Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (103)

Search Parameters:
Keywords = ossification genes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4459 KB  
Article
Substrate Stiffness Modulates Hypertrophic Chondrocyte Reversion and Chondrogenic Phenotype Restoration
by Da-Long Dong and Guang-Zhen Jin
Cells 2025, 14(16), 1291; https://doi.org/10.3390/cells14161291 - 20 Aug 2025
Viewed by 537
Abstract
The stiffness of the extracellular matrix (ECM) plays a pivotal role in the progression of osteoarthritis (OA), particularly by promoting hypertrophic differentiation of chondrocytes, which hinders cartilage regeneration and accelerates pathological ossification. This study aimed to investigate how substrate stiffness modulates hypertrophic chondrocyte [...] Read more.
The stiffness of the extracellular matrix (ECM) plays a pivotal role in the progression of osteoarthritis (OA), particularly by promoting hypertrophic differentiation of chondrocytes, which hinders cartilage regeneration and accelerates pathological ossification. This study aimed to investigate how substrate stiffness modulates hypertrophic chondrocyte behavior and whether it can reverse their phenotype towards a more stable, chondrogenic state. A series of tunable polydimethylsiloxane (PDMS) substrates with stiffnesses ranging from 78 to 508 kPa were fabricated to simulate varying mechanical microenvironments. Hypertrophic chondrocytes were cultured on these substrates, and their morphology, nuclear architecture, gene/protein expression, and mechanotransductive signaling pathways were systematically evaluated. After 7 to 21 days of culture, the chondrocytes on stiffer matrices exhibited enlarged nuclei, increased cytoskeletal tension, and enhanced focal adhesion signaling. This corresponded with the upregulation of osteogenic and hypertrophic markers such as RUNX2, COL10A1, and COL1A1. In contrast, cells on softer substrates (78 kPa) displayed reduced nuclear YAP localization, higher levels of phosphorylated YAP, and significantly increased expression of COL2A1 and SOX9, indicating reversion to a chondrogenic phenotype. Furthermore, differential activation of Smad1/5/8 and Smad2/3 pathways was observed depending on matrix stiffness, contributing to the phenotype shift. Matrix stiffness exerts a significant regulatory effect on hypertrophic chondrocytes via YAP-mediated mechanotransduction. Soft substrates promote phenotype reversion and cartilage-specific gene expression, offering a promising biomechanical strategy for cartilage tissue engineering and OA intervention. Full article
(This article belongs to the Special Issue Targeting Cellular Microenvironment in Aging and Disease)
Show Figures

Figure 1

20 pages, 7049 KB  
Article
Coupled Bone–Muscle Degeneration in Chronic Pancreatitis: A Juvenile Porcine Model of Secondary Osteosarcopenia
by Siemowit Muszyński, Michał Świetlicki, Dorota Wojtysiak, Agnieszka Grzegorzewska, Piotr Dobrowolski, Małgorzata Świątkiewicz, Marcin B. Arciszewski, Iwona Puzio, Joanna Bonior, Agnieszka Tomczyk-Warunek, Maria Mielnik-Błaszczak and Ewa Tomaszewska
Int. J. Mol. Sci. 2025, 26(16), 7690; https://doi.org/10.3390/ijms26167690 - 8 Aug 2025
Viewed by 302
Abstract
Osteosarcopenia, characterized by concurrent bone loss and muscle wasting, significantly impacts mobility and quality of life. While age-related primary osteosarcopenia is well-studied, secondary osteosarcopenia (SOS) caused by chronic diseases remains poorly understood, particularly in young individuals. The present study aimed to comprehensively characterize [...] Read more.
Osteosarcopenia, characterized by concurrent bone loss and muscle wasting, significantly impacts mobility and quality of life. While age-related primary osteosarcopenia is well-studied, secondary osteosarcopenia (SOS) caused by chronic diseases remains poorly understood, particularly in young individuals. The present study aimed to comprehensively characterize musculoskeletal alterations associated with SOS using a juvenile porcine model of cerulein-induced chronic pancreatitis. Femoral bone analysis included densitometry, mechanical testing, histomorphometry, and serum bone turnover markers. The quadriceps femoris muscle was evaluated through histological analysis and gene expression profiling of antioxidant enzymes and apoptotic regulators. Animals with SOS showed significantly reduced femoral BMD compared to controls, with altered cortical geometry and compromised mechanical properties. Trabecular bone analysis revealed classic osteoporotic changes with decreased bone volume fraction. Negative changes were also observed in the growth plate morphology, indicating impaired endochondral ossification. Bone turnover markers indicated elevated bone resorption and altered formation. Muscle analysis demonstrated sarcopenic changes with selective atrophy of fast-twitch type II fibers and increased fiber density. At the molecular level, SOS muscles exhibited downregulated expression of CAT and CASP3, suggesting muscle atrophy predominantly mediated by oxidative stress and caspase-independent proteolysis rather than classical apoptosis. In conclusion, chronic pancreatitis in young pigs induces coupled bone and muscle degeneration consistent with secondary osteosarcopenia, demonstrating that muscle–bone crosstalk dysfunction occurs early in chronic inflammatory disease. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

