Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (58)

Search Parameters:
Keywords = oxaliplatin-induced peripheral neuropathy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2870 KB  
Article
Comparative Effects of THC and CBD on Chemotherapy-Induced Peripheral Neuropathy: Insights from a Large Real-World Self-Reported Dataset
by Ravit Geva, Tali Hana Bar-Lev, Lee Ahuva Lavi Kutchuk, Tali Schaffer, Dan Mirelman, Sharon Pelles-Avraham, Ido Wolf and Lihi Bar-Lev Schleider
Biomedicines 2025, 13(8), 1921; https://doi.org/10.3390/biomedicines13081921 - 6 Aug 2025
Viewed by 594
Abstract
Background/Objective: Chemotherapy-induced peripheral neuropathy (CIPN) is a common dose-limiting adverse effect of various chemotherapeutic agents. Previous work demonstrated that cannabis alleviates symptoms of oxaliplatin-induced CIPN. To evaluate the effects of cannabis components, cannabidiol (CBD) and tetrahydrocannabinol (THC), on CIPN-related symptoms. Methods: We reviewed [...] Read more.
Background/Objective: Chemotherapy-induced peripheral neuropathy (CIPN) is a common dose-limiting adverse effect of various chemotherapeutic agents. Previous work demonstrated that cannabis alleviates symptoms of oxaliplatin-induced CIPN. To evaluate the effects of cannabis components, cannabidiol (CBD) and tetrahydrocannabinol (THC), on CIPN-related symptoms. Methods: We reviewed a patient-reported outcomes dataset from “Tikun Olam,” a major medical cannabis provider. Of 1493 patients, 802 reported at least one CIPN symptom at baseline, including a burning sensation, cold sensation, paresthesia (prickling) and numbness, and 751 of them met the study inclusion criteria. Patients were categorized into THC-high/CBD-low and CBD-high/THC-low groups. Symptom changes after six months of cannabis use were analyzed using K-means clustering and logistic regression, incorporating interactions between baseline symptoms and THC and CBD doses. Linear regression assessed changes in activities of daily living (ADL) and quality of life (QOL). Results: Both groups reported symptom improvement. The THC-high group showed significantly greater improvement in burning sensation and cold sensation (p = 0.024 and p = 0.008). Improvements in ADL and QOL were also significantly higher in the THC group (p = 0.029 and p = 0.006). A significant interaction between THC and CBD was observed for symptom improvement (p < 0.0001). Conclusions: Cannabis effectively reduces CIPN symptoms and improves QOL and ADL. Higher THC doses were more effective than lower doses, with combined CBD and THC doses yielding greater symptom relief. Full article
Show Figures

Figure 1

10 pages, 1522 KB  
Case Report
Percutaneous Peripheral Nerve Stimulation in Chemotherapy-Induced Neuropathy: A Case Report
by Sara Mogedano-Cruz, Carlos Romero-Morales, Mónica de la Cueva-Reguera, Kristin L. Campbell and Pablo Herrero
Reports 2025, 8(3), 133; https://doi.org/10.3390/reports8030133 - 1 Aug 2025
Viewed by 583
Abstract
Background and Clinical Significance: Chemotherapy-induced peripheral neuropathy (CIPN) is a frequent and limiting complication of oncological treatment, particularly in patients receiving oxaliplatin. Its onset can significantly affect the quality of life and compromise the continuity of the antineoplastic therapy. Due to the [...] Read more.
Background and Clinical Significance: Chemotherapy-induced peripheral neuropathy (CIPN) is a frequent and limiting complication of oncological treatment, particularly in patients receiving oxaliplatin. Its onset can significantly affect the quality of life and compromise the continuity of the antineoplastic therapy. Due to the limited efficacy of available pharmacological therapies, percutaneous electrical nerve stimulation (PENS) has been proposed as a non-invasive alternative for symptom management. Case presentation: We report the case of a 75-year-old woman with colorectal adenocarcinoma who developed CIPN following oxaliplatin administration. She underwent a 12-week course of PENS targeting the median nerve, with weekly sessions conducted without interruption of chemotherapy and without adverse effects. The patient showed progressive improvement in neurosensory symptoms, as measured by the EORTC QLQ-CIPN20 questionnaire. Quantitative sensory testing revealed normalization of thermal and vibratory sensitivity and improved mechanical detection thresholds. The cumulative oxaliplatin dose was maintained throughout treatment. Conclusions: PENS may offer an effective and safe therapeutic option for managing CIPN, enabling symptom control without compromising oncological treatment. This case supports the need for controlled clinical trials to confirm efficacy and establish standardized protocols. Full article
(This article belongs to the Section Oncology)
Show Figures

