Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (173)

Search Parameters:
Keywords = over-voltage control

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2164 KB  
Article
Coordinated Optimization of Multiple Reactive Power Sources for Transient Overvoltage Suppression for New Energy Sending-Out System
by Qinglei Zhang, Lei Luo, Xiaoping Wang, Dehai Zhang, Haibo Li, Zongxiang Lu and Ying Qiao
Inventions 2025, 10(5), 80; https://doi.org/10.3390/inventions10050080 - 1 Sep 2025
Viewed by 351
Abstract
With the implementation of China’s “dual carbon” strategy, the installed capacity of new energy has grown rapidly. Wind power and photovoltaic power have accounted for more than 40%, but the integration of power electronic apparatus into the grid has resulted in the manifestation [...] Read more.
With the implementation of China’s “dual carbon” strategy, the installed capacity of new energy has grown rapidly. Wind power and photovoltaic power have accounted for more than 40%, but the integration of power electronic apparatus into the grid has resulted in the manifestation of a system with “low inertia and weak damping”, which can easily lead to transient overvoltage problems at transmitters when high-voltage direct-current (HVDC) latching faults occur. Although a variety of dynamic reactive power optimization strategies have been proposed in the existing research, most of them are aimed at single equipment, and multi-reactive power source collaborative control schemes are lacking. In this paper, we innovatively establish a transient voltage analysis model for a new energy transmitter, derive the expression of overvoltage amplitude, and propose a method for the construction of a multi-reactive source collaborative optimization model, which can effectively suppress transient overvoltage through capacity and initial output configuration. We provide a new idea for the safe operation of a significant percentage of new energy grids. The case analysis shows that the co-optimization method outlined in this paper is an effective solution to suppress the transient overvoltage triggered by AC faults and has wide application value. Full article
Show Figures

Figure 1

22 pages, 7901 KB  
Article
Coordination of Multiple BESS Units in a Low-Voltage Distribution Network Using Leader–Follower and Leaderless Control
by Margarita Kitso, Bagas Ihsan Priambodo, Joel Alpízar-Castillo, Laura Ramírez-Elizondo and Pavol Bauer
Energies 2025, 18(17), 4566; https://doi.org/10.3390/en18174566 - 28 Aug 2025
Viewed by 481
Abstract
High shares of photovoltaic energy in low-voltage distribution systems lead to voltage limit violations. Deploying energy storage systems in the network can compensate for the mismatch between the generation and the consumption; nevertheless, the mismatch is unevenly distributed throughout the network, suggesting aggregated [...] Read more.
High shares of photovoltaic energy in low-voltage distribution systems lead to voltage limit violations. Deploying energy storage systems in the network can compensate for the mismatch between the generation and the consumption; nevertheless, the mismatch is unevenly distributed throughout the network, suggesting aggregated control strategies as a solution. This paper proposes two coordination control strategies of batteries to address network overvoltage conditions caused by high penetration of photovoltaic systems. The leader–follower coordination strategy determines a battery’s utilization factor by using the node closest to a voltage violation as a reference. The leaderless control uses a shared utilization factor to avoid excessive usage of a particular agent in the network. We tested both approaches in the 18-node CIGRE network for scenarios when not all agents were available and when they had different starting states-of-charge. Our results demonstrate that both strategies are capable of voltage control; however, the leader–follower control leads to uneven storage usage, ultimately leading to short-time failure to comply with the voltage limits under extreme conditions where neighbouring agents must compensate for the unavailable one. Conversely, the leaderless approach presents more balanced use of the agents thanks to the distributed utilization factor, resulting in a more robust control strategy. Full article
Show Figures