21 pages, 3429 KB  
Article
Embryonic Exposure to TPhP Elicits Osteotoxicity via Metabolic Disruption in Oryzias latipes
by Melissa C. Gronske, Jamie K. Cochran, Jessika D. Foland, Dereje Jima, David B. Buchwalter, Heather M. Stapleton and Seth W. Kullman
Toxics 2025, 13(8), 654; https://doi.org/10.3390/toxics13080654 - 31 Jul 2025
Viewed by 416
Abstract
Triphenyl phosphate (TPhP) is a widely used organophosphate flame retardant and plasticizer, raising concerns over its health impacts. This study examined the effects of embryonic TPhP exposure on axial skeletal development and metabolism in medaka (Oryzias latipes), a vertebrate fish model [...] Read more.
Triphenyl phosphate (TPhP) is a widely used organophosphate flame retardant and plasticizer, raising concerns over its health impacts. This study examined the effects of embryonic TPhP exposure on axial skeletal development and metabolism in medaka (Oryzias latipes), a vertebrate fish model relevant to human bone biology. Medaka embryos were exposed to 1 µM TPhP and assessed through early larval stages. TPhP impaired vertebral ossification, causing shortened centra and reduced cartilage in the caudal complex, alongside disrupted distribution of osteoblast-lineage cells. Key osteogenic genes were significantly downregulated at 14 days post fertilization, and transcriptomic analysis revealed altered mitochondrial pathways linked to skeletal disorders. Functionally, TPhP-exposed larvae showed reduced caudal fin regeneration and decreased metabolic rate and oxygen consumption, consistent with mitochondrial dysfunction. These findings indicate that TPhP disrupts bone development and metabolism by affecting osteoblast differentiation and mitochondrial regulation, highlighting the value of small fish models for studying environmental toxicants and bone metabolic disease risk. Full article
Show Figures

Graphical abstract

17 pages, 4402 KB  
Article
Integrated mRNA and miRNA Analysis Reveals Layer-Specific Mechanisms of Antler Yield Variation in Sika Deer
by Derui Zhao, Zhen Zhang, Qianghui Wang and Heping Li
Animals 2025, 15(13), 1964; https://doi.org/10.3390/ani15131964 - 4 Jul 2025
Viewed by 476
Abstract
Antlers exhibit exceptionally rapid growth, representing a rare biological phenomenon among mammals. In addition to their scientific significance, antlers are widely used in traditional medicine, and their yield directly impacts the economic efficiency of the deer farming industry. However, antler yield varies substantially [...] Read more.
Antlers exhibit exceptionally rapid growth, representing a rare biological phenomenon among mammals. In addition to their scientific significance, antlers are widely used in traditional medicine, and their yield directly impacts the economic efficiency of the deer farming industry. However, antler yield varies substantially among individuals, and the molecular mechanisms underlying this variation remain poorly understood. This study aimed to elucidate the transcriptomic and post-transcriptional mechanisms underlying antler yield variation by comparing gene and miRNA expression profiles across four distinct antler tissue layers—dermis (D), reserve mesenchyme (RM), pre-cartilage (PC), and cartilage (C)—in sika deer with different yields. RNA-seq and miRNA-seq were performed, followed by differential expression, GO and KEGG pathway enrichment, and miRNA–mRNA co-expression network analyses. Our results reveal layer-specific expression patterns and key regulatory genes and miRNAs associated with proliferation, chondrogenesis, angiogenesis, and mineralization. In particular, genes such as FBP2, TPT1, TFRC, ZEB1, and PHOSPHO1 were upregulated in high-yield deer across specific tissue layers, while NFATC2 was downregulated in these high-yield deer. Additionally, miRNAs such as miR-140, miR-296-3p, and let-7e exhibited layer-specific expression patterns linked to growth and differentiation. Our miRNA–mRNA regulatory network analysis highlighted significant interactions, particularly miR-296-3p–PHOSPHO1 and miR-296-3p–FBP2, as key regulators of antler growth. Enrichment of PI3K-Akt and TGF-β signaling pathways further suggests their involvement in promoting chondrogenesis and ossification. These findings provide novel insights into the molecular basis of antler growth and yield, which may inform future strategies for selective breeding in deer farming. Full article
Show Figures

