Chemistry)
Show Figures

Graphical abstract

17 pages, 3996 KB  
Article
The Effects of Soil Microbes’ Co-Occurrence on Mangroves’ Resistance Against Spartina alterniflora Invasion
by Gang Liu, Shuang He, Lijuan Zhang, Danqing Huang, Xinyi Cai, Zhiqiang Lu and Danyang Li
Forests 2025, 16(9), 1378; https://doi.org/10.3390/f16091378 - 27 Aug 2025
Viewed by 320
Abstract
Mangroves are characterized by high productivity, thus playing crucial roles in combating global climate change. In recent decades, the invasion of Spartina alterniflora has led to significant degradation of mangrove vegetation. Currently, the main restoration measure for such damaged mangroves is to remove [...] Read more.
Mangroves are characterized by high productivity, thus playing crucial roles in combating global climate change. In recent decades, the invasion of Spartina alterniflora has led to significant degradation of mangrove vegetation. Currently, the main restoration measure for such damaged mangroves is to remove the invasive S. alterniflora. Furthermore, monitoring of S. alterniflora regeneration after restoration is also of great significance. In this study, an indicator of the presence of S. alterniflora in the soil was measured using a stable isotopic mixing model and further used to predict the potential regeneration of S. alterniflora in the natural Zhangjiang Estuary mangrove forest and the artificially planted Quanzhou Bay mangrove forest. The key findings are as follows: (1) The regeneration of S. alterniflora was observed in the Quanzhou Bay mangrove forest after observing an increased indication of its underground biomass (from 2.5% to 10.6%). This was not observed in the Zhangjiang Estuary mangrove forest, indicating its higher resistance against S. alterniflora regeneration. (2) The removal of S. alterniflora affected the diversity of the soil microbes, possibly by regulating the available organic matter, thus further altering the levels of S. alterniflora regeneration after restoration. (3) The higher functional redundancy and co-occurrence of soil microbes in the natural ZJE mangrove forest may be one major reason for its higher resistance to S. alterniflora invasion/regeneration. This study reveals potential effects of soil microbial communities on the stability of mangrove wetlands, which may provide new insights for future research on mangrove restoration programs. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Graphical abstract

23 pages, 12259 KB  
Article
Vegetation Dynamics and Responses to Natural and Anthropogenic Drivers in a Typical Southern Red Soil Region, China
by Jun Gao, Changqing Shi, Jianying Yang, Tingning Zhao and Wenxin Xie
Remote Sens. 2025, 17(17), 2941; https://doi.org/10.3390/rs17172941 - 24 Aug 2025
Viewed by 488
Abstract
The red soil region in southern China is an ecologically fragile area. Although ecological engineering construction has achieved phased results, there are still obvious gaps in research on the mechanisms underlying vegetation dynamics in response to natural and anthropogenic variables. Changting County (CTC) [...] Read more.
The red soil region in southern China is an ecologically fragile area. Although ecological engineering construction has achieved phased results, there are still obvious gaps in research on the mechanisms underlying vegetation dynamics in response to natural and anthropogenic variables. Changting County (CTC) serves as a typical case of vegetation degradation and restoration in the region. We examined the vegetation dynamics in CTC with the fraction vegetation cover (FVC) based on kernel normalized difference vegetation index-based dimidiate pixel model (kNDVI-DPM) and employed the optimal parameter-based geographical detector (OPGD), multiscale geographically weighted regression (MGWR), and partial least square structural equation modeling (PLS-SEM) to analyze interaction mechanisms between vegetation dynamics and underlying factors. The FVC showed a fluctuating upward trend at a rate of 0.0065 yr−1 (p < 0.001) from 2000 to 2020. The spatial distribution pattern was high in the west and low in the east. Soil and terrain factors were the primary factors dominating the spatial heterogeneity of FVC, soil organic matter and elevation showing the most significant influence, with annual mean q-values of 0.4 and 0.3, respectively. Climate, terrain, and soil properties positively and anthropogenic activities negatively impacted vegetation. From 2000 to 2020, the path coefficient of anthropogenic activities to FVC decreases from −0.152 to −0.045, the adverse effects of human activities are diminishing with ongoing ecological construction efforts. Climate and anthropogenic activities act indirectly on vegetation through negative effects on soils and terrain. The impact of climate on soils and terrain is gradually lessening, whilst the influence of anthropogenic activities continues to grow. This study provides an analytical framework for understanding the complex interrelationships between vegetation changes and the underlying factors. Full article
Show Figures