Figure 1

20 pages, 4119 KB  
Article
Research on Pole-to-Ground Fault Ride-Through Strategy for Hybrid Half-Wave Alternating MMC
by Yanru Ding, Yi Wang, Yuhua Gao, Zimeng Su, Xiaoyu Song, Xiaoyin Wu and Yilei Gu
Electronics 2025, 14(14), 2893; https://doi.org/10.3390/electronics14142893 - 19 Jul 2025
Viewed by 433
Abstract
Considering the lightweight requirement of modular multilevel converter (MMC), the implementation of arm multiplexing significantly improves submodule utilization and achieves remarkable lightweight performance. However, the challenges of overvoltage and energy imbalance during pole-to-ground fault still exist. To address these issues, this paper proposes [...] Read more.
Considering the lightweight requirement of modular multilevel converter (MMC), the implementation of arm multiplexing significantly improves submodule utilization and achieves remarkable lightweight performance. However, the challenges of overvoltage and energy imbalance during pole-to-ground fault still exist. To address these issues, this paper proposes a hybrid half-wave alternating MMC (HHA-MMC) and presents its fault ride-through strategy. First, a transient equivalent model based on topology and operation principles is established to analyze fault characteristics. Depending on the arm’s alternative multiplexing feature, the half-wave shift non-blocking fault ride-through strategy is proposed to eliminate system overvoltage and fault current. Furthermore, to eliminate energy imbalance caused by asymmetric operation during non-blocking transients, dual-modulation energy balancing control based on the third-harmonic current and the phase-shifted angle is introduced. This strategy ensures capacitor voltage balance while maintaining 50% rated power transmission during the fault period. Finally, simulations and experiments demonstrate that the lightweight HHA-MMC successfully accomplishes non-blocking pole-to-ground fault ride-through with balanced arm energy distribution, effectively enhancing power supply reliability. Full article
Show Figures

Figure 1

17 pages, 3483 KB  
Article
A Feasibility Study of a Virtual Power Line Device to Improve Hosting Capacity in Renewable Energy Sources
by Seong-Eun Rho, Sung-Moon Choi, Joong-Seon Lee, Hyun-Sang You, Seung-Ho Lee and Dae-Seok Rho
Energies 2025, 18(14), 3714; https://doi.org/10.3390/en18143714 - 14 Jul 2025
Viewed by 429
Abstract
As many renewable energy sources have been waiting to be interconnected with distribution systems due to the lack of power system infrastructure in Korea, studies to solve the delayed problem for renewable energy sources required. In order to overcome these problems, this paper [...] Read more.
As many renewable energy sources have been waiting to be interconnected with distribution systems due to the lack of power system infrastructure in Korea, studies to solve the delayed problem for renewable energy sources required. In order to overcome these problems, this paper presents an introduction model and optimal capacity algorithm of a VPL (virtual power line) device, which is a virtual power line operation technology to manage the power system by operating an ESS installed at the coupling point of renewable energy source without additionally expanding the power system infrastructure in a conventional way; this paper also proposes an economic evaluation method to assess the feasibility of the VPL device. The optimal capacity of the VPL device is determined by solving the over-voltage problem for the customer, and the economic evaluation method for the VPL device is considered by cost and benefit elements to evaluate the feasibility of introduction model for VPL device. From the simulation result of the proposed optimal capacity algorithm and economic evaluation method based on the introduction model in the VPL device, and it was confirmed that the optimal kW capacity of VPL device was selected as the maximum value in power control values, and the optimal kWh capacity was also determined by accumulating the power control values over the time intervals; also, the proper capacity of the VPL can be more economical than the investment cost of power system infrastructure expansion in the conventional method. Full article
(This article belongs to the Special Issue Stationary Energy Storage Systems for Renewable Energies)
Show Figures

Figure 1

20 pages, 3691 KB  
Article
Distributed Voltage Optimal Control Method for Energy Storage Systems in Active Distribution Network
by Yang Liu, Wenbin Liu, Ying Wu and Haidong Yu
Energies 2025, 18(14), 3670; https://doi.org/10.3390/en18143670 - 11 Jul 2025
Viewed by 441
Abstract
High permeability distributed photovoltaic (PV) access to the distribution network makes it easy to cause frequent overvoltage of the system. However, the traditional centralized optimization scheduling method is difficult to meet the real-time voltage regulation requirements due to high communication costs. In this [...] Read more.
High permeability distributed photovoltaic (PV) access to the distribution network makes it easy to cause frequent overvoltage of the system. However, the traditional centralized optimization scheduling method is difficult to meet the real-time voltage regulation requirements due to high communication costs. In this regard, this paper proposes a distributed fast voltage regulation method for energy storage systems (ESSs) in distribution networks. Firstly, to reduce the communication burden, the distribution network cluster is divided according to the electrical distance modularity index. Secondly, the distributed control model of active distribution network with the goal of voltage recovery and ESS power balance is established, and a distributed controller is designed. The feedback-control gains are optimized to improve the convergence rate. Finally, the IEEE33 bus system and IEEE69 bus system are applied for simulation. The results show that the proposed distributed optimal control method can effectively improve the voltage level of the distribution network under the condition of ensuring the ESS power balance. Full article
Show Figures