Figure 1

12 pages, 1044 KB  
Article
Endplate Lesions of the Lumbar Spine: Biochemistry and Genetics
by Alessandra Colombini, Vincenzo Raffo, Angela Elvira Covone, Tito Bassani, Domenico Coviello, Sabina Cauci, Ludovica Pallotta and Marco Brayda-Bruno
Genes 2025, 16(7), 738; https://doi.org/10.3390/genes16070738 - 26 Jun 2025
Viewed by 547
Abstract
Background/Objectives: Endplate lesions of the lumbar spine are often asymptomatic and frequently observed incidentally by radiological assessment. Variants in the vitamin D receptor gene (VDR) and an increase in some biochemical markers related to the osteo-cartilaginous metabolism were found in patients [...] Read more.
Background/Objectives: Endplate lesions of the lumbar spine are often asymptomatic and frequently observed incidentally by radiological assessment. Variants in the vitamin D receptor gene (VDR) and an increase in some biochemical markers related to the osteo-cartilaginous metabolism were found in patients with endplate lesions. The aim of this study was to identify biochemical and genetic markers putatively associated with the presence of endplate lesions of the lumbar spine. Methods: Quantification of circulating bone remodeling proteins was obtained from 10 patients with endplate lesions and compared with age- and sex-matched controls. Whole exome sequencing (WES) was performed on patient genomic DNA using the Novaseq 6000 platform (Illumina, San Diego, CA, USA), obtaining a median read depth of 117×–200×, with ≥98% of regions covering at least 20×. The sequencing product was aligned to the reference genome (GRCh38.p13-hg38) and analyzed with Geneyx software. Results: We observed modifications in the levels of circulating proteins involved in bone remodeling and angiogenesis. We identified variants of interest in aggrecan (ACAN), bone morphogenetic protein 4 (BMP4), cytochrome P450 family 3 subfamily A member 4 (CYP3A4), GLI family zinc finger 2 (GLI2), heparan sulfate proteoglycan 2 (HSPG2), and mesoderm posterior bHLH transcription factor 2 (MESP2). VDR polymorphism (rs2228570) was present in nine patients, with the homozygotic ones having more severe endplate lesions and higher levels of the analyzed circulating markers in comparison with heterozygotic patients. Conclusions: These data represent interesting evidence of genetic variants, particularly in VDR, and altered levels of circulating markers of bone remodeling associated with endplate lesions, which should be confirmed in a larger population. The hypothesis suggested by our results is that the endplate lesions could be the consequence of an altered ossification mechanism at the vertebral level. Full article
(This article belongs to the Special Issue Genes and Gene Polymorphisms Associated with Complex Diseases)
Show Figures

Figure 1

29 pages, 3083 KB  
Article
Synergistic Crosstalk of PACAP and Notch Signaling Pathways in Bone Development
by Vince Szegeczki, Andrea Pálfi, Csaba Fillér, Barbara Hinnah, Anna Tóth, Lili Sarolta Kovács, Adél Jüngling, Róza Zákány, Dóra Reglődi and Tamás Juhász
Int. J. Mol. Sci. 2025, 26(11), 5088; https://doi.org/10.3390/ijms26115088 - 26 May 2025
Viewed by 546
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide that plays significant regulatory roles in the differentiation of the central nervous system and peripheral organs. A lack of the neuropeptide can lead to abnormalities in long bone development. In callus formation, a possible signaling [...] Read more.
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide that plays significant regulatory roles in the differentiation of the central nervous system and peripheral organs. A lack of the neuropeptide can lead to abnormalities in long bone development. In callus formation, a possible signaling balance shift in PACAP KO mice has been demonstrated, but Notch signalization, with its potential connection with PACAP 1-38, has not been investigated in ossification. Our main goal was to show connections between PACAP and Notch signaling in osteogenesis. Notch signalization showed an elevation in the long bones of PACAP-gene-deficient mice, and it was also elevated during the PACAP 1-38 treatment of UMR-106 and MC3T3-E1 osteogenic cells. Moreover, the inhibition of Notch signaling was compensated by the addition of PACAP 1-38 in vitro. The inorganic and organic matrix production of UMR-106 cells was increased during PACAP 1-38 treatment under the inhibition of Notch signaling. As a possible common target, the expression and nuclear translocation of NFATc1 transcription factor was increased during the disturbance of PACAP and Notch signaling. Our results indicate a possible synergistic regulation during bone formation by PACAP and Notch signalization. The crosstalk between Notch and PACAP signaling pathways highlights the complexity of bone development and homeostasis. Full article
Show Figures