Figure 1

25 pages, 7381 KB  
Article
Noctiluca scintillans Bloom Reshapes Microbial Community Structure, Interaction Networks, and Metabolism Patterns in Qinhuangdao Coastal Waters, China
by Yibo Wang, Min Zhou, Xinru Yue, Yang Chen, Du Su and Zhiliang Liu
Microorganisms 2025, 13(8), 1959; https://doi.org/10.3390/microorganisms13081959 - 21 Aug 2025
Viewed by 345
Abstract
The coastal waters of Qinhuangdao are a major hotspot for harmful algal blooms (HABs) in the Bohai Sea, with Noctiluca scintillans being one of the primary algal species responsible for these events. A comprehensive understanding of the microbial community structure and functional responses [...] Read more.
The coastal waters of Qinhuangdao are a major hotspot for harmful algal blooms (HABs) in the Bohai Sea, with Noctiluca scintillans being one of the primary algal species responsible for these events. A comprehensive understanding of the microbial community structure and functional responses to N. scintillans bloom events is crucial for elucidating their underlying mechanisms and ecological impacts. This study investigated the microbial community dynamics, metabolic shifts, and the environmental drivers associated with a N. scintillans bloom in the coastal waters of Qinhuangdao, China, using high-throughput sequencing of 16S and 18S rRNA genes, co-occurrence network analysis, and metabolic pathway prediction. The results revealed that the proliferation of autotrophic phytoplankton, such as Minutocellus spp., likely provided a nutritional foundation and favorable conditions for the N. scintillans bloom. The bloom significantly altered the community structures of prokaryotes and microeukaryotes, resulting in significantly lower α-diversity indices in the blooming region (BR) compared to the non-blooming region (NR). Co-occurrence network analyses demonstrated reduced network complexity and stability in the BR, with keystone taxa primarily belonging to Flavobacteriaceae and Rhodobacteraceae. Furthermore, the community structures of both prokaryotes and microeukaryotes correlated with multiple environmental factors, particularly elevated levels of NH4+-N and PO43−-P. Metabolic predictions indicated enhanced anaerobic respiration, fatty acid degradation, and nitrogen assimilation pathways, suggesting microbial adaptation to bloom-induced localized hypoxia and high organic matter. Notably, ammonia assimilation was upregulated, likely as a detoxification strategy. Additionally, carbon flux was redirected through the methylmalonyl-CoA pathway and pyruvate-malate shuttle to compensate for partial TCA cycle downregulation, maintaining energy balance under oxygen-limited conditions. This study elucidates the interplay between N. scintillans blooms, microbial interactions, and functional adaptations, providing insights for HAB prediction and management in coastal ecosystems. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