Figure 1

19 pages, 3871 KB  
Review
A Comprehensive Review of the Art of Cell Balancing Techniques and Trade-Offs in Battery Management Systems
by Adnan Ashraf, Basit Ali, Mothanna S. A. Al Sunjury and Pietro Tricoli
Energies 2025, 18(13), 3321; https://doi.org/10.3390/en18133321 - 24 Jun 2025
Viewed by 1598
Abstract
The battery pack is a critical component of electric vehicles, with lithium-ion cells being a frequently preferred choice. Lithium-ion cells are known for long life, high power and energy density, and are reliable for a broad range of temperatures. However, these batteries have [...] Read more.
The battery pack is a critical component of electric vehicles, with lithium-ion cells being a frequently preferred choice. Lithium-ion cells are known for long life, high power and energy density, and are reliable for a broad range of temperatures. However, these batteries have a drawback of over-voltage, under-voltage, thermal runaway, and especially, state of charge or voltage imbalance. Among these, the cell imbalance is particularly important because it causes an uneven power dissipation in each cell, resulting in non-uniform temperature distribution. This uneven temperature distribution negatively affects the lifetime and efficiency of a battery pack. Cell imbalance is mitigated by cell balancing techniques, of which several methods have been presented over the last few years. These methods consider different power electronics circuits and control approaches to optimise cell balancing characteristics. This paper reviews basic to advanced cell balancing techniques and compares their circuit designs, costs, switching stresses, complexity, sizes, and control techniques to highlight the recent trends and future directions. This paper also compares the recent trend of machine learning integration with basic cell balancing topologies and provides a critical analysis of the outcomes. Full article
Show Figures

Figure 1

20 pages, 3130 KB  
Article
Equivalent Modeling of Disconnector Operation Based on Dynamic Arc Characteristics and VFTO Characteristic Analysis
by Bin Liu, Yong Liu, Junjun Xiong, Xiaopin Deng, Zhenyu Guo, Xueyou Zhang, Bingyu Mei and Zhenhua Li
Energies 2025, 18(12), 3045; https://doi.org/10.3390/en18123045 - 9 Jun 2025
Viewed by 475
Abstract
To thoroughly analyze the high-frequency and high-amplitude electromagnetic disturbances generated during disconnector operation, this paper proposes an equivalent modeling approach based on dynamic arc behavior. The model incorporates the resistance, inductance, and capacitance characteristics of the arc and consists of four main modules: [...] Read more.
To thoroughly analyze the high-frequency and high-amplitude electromagnetic disturbances generated during disconnector operation, this paper proposes an equivalent modeling approach based on dynamic arc behavior. The model incorporates the resistance, inductance, and capacitance characteristics of the arc and consists of four main modules: arc reignition, arc extinction, arc resistance control, and switch control. Complete logical coordination among these modules is designed to enhance the model’s performance in terms of dynamic response and modeling accuracy compared to traditional methods. By systematically comparing simulation results with experimental data and conventional model outputs, the effectiveness and reliability of the proposed model in accurately reflecting the operational characteristics of disconnectors are validated. Furthermore, a comparative analysis of transient waveform characteristics from both experiment and simulation is conducted, with key parameters extracted and probability density functions constructed. The results demonstrate the high-precision fitting capability of the model and further reveal the statistical distribution patterns of very fast transient overvoltage single-pulse characteristics. Full article
Show Figures