Figure 1

24 pages, 7447 KB  
Article
Arhgap29 Deficiency Directly Leads to Systemic and Craniofacial Skeletal Abnormalities
by Beibei Zhang, Xiaoyun Pan, Dandan Chi, Yumeng Wang, Wenyan Ruan, Jian Ma, Xiaohong Duan and Yongqing Huang
Int. J. Mol. Sci. 2025, 26(10), 4647; https://doi.org/10.3390/ijms26104647 - 13 May 2025
Viewed by 2713
Abstract
The Arhgap29 gene encodes Rho-GTPase-activating protein 29 (Arhgap29), which plays a crucial role in embryonic tissue development. Mutations in the Arhgap29 gene are significantly associated with non-syndromic cleft lip and palate (NSCL/P). Our study demonstrated that the deletion of Arhgap29 leads [...] Read more.
The Arhgap29 gene encodes Rho-GTPase-activating protein 29 (Arhgap29), which plays a crucial role in embryonic tissue development. Mutations in the Arhgap29 gene are significantly associated with non-syndromic cleft lip and palate (NSCL/P). Our study demonstrated that the deletion of Arhgap29 leads to syndromic cleft lip and palate (SCL/P) characteristics in mice, where, in addition to cleft palate, the mice exhibit craniofacial and systemic skeletal abnormalities. However, the mechanisms underlying these skeletal abnormalities remain unclear. Through micro-CT imaging, histological analysis, and transcriptomic methods, we discovered that the knockout of Arhgap29 delays the fusion of Meckel’s cartilage, widens cranial sutures, reduces bone quality, and alters the expression of osteoblasts and osteoclasts in the mandible. Digit defects, including ectrodactyly and impaired endochondral ossification, were also observed. Immunohistochemical analysis demonstrated the expression of Arhgap29 in both osteoblasts and osteoclasts, indicating its dual role in maintaining matrix homeostasis and regulating bone resorption equilibrium. Transcriptomic analysis revealed disrupted calcium and MAPK signaling pathways, while in vitro studies demonstrated impaired osteogenesis in Arhgap29-deficient calvarial cells, mirroring the in vivo defects. Furthermore, spatial transcriptomics linked the loss of Arhgap29 to defective bone differentiation and protein synthesis. Our findings underscore the critical role of Arhgap29 in the development of the mandible and digits, suggesting its potential as a pathogenic gene associated with syndromic cleft lip and palate (SCL/P). Full article
Show Figures

Figure 1

21 pages, 5152 KB  
Review
Therapeutic Potential of Nano-Sustained-Release Factors for Bone Scaffolds
by Haoran Jiang, Meng Zhang, Yang Qu, Bohan Xing, Bojiang Wang, Yanqun Liu and Peixun Zhang
J. Funct. Biomater. 2025, 16(4), 136; https://doi.org/10.3390/jfb16040136 - 9 Apr 2025
Cited by 3 | Viewed by 1229
Abstract
Research on nano-sustained-release factors for bone tissue scaffolds has significantly promoted the precision and efficiency of bone-defect repair by integrating biomaterials science, nanotechnology, and regenerative medicine. Current research focuses on developing multifunctional scaffold materials and intelligent controlled-release systems to optimize the spatiotemporal release [...] Read more.
Research on nano-sustained-release factors for bone tissue scaffolds has significantly promoted the precision and efficiency of bone-defect repair by integrating biomaterials science, nanotechnology, and regenerative medicine. Current research focuses on developing multifunctional scaffold materials and intelligent controlled-release systems to optimize the spatiotemporal release characteristics of growth factors, drugs, and genes. Nano slow-release bone scaffolds integrate nano slow-release factors, which are loaded with growth factors, drugs, genes, etc., with bone scaffolds, which can significantly improve the efficiency of bone repair. In addition, these drug-loading systems have also been extended to the fields of anti-infection and anti-tumor. However, the problem of heterotopic ossification caused by high doses has led to a shift in research towards a low-dose multi-factor synergistic strategy. Multiple Phase II clinical trials are currently ongoing, evaluating the efficacy and safety of nano-hydroxyapatite scaffolds. Despite significant progress, this field still faces a series of challenges: the immunity risks of the long-term retention of nanomaterials, the precise matching of multi-factor release kinetics, and the limitations of the large-scale production of personalized scaffolds. Future development directions in this area include the development of responsive sustained-release systems, biomimetic sequential release design, the more precise regeneration of injury sites through a combination of gene-editing technology and self-assembled nanomaterials, and precise drug loading and sustained release through microfluidic and bioprinting technologies to reduce the manufacturing cost of bone scaffolds. The progress of these bone scaffolds has gradually changed bone repair from morphology-matched filling regeneration to functional recovery, making the clinical transformation of bone scaffolds safer and more universal. Full article
(This article belongs to the Special Issue Mesoporous Nanomaterials for Bone Tissue Engineering)
Show Figures