14 pages, 851 KB  
Article
Optimising Galdieria sulphuraria ACUF 427 Biomass for Enhanced Urban Wastewater Treatment: Evaluating Pollutant Removal Efficiency, Algal Growth, and Phycocyanin Production
by Berhan Retta, Manuela Iovinella and Claudia Ciniglia
Phycology 2025, 5(3), 40; https://doi.org/10.3390/phycology5030040 - 21 Aug 2025
Viewed by 533
Abstract
Urban wastewater is composed of nutrients such as nitrogen and phosphorus, organic matter, heavy metals, pathogens, and micropollutants. If untreated, these contribute to eutrophication and environmental degradation. Microalgae-based bioremediation offers a sustainable solution, showing promise for pollutant removal and high-value bioproduct generation. This [...] Read more.
Urban wastewater is composed of nutrients such as nitrogen and phosphorus, organic matter, heavy metals, pathogens, and micropollutants. If untreated, these contribute to eutrophication and environmental degradation. Microalgae-based bioremediation offers a sustainable solution, showing promise for pollutant removal and high-value bioproduct generation. This study evaluates the efficacy of Galdieria sulphuraria ACUF 427 in treating urban wastewater, with a focus on nutrient removal and phycocyanin production at different optical densities (OD 2, OD 4, and OD 6). Nutrient removal rates (RRs) were analysed for ammonium nitrogen (N-NH4+), ammonia nitrogen (N-NH3), phosphate phosphorus (P-PO43−), and chemical oxygen demand (COD). The RR for N-NH4+ increased with optical density, reaching 7.49 mg/L/d at an optical density of 6. Similar trends were observed for N-NH3 and P-PO43−, with peak removal at OD 6. COD removal remained high across all ODs, though differences between OD 4 and OD 6 were not statistically significant. Significant variations (p < 0.05) in nutrient removal were noted across the ODs, except for COD between OD 4 and OD 6. Biomass growth and phycocyanin production were significantly higher in the wastewater compared to the control (Allen Medium), with the most effective performance observed at an optical density (OD) of 6. Maximum growth rates were 0.241 g/L/d at OD 6, 0.178 g/L/d at OD 4, and 0.120 g/L/d at OD 2. These results highlight the potential of G. sulphuraria as an agent for wastewater bioremediation and the production of high-value compounds, particularly at elevated cell densities, where we achieved superior nutrient removal and biomass production. Full article
Show Figures

Figure 1

17 pages, 4109 KB  
Article
Phosphorus and Microbial Degradation Mediate Vegetation-Induced Macroaggregate Dynamics on the Loess Plateau, China
by Ningning Zhang, Pandeng Cao, Zhi Wang and Jiakun Yan
Agronomy 2025, 15(8), 2011; https://doi.org/10.3390/agronomy15082011 - 21 Aug 2025
Viewed by 337
Abstract
Vegetation restoration enhances soil erosion resistance by enhancing soil aggregates, but the function of these aggregates and their relationship with soil nutrients and microbes remain unclear. In this study, two land cover types that induce different aggregate ratios were selected to determine the [...] Read more.
Vegetation restoration enhances soil erosion resistance by enhancing soil aggregates, but the function of these aggregates and their relationship with soil nutrients and microbes remain unclear. In this study, two land cover types that induce different aggregate ratios were selected to determine the soil aggregate ratio, aggregate ability, nutrients, and microbes. The results showed that high vegetation cover induced a higher macroaggregate ratio and soil water content; stronger soil shear strength; higher mean weight and geometric mean diameters; and lower soil bulk density. Macroaggregates had a lower soil organic matter (SOM) content compared with small macroaggregates. The aggregates and SOM influenced soil microbial diversity, especially microbial species and functions, and the large and small macroaggregate soils contained more microbes involved in SOM degradation, which accelerated the degradation and induced macroaggregate fragmentation. Total phosphorus (TP) had a direct impact on macroaggregates, and TP and macroaggregates showed the same correlation with the main microbial abundance. Taken together, we conclude that in the environment studied, SOM influenced soil microbes and the microbial function in SOM degradation affecting soil aggregates. TP contributed more to soil aggregate variations, especially in large macroaggregate formation. Full article
(This article belongs to the Section Agroecology Innovation: Achieving System Resilience)
Show Figures