Figure 1

21 pages, 4447 KB  
Article
Fairness-Oriented Volt–Watt Control Methods of PV Units for Over-Voltage Suppression in PV-Enriched Smart Cities
by Tohid Rahimi, Shafait Ahmed, Julian L. Cardenas-Barrera and Chris Diduch
Smart Cities 2025, 8(3), 88; https://doi.org/10.3390/smartcities8030088 - 26 May 2025
Viewed by 2587
Abstract
The higher integration of photovoltaic (PV) units is an inevitable component of smart city development. Thanks to smart meter devices that can record the exchange of power between the grid and customers, it is expected that homeowners and businesses will tend to install [...] Read more.
The higher integration of photovoltaic (PV) units is an inevitable component of smart city development. Thanks to smart meter devices that can record the exchange of power between the grid and customers, it is expected that homeowners and businesses will tend to install PV arrays on their rooftops and parking lots to benefit from selling power back to the grid. However, the overvoltage issue resulting from high PV penetration is a major challenge that necessitates the active power curtailment of PV units to ensure power grid stability. Fairness-oriented methods aim to minimize the active power of PV units as much as possible, adopting a fairer approach, and then address the PV owner’s satisfaction with fair profit and loss. Maintaining voltage within a limited standard range under very low load conditions while prioritizing PV inverters’ participation in reactive power contribution and attempting to ensure fairer curtailment of active power presents challenges to existing control design approaches. This paper presents twelve new volt–watt curve design methods to achieve these goals and address the challenges. The methods yield polynomial curves, piecewise linear curves, and single linear curves. A unique voltage sensitivity value for each PV inverter is used to determine the control region area and the slope of the curve at the starting point in certain instances. The effectiveness of the proposed methods is discussed by evaluating their capabilities on the 37-bus IEEE system. Full article
Show Figures

Figure 1

25 pages, 3566 KB  
Article
Active Gate Drive Based on Negative Feedback for SiC MOSFETs to Suppress Crosstalk Parasitic Oscillation and Avoid Decreased Efficiency
by Tiancong Shao, Yuhan Sun, Zhitong Bai, Trillion Q. Zheng, Yajing Zhang and Pengyu Jia
Electronics 2025, 14(11), 2100; https://doi.org/10.3390/electronics14112100 - 22 May 2025
Viewed by 993
Abstract
The high switching speed of SiC MOSFETs can induce resonance between parasitic inductors and capacitors, owing to rapid changes in current and voltage, leading to excessive crosstalk parasitic oscillation. This can increase SiC MOSFETs’ gate oxide voltage stress, reducing their service life and [...] Read more.
The high switching speed of SiC MOSFETs can induce resonance between parasitic inductors and capacitors, owing to rapid changes in current and voltage, leading to excessive crosstalk parasitic oscillation. This can increase SiC MOSFETs’ gate oxide voltage stress, reducing their service life and even directly leading to gate overvoltage failure. However, there is still a lack of investigations of active control of gate driving in systematic converters because crosstalk parasitic oscillation, indicated by high frequencies in MHz, is challenging to control in a power converter with gate voltage stability and high switching speed. This paper investigates an active gate drive based on negative feedback to fully drive SiC MOSFETs with high efficiency and stable gate voltage to exploit the advantages of high dv/dt over 20 V/ns in SiC MOSFETs and further realize the miniaturization of power conversion systems. It first investigates a dynamic model of SiC MOSFET gate-interfered oscillation in parallel application derived from a circuit with equivalent junction capacitance in power devices. Then, the operating principle of the Negative Feedback Active Gate Drive (NFAGD) application strategy for parallel SiC MOSFETs is demonstrated. Finally, the experiment verifies the proposed strategy’s effectiveness in suppressing crosstalk parasitic oscillation in parallel SiC MOSFETs, and an 8 kW synchronous buck converter prototype is built to verify the NFAGD’s performance in systematic converter applications. Full article
Show Figures