Graphical abstract

24 pages, 5880 KB  
Article
CRTAP-Null Osteoblasts Have Increased Proliferation, Protein Secretion, and Skeletal Morphogenesis Gene Expression with Downregulation of Cellular Adhesion
by Aileen M. Barnes, Apratim Mitra, Marianne M. Knue, Alberta Derkyi, An Dang Do, Ryan K. Dale and Joan C. Marini
Cells 2025, 14(7), 518; https://doi.org/10.3390/cells14070518 - 31 Mar 2025
Viewed by 591
Abstract
Type VII osteogenesis imperfecta (OI), caused by recessive CRTAP mutations, is predominantly lethal in the first year of life. Due to its early lethality, little is known about bone dysplasia mechanism. RNA-seq analysis of differentiated osteoblasts of siblings with a non-lethal homozygous CRTAP [...] Read more.
Type VII osteogenesis imperfecta (OI), caused by recessive CRTAP mutations, is predominantly lethal in the first year of life. Due to its early lethality, little is known about bone dysplasia mechanism. RNA-seq analysis of differentiated osteoblasts of siblings with a non-lethal homozygous CRTAP-null variant showed an enrichment of gene ontology terms involved in DNA replication and cell cycle compared to control. BrdU incorporation confirmed a ≈2-fold increase in proliferation in non-lethal proband osteoblasts in comparison to control cells. In addition, the expression of cyclin dependent kinase inhibitor 2A (CDKN2A), encoding a protein involved in cell cycle inhibition, was significantly reduced (>50%) in CRTAP-null osteoblasts, while cyclin B1 (CCNB1), encoding a promoter of the cell cycle, was enhanced. Ossification and bone and cartilage development gene ontology pathways were enriched among upregulated genes throughout osteoblast differentiation, as was protein secretion. Ingenuity pathway analysis indicated an upregulation of BMP2 signaling, supported by increase in both BMP2 and MSX2, an early BMP2-responsive gene, by qPCR. Throughout differentiation, CRTAP-null osteoblasts showed a decrease in transcripts related to cell adhesion and extracellular matrix organization pathways. We propose that increased proliferation and osteogenesis of type VII OI osteoblasts may be stimulated through upregulation of BMP2 signaling, altering bone homeostasis, and leading to weaker bones. Full article
(This article belongs to the Special Issue Molecular Mechanism of Bone Disease)
Show Figures

Figure 1

15 pages, 3471 KB  
Article
Single-Cell Analysis of Molecular Mechanisms in Rapid Antler Osteogenesis During Growth and Ossification Stages
by Ranran Zhang and Xiumei Xing
Int. J. Mol. Sci. 2025, 26(6), 2642; https://doi.org/10.3390/ijms26062642 - 14 Mar 2025
Viewed by 1316
Abstract
Antlers, as the only fully regenerable bone tissue in mammals, serve as an exceptional model for investigating bone growth, mineralization, articular cartilage repair, and the pathophysiology of osteoporosis. Nevertheless, the exact molecular mechanisms governing osteogenesis, particularly the dynamic cellular interactions and signaling pathways [...] Read more.
Antlers, as the only fully regenerable bone tissue in mammals, serve as an exceptional model for investigating bone growth, mineralization, articular cartilage repair, and the pathophysiology of osteoporosis. Nevertheless, the exact molecular mechanisms governing osteogenesis, particularly the dynamic cellular interactions and signaling pathways coordinating these processes, remain poorly characterized. This study used single-cell RNA sequencing (scRNA-seq) on the 10× Genomics Chromium platform, combined with bulk-RNA sequencing results, to comprehensively analyze molecular regulatory mechanisms in rapid antler osteogenesis. The results showed that eight cell types were identified in sika deer antler during the growth and ossification stages: mesenchymal, chondrocyte, osteoblast, pericyte, endothelial, monocyte/macrophage, osteoclast, and NK cells. Chondrocytes were predominantly found during the growth stage, while osteoblasts were more abundant during the ossification stage. Mesenchymal cells were subclassified into three subcategories: MSC_1 (VCAN and SFRP2), MSC_2 (TOP2A, MKI67), and MSC_3 (LYVE1 and TNN). MSC_3 was predominantly present during the growth stage. During the growth stage, MSC_1 and MSC_2 upregulated genes related to vasculature development (COL8A1, NRP1) and cell differentiation (PTN, SFRP2). During the ossification stage, these subcategories upregulated genes involved in the positive regulation of p53 class mediator signal transduction (RPL37, RPL23, RPS20, and RPL26), osteoblast differentiation (SPP1, IBSP, BGLAP), and proton-motive ATP synthesis (NDUFA7, NDUFB3, NDUFA3, NDUFB1). Endothelial cells were categorized into five subpopulations: Enc_1 (SPARCL1, VWF), Enc_2 (MCM5), Enc_3 (ASPM, MKI67), Enc_4 (SAT1, CXCL12), and Enc_5 (ZFHX4, COL6A3). Combined scRNA-seq and bulk RNA-seq analysis revealed that the ossification stage’s upregulation genes included osteoclast- and endothelial cell-specific genes, while the growth stage’s upregulation genes were mainly linked to collagen organization, osteoblast differentiation, mitotic cell cycle, and chondrocyte differentiation. Overall, this study offers a detailed single-cell analysis of gene expression patterns in antlers during the growth and ossification stages, providing insights into the molecular mechanisms driving rapid osteogenesis. Full article
(This article belongs to the Special Issue Molecular Genetics and Genomics of Ruminants)
Show Figures