Figure 1

24 pages, 1188 KB  
Article
Comprehensive Benefit Evaluation of Saline–Alkali Land Consolidation Based on the Optimal Land Use Value: Evidence from Jilin Province, China
by Man Teng, Longzhen Ni, Hua Li and Wenhui Chen
Land 2025, 14(8), 1687; https://doi.org/10.3390/land14081687 - 20 Aug 2025
Viewed by 411
Abstract
China, facing severe saline–alkali land degradation, is grappling with the paradox of technically adequate but systemically deficient land consolidation. In response to the existing evaluation system’s over-reliance on physicochemical indicators and neglect of socioeconomic value, this study proposes the use of the Optimal [...] Read more.
China, facing severe saline–alkali land degradation, is grappling with the paradox of technically adequate but systemically deficient land consolidation. In response to the existing evaluation system’s over-reliance on physicochemical indicators and neglect of socioeconomic value, this study proposes the use of the Optimal Land Use Value (OLV) to construct a comprehensive benefit evaluation indicator system for saline–alkali land consolidation that encompasses ecosystem resilience, supply–demand balancing, and common prosperity. Considering a case project implemented from 2019 to 2022 in the Western Songnen Plain of China—one of the world’s most severely affected soda saline–alkali regions—this study combines the land use transition matrix with a comprehensive evaluation model to systematically assess the effectiveness and sustainability of land consolidation. The results reveal systemic deficiencies: within ecological spaces, short-term desalination succeeds but pH and organic matter improvements remain inadequate, while ecosystem vulnerability increases due to climate fluctuations and grassland conversion. In production spaces, cropland expansion and saline land reduction are effective, but water resource management proves unsustainable. Living spaces show improved infrastructure and income but face threats due to economic simplification and intergenerational unsustainability. For the investigated case, recommendations include shifting from technical restoration to systemic governance via three strategies: (1) biological–engineering synergy employing green manure to enhance soil microbial activity; (2) hydrological balancing through groundwater quotas and rainwater utilization; (3) specialty industry development for rural economic diversification. This study contributes empirical evidence on the conversion of saline–alkali land, as well as an evaluation framework of wider relevance for developing countries combating land degradation and pursuing rural revitalization. Full article
(This article belongs to the Section Land Use, Impact Assessment and Sustainability)
Show Figures

Figure 1

19 pages, 3120 KB  
Article
Changes in Microbial Communities After Lettuce Cultivation in Sihwa Reclaimed Soils, Korea
by Dong-Ryeol Yu, Tae Seok Oh, Youn Jin Park and Myoung-Jun Jang
Environments 2025, 12(8), 287; https://doi.org/10.3390/environments12080287 - 20 Aug 2025
Viewed by 496
Abstract
Reclaimed land refers to artificially created soil formed by filling in seawater, leading to rapid ecological changes. Undeveloped reclaimed areas offer opportunities to explore previously unknown soil ecological resources. The Shihwa reclaimed land is an undeveloped area where microbiome-based studies of the microbial [...] Read more.
Reclaimed land refers to artificially created soil formed by filling in seawater, leading to rapid ecological changes. Undeveloped reclaimed areas offer opportunities to explore previously unknown soil ecological resources. The Shihwa reclaimed land is an undeveloped area where microbiome-based studies of the microbial community have not yet been conducted. The soil from the Sihwa reclaimed land (SR, SL) showed higher pH (8.9), EC (7.5 dS/m), and Na+ content (13.4 cmol+/kg), but lower levels of organic matter and phosphorus compared to typical agricultural soils (NL, NS). These unfavorable conditions had a negative effect on lettuce growth, as both fresh and dry weights in the SL treatment (32.5 g and 0.39 g, respectively) were significantly lower than those in the NL treatment (40.4 g and 0.45 g). At the phylum level, Actinobacteria (51.6%) dominated the original reclaimed soil (SR), but after lettuce cultivation (SL), there was an increase in Cyanobacteria (25.3%) and Proteobacteria (29.4%). At the order level, Streptomycetales (35.2%) and Bacillales (13.5%) were predominant in SR, whereas in SL, Oscillatoriales (23.5%)—which have photosynthetic ability—as well as organic matter-degrading orders such as Rhodobacterales and Flavobacteriales, became dominant. For the eukaryotic community at the phylum level, Ascomycota was predominant in all samples; however, in NL, the relative proportions of Chlorophyta (22%) and Mucoromycota (8.9%) were higher, indicating increased diversity. At the order level, Eurotiales (28.5%), Hypocreales (20.2%), and Wallemiales (14.4%) were predominant in SR, but after lettuce cultivation, Wallemiales disappeared and Eurotiales increased to 40.0%. Additionally, Glomerellales and Sordariomycetes_o were detected only in SL and NL, suggesting that symbiotic fungal activity in the rhizosphere was promoted. Full article
Show Figures