Figure 1

17 pages, 3443 KB  
Article
Low Voltage Ride Through Coordination Control Strategy of DFIG with Series Grid Side Converter
by Xin Qi, Can Ding, Jun Zhang, Quan Wang and Wenhui Chen
Energies 2025, 18(10), 2537; https://doi.org/10.3390/en18102537 - 14 May 2025
Viewed by 578
Abstract
The present study investigates the control strategy of a novel doubled-fed induction generator (DFIG) with a series grid-side converter (SGSC) during grid faults. The rotor-side inverter is subject to a control strategy derived from the Model Predictive Current Control (MPCC) theory, which is [...] Read more.
The present study investigates the control strategy of a novel doubled-fed induction generator (DFIG) with a series grid-side converter (SGSC) during grid faults. The rotor-side inverter is subject to a control strategy derived from the Model Predictive Current Control (MPCC) theory, which is implemented during periods of fault occurrence; for the series grid-side converter, the positive and negative sequence component control is implemented during both steady state and fault periods to enhance system stability and performance. The proposed coordinated control strategy is implemented on a doubly fed turbine with SGSC, while taking into account different degrees of symmetric and asymmetric faults to further evaluate the efficacy of the proposed method. The results of the simulations demonstrate the efficacy of the model-predictive current control scheme applied to the rotor-side converter under conditions of asymmetric faults. This enables the suppression of a range of phenomena, including rotor overcurrent, stator overcurrent, and overvoltage, electromagnetic torque ripple, and DC bus voltage during low-voltage ride-through (LVRT), among others. The present study confirms the viability of implementing positive and negative sequences of voltage separation control in the SGSC during both grid faults and steady state. This approach is expected to minimize the switching of SGSC control strategies and thereby reduce output power fluctuations. The Rotor Side Converter (RSC) and SGSC can perform coordinated control during faults, and the proposed method is able to improve low-voltage ride-through performance compared to existing methods, thereby preventing damage to the converter under multiple fault conditions. Full article
(This article belongs to the Special Issue Control and Optimization of Power Converters)
Show Figures

Figure 1

53 pages, 35644 KB  
Article
Impact Analysis and Optimal Placement of Distributed Energy Resources in Diverse Distribution Systems for Grid Congestion Mitigation and Performance Enhancement
by Hasan Iqbal, Alexander Stevenson and Arif I. Sarwat
Electronics 2025, 14(10), 1998; https://doi.org/10.3390/electronics14101998 - 14 May 2025
Cited by 1 | Viewed by 1375
Abstract
The integration of Distributed Energy Resources (DERs) such as photovoltaic (PV) systems, battery energy storage systems (BESSs), and electric vehicles (EVs) introduces new challenges to distribution networks despite offering opportunities for decarbonization and grid flexibility. This paper proposes a scalable simulation-based framework that [...] Read more.
The integration of Distributed Energy Resources (DERs) such as photovoltaic (PV) systems, battery energy storage systems (BESSs), and electric vehicles (EVs) introduces new challenges to distribution networks despite offering opportunities for decarbonization and grid flexibility. This paper proposes a scalable simulation-based framework that combines deterministic nodal hosting capacity analysis with probabilistic Monte Carlo simulations to evaluate and optimize DER integration in diverse feeder types. The methodology is demonstrated using the IEEE 13-bus and 123-bus test systems under full-year time-series simulations. Deterministic hosting capacity analysis shows that individual nodes can accommodate up to 76% of base load from PV sources, while Monte Carlo analysis reveals a network-wide average hosting capacity of 62%. Uncoordinated DER deployment leads to increased system losses, overvoltages, and thermal overloads. In contrast, coordinated integration achieves up to 38.7% reduction in power losses, 25% peak demand shaving, and voltage improvements from 0.928 p.u. to 0.971 p.u. Additionally, congestion-centric optimization reduces thermal overload indices by up to 65%. This framework aids utilities and policymakers in making informed decisions on DER planning by capturing both spatial and stochastic constraints. Its modular design allows for flexible adaptation across feeder scales and configurations. The results highlight the need for node-specific deployment strategies and probabilistic validation to ensure reliable, efficient DER integration. Future work will incorporate optimization-driven control and hardware-in-the-loop testing to support real-time implementation. Full article
(This article belongs to the Special Issue Planning, Scheduling and Control of Grids with Renewables)
Show Figures