Figure 1

26 pages, 4386 KB  
Article
The Expression Level of SOX Family Transcription Factors’ mRNA as a Diagnostic Marker for Osteoarthritis
by Kamila Baran, Ewa Brzeziańska-Lasota, Jakub Kryczka, Joanna Boncela, Aleksandra Czechowska, Karolina Kopacz, Gianluca Padula, Krzysztof Nowak and Marcin Domżalski
J. Clin. Med. 2025, 14(4), 1176; https://doi.org/10.3390/jcm14041176 - 11 Feb 2025
Cited by 2 | Viewed by 1530
Abstract
Background/Objectives: Osteoarthritis (OA) is the most common degenerative and chronic joint disease and is a leading cause of pain and disability in adults worldwide. The SRY-related HMG box (SOX) family transcription factors (TFs) play a crucial role during the pathogenesis [...] Read more.
Background/Objectives: Osteoarthritis (OA) is the most common degenerative and chronic joint disease and is a leading cause of pain and disability in adults worldwide. The SRY-related HMG box (SOX) family transcription factors (TFs) play a crucial role during the pathogenesis of OA; however, their exact mechanisms remain unexplored. The aim of our study was to conduct a bioinformatics analysis of the common interactions of SOX-5, SOX-9, and SOX-11 with other proteins, as well as their role in OA pathogenesis. Methods:SOX5, SOX9, and SOX11 mRNA expression levels in articular cartilage with subchondral bone and synovium from knee OA patients were assessed using the qPCR method. The study group consisted of thirty-one patients (n = 31). Total RNA was isolated from the articular cartilage with subchondral bone and synovium from the affected and unaffected area of the knee joint. Results: Our results revealed a regulatory network between SOX-5, SOX-9, and SOX-11, and various proteins involved in the pathogenesis of knee OA and their collective interactions, which are involved in the regulation of cartilage extracellular matrix (ECM) organization, response to stimulus, regulation of gene expression, inflammatory response, cartilage condensation, and ossification in chondrocytes. Higher expression levels of SOX5, SOX9, and SOX11 mRNA were noted in OA-affected articular cartilage with subchondral bone compared to control tissue (p = 0.00015, p = 0.0024 and p > 0.05, respectively, Mann–Whitney U-test). All studied genes demonstrated elevated mRNA expression levels in the articular cartilage with subchondral bone from stage 4 patients than those with stage 3 (p > 0.05; Mann–Whitney U-test). Lower SOX5, SOX9, and SOX11 mRNA expression levels were found in OA-affected synovium compared to the control tissue (p = 0.0003, p > 0.05 and p = 0.0007, respectively, Mann–Whitney U-test). Decreased SOX9 mRNA expression levels in synovium were noted in patients with stage 4 disease than those with stage 3; however, SOX5 and SOX11 mRNA expression levels were higher in patients with stage 4 (p > 0.05; Mann–Whitney U-test). Conclusions: The results of our research show that the studied SOX TFs play a role in the development of OA, contributing to the formation of pathological changes not only in the articular cartilage, but also in the synovial membrane. The changes in the SOX5, SOX9, and SOX11 mRNA expression levels in the articular cartilage with subchondral bone and synovium may serve as potential molecular diagnostic biomarkers for detecting OA and could indicate the progression of this disease; however, our observations require further investigation. Full article
Show Figures