Figure 1

20 pages, 3072 KB  
Article
First Microbial Survey of a Submerged Petrified Forest in the Black Sea: Culture-Based and Metagenomic Insights
by Mihail Iliev, Ralitsa Ilieva, Slavil Peykov, Viktoria Terziyska, Anton Pelkin and Lyubomir Kenderov
Diversity 2025, 17(8), 583; https://doi.org/10.3390/d17080583 - 20 Aug 2025
Viewed by 428
Abstract
The submerged petrified forest in Sozopol Bay, located along Bulgaria’s southeastern coast in the Black Sea, is an extraordinarily rare natural phenomenon that has remained unexplored in terms of microbial diversity until now. This study focuses on characterizing the microbial communities associated with [...] Read more.
The submerged petrified forest in Sozopol Bay, located along Bulgaria’s southeastern coast in the Black Sea, is an extraordinarily rare natural phenomenon that has remained unexplored in terms of microbial diversity until now. This study focuses on characterizing the microbial communities associated with this unique habitat. Ancient petrified tree remnants located at depths of 18–20 m were sampled in August–September 2024, targeting four tree trunks from different sites within the bay. The quantitative assessment of selected bacterial groups, essential for nutrient cycling, organic matter degradation, and marine ecosystem health, revealed distinct community profiles. 16S rDNA sequencing of cultivated isolates identified a diverse microbial community predominantly composed of γ-Proteobacteria, with key representatives such as Vibrio aestuarianus, Vibrio orientalis, Pseudoalteromonas, and Cobetia sp. The culture-independent approach confirmed the dominance of Proteobacteria, along with other prevalent phyla like Bacteroidetes, Planctomycetes, and Actinobacteria. The most abundant taxa included Woeseia oceani, Ilumatobacter coccineus, Halioglobus maricola, and Vibrio breoganii. Archaea made up about 3% of classified reads. Fungal sequences accounted for less than 2% of the total reads, indicating a low fungal prevalence. These results provide essential baseline data for future monitoring and the conservation of this unique habitat and its diverse microbial communities. Full article
(This article belongs to the Special Issue Diversity in 2025)
Show Figures

Figure 1

15 pages, 1674 KB  
Article
Characterization of Litter and Topsoil Under Different Vegetation Cover by Using a Chemometric Approach
by Fulvia Tambone, Anna Masseroli, Paolo Beccarelli, Luca Breno, Marco Zuccolo, Gigliola Borgonovo, Stefania Mazzini, Alex Golinelli and Barbara Scaglia
Forests 2025, 16(8), 1349; https://doi.org/10.3390/f16081349 - 19 Aug 2025
Viewed by 358
Abstract
Leaf litter conservation practices in forests can contribute to increasing CO2 storage in natural soils as organic matter; however, this process depends on the type of vegetation cover. This study, using different approaches, aimed to assess this process starting from the characteristics [...] Read more.
Leaf litter conservation practices in forests can contribute to increasing CO2 storage in natural soils as organic matter; however, this process depends on the type of vegetation cover. This study, using different approaches, aimed to assess this process starting from the characteristics of three different types of litters and topsoil (0–5 cm depth) originating from chestnut, beech, and pine in various forest locations within the territory of Edolo (Camonica Valley, Central Italian Alps). Both labile (DOM) and recalcitrant (ROM) organic matter fractions were considered. Microbial degradation activity was strongly influenced by DOM (DOM vs. Respiration mg CO2 g−1 dry matter: r = 0.96), and NMR spectroscopy showed that aromatic C and polymethylene C in long-chain aliphatic structures (e.g., lipids, cutin) became more evident from litters to topsoils due to a concentration effect. Finally, chemometric elaboration of quantitative and qualitative data identified two principal component (PC) profiles, explaining 88% of the total variance, in which litter and the topsoil samples were spatially separated, indicating that significant changes occurred during the decomposition process. An Evolution Index (EI) calculated highlighted greater changes for chestnut (0.90) followed by pine (0.60) and beech (0.48), in agreement with chemical (degradation rates of 14.21%, 49.11%, and 48% for beech, chestnut, and pine litter, respectively) and spectroscopic data. Beech litter appears to be more efficient at conserving organic carbon. These findings underscore the importance of understanding litter characteristics for forest management, suggesting which species are most effective in promoting soil carbon storage. Full article
(This article belongs to the Section Forest Soil)
Show Figures

Figure 1

Back to TopTop