Figure 1

24 pages, 4886 KB  
Article
Research on Coordinated Control of Dynamic Reactive Power Sources of DC Blocking and Commutation Failure Transient Overvoltage in New Energy Transmission
by Shuqin Sun, Zhenghai Yuan, Dezhi Chen, Zaihua Li, Xiaojun Tang, Yunting Song and Guanghao Zhou
Energies 2025, 18(9), 2349; https://doi.org/10.3390/en18092349 - 4 May 2025
Cited by 1 | Viewed by 701
Abstract
With the large-scale deployment of renewable energy, transmission systems for new energy sources are increasingly exposed to transient overvoltage issues induced by DC blockages and commutation failures. To address the challenges of an imprecise response to multiple fault scenarios and the inefficiency of [...] Read more.
With the large-scale deployment of renewable energy, transmission systems for new energy sources are increasingly exposed to transient overvoltage issues induced by DC blockages and commutation failures. To address the challenges of an imprecise response to multiple fault scenarios and the inefficiency of independent device actions in existing dynamic reactive power control schemes, this paper proposes a coordinated optimization control strategy integrating multiple dynamic reactive power sources tailored to different fault characteristics. An equivalent model of the renewable energy DC transmission system is established to elucidate the underlying mechanisms of transient overvoltage formation under various fault conditions. By employing trajectory sensitivity analysis and parameter perturbation methods, the influence patterns of control parameters on transient overvoltage behaviors across different fault scenarios are quantitatively assessed, thereby overcoming the limitations of traditional empirical parameter tuning approaches. Subsequently, a multi-source coordinated optimization model is developed with the objective of minimizing transient overvoltages under simultaneous dual-fault conditions. A multi-objective particle swarm optimization algorithm, incorporating comprehensive trajectory sensitivity and dynamically adaptive inertia weights, is introduced, alongside Pareto front theory, to achieve rapid and balanced optimization among competing objectives. Simulation results validate that the proposed strategy significantly enhances transient overvoltage suppression across diverse fault conditions. The findings provide robust theoretical foundations and practical guidance for the refined parameter tuning and high-efficiency coordinated control of dynamic reactive power sources in renewable energy transmission systems. Full article
Show Figures

Figure 1

17 pages, 2821 KB  
Article
Power Feasible Region Modeling and Voltage Support Control for V2G Charging Station Under Grid Fault Conditions
by Jinxin Ouyang, Ang Li, Yanbo Diao and Fei Huang
Sustainability 2025, 17(8), 3713; https://doi.org/10.3390/su17083713 - 19 Apr 2025
Cited by 1 | Viewed by 444
Abstract
The charging station (CS) is generally directly off-grid under a grid fault, which has become a key technical bottleneck that restricts the sustainable development of new energy transportation systems. During a grid fault, the CS under the vehicle-to-grid (V2G) mode experiences a reduction [...] Read more.
The charging station (CS) is generally directly off-grid under a grid fault, which has become a key technical bottleneck that restricts the sustainable development of new energy transportation systems. During a grid fault, the CS under the vehicle-to-grid (V2G) mode experiences a reduction in active power due to the current limitation of the voltage source converter (VSC), which may cause the DC voltage to exceed its limitations under unbalanced power. The effect of the active and reactive power of CS in low- and medium-voltage distribution networks on supporting the PCC voltage under the limitation of DC voltage and VSC current has not been analyzed, and a control method for PCC voltage support for CS has not been established. Therefore, a power boundary that avoids the DC overvoltage and AC overcurrent of the CS is defined. A power feasible region for the CS considering fault duration is established. The characteristic that the power feasible region shrinks with the increase in duration is found, and a calculation method for the critical clearing time of a fault to avoid DC overvoltage is proposed. The relationship between PCC voltage and power injected by the CS is analyzed. The property that the control point of maximum voltage support lies at the boundary of the power feasible region is revealed. A control method of PCC voltage support that considers the limitation of DC voltage and VSC current for the CS is proposed. Simulation verification shows that the support capability of CS for PCC voltage during a fault is significantly enhanced by the proposed method while securing the DC voltage. Full article
(This article belongs to the Topic Advanced Electric Vehicle Technology, 2nd Volume)
Show Figures