Figure 1

25 pages, 5762 KB  
Article
Targeting EP2 Receptor Improves Muscle and Bone Health in Dystrophin−/−/Utrophin−/− Double-Knockout Mice
by Xueqin Gao, Yan Cui, Greg Zhang, Joseph J. Ruzbarsky, Bing Wang, Jonathan E. Layne, Xiang Xiao and Johnny Huard
Cells 2025, 14(2), 116; https://doi.org/10.3390/cells14020116 - 14 Jan 2025
Viewed by 1799
Abstract
Duchenne muscular dystrophy (DMD) is a severe genetic muscle disease occurring due to mutations of the dystrophin gene. There is no cure for DMD. Using a dystrophin−/−utrophin−/− (DKO-Hom) mouse model, we investigated the PGE2/EP2 pathway in the pathogenesis of dystrophic [...] Read more.
Duchenne muscular dystrophy (DMD) is a severe genetic muscle disease occurring due to mutations of the dystrophin gene. There is no cure for DMD. Using a dystrophin−/−utrophin−/− (DKO-Hom) mouse model, we investigated the PGE2/EP2 pathway in the pathogenesis of dystrophic muscle and its potential as a therapeutic target. We found that Ep2, Ep4, Cox-2, 15-Pgdh mRNA, and PGE2 were significantly increased in DKO-Hom mice compared to wild-type (WT) mice. The EP2 and EP4 receptors were mainly expressed in CD68+ macrophages and were significantly increased in the muscle tissues of both dystrophin−/− (mdx) and DKO-Hom mice compared to WT mice. Osteogenic and osteoclastogenic gene expression in skeletal muscle also increased in DKO-Hom mice, which correlates with severe muscle heterotopic ossification (HO). Treatment of DKO-Hom mice with the EP2 antagonist PF04418948 for 2 weeks increased body weight and reduced HO and muscle pathology by decreasing both total macrophages (CD68+) and senescent macrophages (CD68+P21+), while increasing endothelial cells (CD31+). PF04418948 also increased bone volume/total volume (BV/TV), the trabecular thickness (Tb.Th) of the tibia trabecular bone, and the cortical bone thickness of both the femur and tibia without affecting spine trabecular bone microarchitecture. In summary, our results indicate that targeting EP2 improves muscle pathology and improves bone mass in DKO mice. Full article
Show Figures

Figure 1

19 pages, 5155 KB  
Article
Ex Vivo Regional Gene Therapy Compared to Recombinant BMP-2 for the Treatment of Critical-Size Bone Defects: An In Vivo Single-Cell RNA-Sequencing Study
by Arijita Sarkar, Matthew C. Gallo, Jennifer A. Bell, Cory K. Mayfield, Jacob R. Ball, Mina Ayad, Elizabeth Lechtholz-Zey, Stephanie W. Chang, Osamu Sugiyama, Denis Evseenko and Jay R. Lieberman
Bioengineering 2025, 12(1), 29; https://doi.org/10.3390/bioengineering12010029 - 1 Jan 2025
Viewed by 1990
Abstract
Ex vivo regional gene therapy is a promising tissue-engineering strategy for bone regeneration: osteogenic mesenchymal stem cells (MSCs) can be genetically modified to express an osteoinductive stimulus (e.g., bone morphogenetic protein-2), seeded onto an osteoconductive scaffold, and then implanted into a bone defect [...] Read more.
Ex vivo regional gene therapy is a promising tissue-engineering strategy for bone regeneration: osteogenic mesenchymal stem cells (MSCs) can be genetically modified to express an osteoinductive stimulus (e.g., bone morphogenetic protein-2), seeded onto an osteoconductive scaffold, and then implanted into a bone defect to exert a therapeutic effect. Compared to recombinant human BMP-2 (rhBMP-2), which is approved for clinical use, regional gene therapy may have unique benefits related to the addition of MSCs and the sustained release of BMP-2. However, the cellular and transcriptional mechanisms regulating the response to these two strategies for BMP-2 mediated bone regeneration are largely unknown. Here, for the first time, we performed single-cell RNA sequencing (10x Genomics) of hematoma tissue in six rats with critical-sized femoral defects that were treated with either regional gene therapy or rhBMP-2. Our unbiased bioinformatic analysis of 2393 filtered cells in each group revealed treatment-specific differences in their cellular composition, transcriptional profiles, and cellular communication patterns. Gene therapy treatment induced a more robust chondrogenic response, as well as a decrease in the proportion of fibroblasts and the expression of profibrotic pathways. Additionally, gene therapy was associated with an anti-inflammatory microenvironment; macrophages expressing canonical anti-inflammatory markers were more common in the gene therapy group. In contrast, pro-inflammatory markers were more highly expressed in the rhBMP-2 group. Collectively, the results of our study may offer insights into the unique pathways through which ex vivo regional gene therapy can augment bone regeneration compared to rhBMP-2. Furthermore, an improved understanding of the cellular pathways involved in segmental bone defect healing may allow for the further optimization of regional gene therapy or other bone repair strategies. Full article
Show Figures

Graphical abstract

22 pages, 6052 KB  
Article
In Vitro Induction of Hypertrophic Chondrocyte Differentiation of Naïve MSCs by Strain
by Thomas Jörimann, Priscilla Füllemann, Anita Jose, Romano Matthys, Esther Wehrle, Martin J. Stoddart and Sophie Verrier
Cells 2025, 14(1), 25; https://doi.org/10.3390/cells14010025 - 30 Dec 2024
Viewed by 1433
Abstract
In the context of bone fractures, the influence of the mechanical environment on the healing outcome is widely accepted, while its influence at the cellular level is still poorly understood. This study explores the influence of mechanical load on naïve mesenchymal stem cell [...] Read more.
In the context of bone fractures, the influence of the mechanical environment on the healing outcome is widely accepted, while its influence at the cellular level is still poorly understood. This study explores the influence of mechanical load on naïve mesenchymal stem cell (MSC) differentiation, focusing on hypertrophic chondrocyte differentiation. Unlike primary bone healing, which involves the direct differentiation of MSCs into bone-forming cells, endochondral ossification uses an intermediate cartilage template that remodels into bone. A high-throughput uniaxial bioreactor system (StrainBot) was used to apply varying percentages of strain on naïve MSCs encapsulated in GelMa hydrogels. This research shows that cyclic uniaxial compression alone directs naïve MSCs towards a hypertrophic chondrocyte phenotype. This was demonstrated by increased cell volumes and reduced glycosaminoglycan (GAG) production, along with an elevated expression of hypertrophic markers such as MMP13 and Type X collagen. In contrast, Type II collagen, typically associated with resting chondrocytes, was poorly detected under mechanical loading alone conditions. The addition of chondrogenic factor TGFβ1 in the culture medium altered these outcomes. TGFβ1 induced chondrogenic differentiation, as indicated by higher GAG/DNA production and Type II collagen expression, overshadowing the effect of mechanical loading. This suggests that, under mechanical strain, hypertrophic differentiation is hindered by TGFβ1, while chondrogenesis is promoted. Biochemical analyses further confirmed these findings. Mechanical deformation alone led to a larger cell size and a more rounded cell morphology characteristic of hypertrophic chondrocytes, while lower GAG and proteoglycan production was observed. Immunohistology staining corroborated the gene expression data, showing increased Type X collagen with mechanical strain. Overall, this study indicates that mechanical loading alone drives naïve MSCs towards a hypertrophic chondrocyte differentiation path. These insights underscore the critical role of mechanical forces in MSC differentiation and have significant implications for bone healing, regenerative medicine strategies and rehabilitation protocols. Full article
(This article belongs to the Section Tissues and Organs)
Show Figures

Figure 1

14 pages, 4450 KB  
Article
Integrated Transcriptomic and Proteomic Analyses of Antler Growth and Ossification Mechanisms
by Ruijia Liu, Pan Zhang, Jiade Bai, Zhenyu Zhong, Yunfang Shan, Zhibin Cheng, Qingxun Zhang, Qingyun Guo, Hao Zhang and Bo Zhang
Int. J. Mol. Sci. 2024, 25(23), 13215; https://doi.org/10.3390/ijms252313215 - 9 Dec 2024
Cited by 1 | Viewed by 1514
Abstract
Antlers are the sole mammalian organs capable of continuous regeneration. This distinctive feature has evolved into various biomedical models. Research on mechanisms of antler growth, development, and ossification provides valuable insights for limb regeneration, cartilage-related diseases, and cancer mechanisms. Here, ribonucleic acid sequencing [...] Read more.
Antlers are the sole mammalian organs capable of continuous regeneration. This distinctive feature has evolved into various biomedical models. Research on mechanisms of antler growth, development, and ossification provides valuable insights for limb regeneration, cartilage-related diseases, and cancer mechanisms. Here, ribonucleic acid sequencing (RNA-seq) and four-dimensional data-independent acquisition (4D DIA) technologies were employed to examine gene and protein expression differences among four tissue layers of the Chinese milu deer antler: reserve mesenchyme (RM), precartilage (PC), transition zone (TZ), cartilage (CA). Overall, 4611 differentially expressed genes (DEGs) and 2388 differentially expressed proteins (DEPs) were identified in the transcriptome and proteome, respectively. Among the 828 DEGs common to both omics approaches, genes from the collagen, integrin, and solute carrier families, and signaling molecules were emphasized for their roles in the regulation of antler growth, development, and ossification. Bioinformatics analysis revealed that in addition to being regulated by vascular and nerve regeneration pathways, antler growth and development are significantly influenced by numerous cancer-related signaling pathways. This indicates that antler growth mechanisms may be similar to those of cancer cell proliferation and development. This study lays a foundation for future research on the mechanisms underlying the rapid growth and ossification of antlers. Full article
(This article belongs to the Section Molecular Informatics)
Show Figures

Figure 1

Back to TopTop