Figure 1

19 pages, 3391 KB  
Article
Characteristics Evaluation and Coordinated Control Strategy of Power-Electronics-Based MMC-HVDC Systems Connected with Wind Farms
by Lin Xu, Chang Liu, Jingyi Zhang, Zhen Tian, Pan Feng and Meng Huang
Appl. Sci. 2025, 15(5), 2582; https://doi.org/10.3390/app15052582 - 27 Feb 2025
Cited by 2 | Viewed by 776
Abstract
Modular multilevel converter–high-voltage direct current (MMC-HVDC) systems are a key technology for integrating large-scale offshore wind farms due to their flexibility, controllability, and decoupled active and reactive power characteristics. However, offshore wind farms rely on power electronic converters, resulting in low inertia, which [...] Read more.
Modular multilevel converter–high-voltage direct current (MMC-HVDC) systems are a key technology for integrating large-scale offshore wind farms due to their flexibility, controllability, and decoupled active and reactive power characteristics. However, offshore wind farms rely on power electronic converters, resulting in low inertia, which can worsen frequency fluctuations and affect system stability during major disturbances. Additionally, the decoupled power control of MMC-HVDC systems limits wind farms’ inertia contribution to the AC grid, exacerbating inertia deficiency. To address this, a coordinated inertia support strategy is proposed, utilizing a DC voltage–frequency mapping method that enables wind farms to perceive frequency variations without communication and rapidly provide inertia response. This strategy coordinates wind farms and MMC-HVDC systems to enhance frequency support. Simulations demonstrate that the proposed strategy overcomes MMC-HVDC’s decoupling effect, accelerates frequency recovery, and improves the inertia response speed, achieving faster power support and higher peak power output, thereby enhancing frequency stability. Furthermore, PSCAD/EMTDC simulations were conducted to analyze the transient characteristics of MMC-HVDC under AC-side faults, verifying that braking resistors (BRs) effectively suppress DC overvoltage, reducing wind farm power curtailment and improving system security. This study provides a new approach for frequency stability control in MMC-HVDC-based offshore wind integration and serves as a reference for further optimization of inertia support and fault protection strategies. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

18 pages, 2913 KB  
Article
Transient Overvoltage Prediction Method for Renewable Energy Stations via Knowledge-Embedded Enhanced Deep Neural Network
by Guangyao Wang, Jun Liu, Jiacheng Liu, Yuting Li, Tianxiao Mo and Sheng Ju
Energies 2025, 18(5), 1090; https://doi.org/10.3390/en18051090 - 24 Feb 2025
Cited by 1 | Viewed by 646
Abstract
When a line-commutated converter–high-voltage direct current (LCC-HVDC) transmission system with large-scale integration of renewable energy encounters HVDC-blocking events, the sending-end power system is prone to transient overvoltage (TOV) risks. Renewable energy units that are connected via power electronic devices are susceptible to large-scale [...] Read more.
When a line-commutated converter–high-voltage direct current (LCC-HVDC) transmission system with large-scale integration of renewable energy encounters HVDC-blocking events, the sending-end power system is prone to transient overvoltage (TOV) risks. Renewable energy units that are connected via power electronic devices are susceptible to large-scale cascading disconnections due to electrical endurance and insulation limitations when subjected to an excessively high TOV, which poses a serious threat to the safe and stable operation of the system. Therefore, the prediction of TOV at renewable energy stations (RES) under DC blocking (DCB) scenarios is crucial for developing strategies for the high-voltage ride-through of renewable energy sources and ensuring system stability. In this paper, an approximate analytical expression for the TOV at RES under DCB fault conditions is firstly derived, based on a simplified equivalent circuit of the sending-end system that includes multiple DC transmission lines and RES, which can take into consideration the multiple renewable station short-circuit ratio (MRSCR). Building on this, a knowledge-embedded enhanced deep neural network (KEDNN) approach is proposed for predicting the RES’s TOV for complex power systems. By incorporating theoretical calculation values of the TOV into the input features, the task of the deep neural network (DNN) shifts from mining relationships within large datasets to revealing the correlation patterns between theoretical calculations and real values, thereby improving the robustness of the prediction model in cases of insufficient training data and irrational feature construction. Finally, the proposed method is tested on a real-world regional power system in China, and the results validate the effectiveness of the proposed method. The approximate analytical expression for the TOV at RES and the KEDNN-based TOV prediction method proposed in this paper can provide valuable references for scholars and engineers working in the field of power system operation and control, particularly in the areas of overvoltage theoretical calculation and mitigation. Full article
(This article belongs to the Section F1: Electrical Power System)
Show Figures

Figure 1

Back to TopTop