Figure 1

21 pages, 1301 KB  
Article
Comprehensive Evaluation of 1H-Isoindole-1,3(2H)-Dione Derivatives: Pharmacokinetic Studies and Analgesic Potential in Various Pain Models
by Anna Dziubina, Dominika Szkatuła, Łukasz Szczukowski, Małgorzata Szafarz and Anna Rapacz
Int. J. Mol. Sci. 2025, 26(13), 6026; https://doi.org/10.3390/ijms26136026 - 23 Jun 2025
Viewed by 794
Abstract
The study investigated the antinociceptive effects of four compounds (F1–F4) based on a 1H-isoindole-1,3(2H)-dione core, using various in vivo pain models—tonic (formalin test), neurogenic (capsaicin and glutamate tests), neuropathic (oxaliplatin-induced model of peripheral neuropathy as well as the streptozotocin-induced model of painful diabetic [...] Read more.
The study investigated the antinociceptive effects of four compounds (F1–F4) based on a 1H-isoindole-1,3(2H)-dione core, using various in vivo pain models—tonic (formalin test), neurogenic (capsaicin and glutamate tests), neuropathic (oxaliplatin-induced model of peripheral neuropathy as well as the streptozotocin-induced model of painful diabetic neuropathy), and inflammatory (carrageenan-induced). Pharmacokinetic parameters were also assessed. In the capsaicin test, F1, F2, and F4 (5–20 mg/kg) significantly reduced pain, while compound F3 was only active at 20 mg/kg. In the glutamate test, F1, F2, and F3 (5–20 mg/kg) demonstrated the most pronounced effect. In phase I of the formalin test, compounds F1 and F2 were active at doses of 5 and 10 mg/kg, respectively, while F3 and F4 exhibited activity only at the 20 mg/kg dose. In phase II, a dose-dependent reduction in pain was observed, with the weakest effect noted at F4. At a dose of 20 mg/kg, the compounds significantly reduced edema and carrageenan-induced pain, but to a lesser extent than ketoprofen. The compounds tested (10 mg/kg) showed significant anti-allodynic activity in the oxaliplatin- and streptozotocin-induced neuropathy pain models. All compounds demonstrated favorable pharmacokinetic results. The results of this study indicate that the compounds have a broad analgesic spectrum of activity. Full article
(This article belongs to the Collection Feature Papers in Molecular Pharmacology)
Show Figures

Graphical abstract

10 pages, 553 KB  
Article
Treatment of Established Chemotherapy-Induced Neuropathy with N-Palmitoylethanolamide: A Randomized, Double-Blind Phase II Pilot Study
by Mellar P. Davis, Angela Ulrich, Rebecca Segal, Vinay Gudena, Kathryn J. Ruddy, Stacy D’Andre, Karthik V. Giridhar, Vamsi K. Vasireddy, Rajiv Agarwal, Abdel-Ghani Azzouqa, Paul Novotny, Shaylene McCue, Brent Bauer and Charles L. Loprinzi
Cancers 2024, 16(24), 4244; https://doi.org/10.3390/cancers16244244 - 20 Dec 2024
Viewed by 1764
Abstract
Background: Chemotherapy-induced peripheral neuropathy (CIPN) from oxaliplatin and taxane drugs is a bothersome toxicity. Palmitoylethanolamide (PEA) has been reported to improve myelinated nerve fiber function in patients experiencing painful CIPN. We conducted a double-blind, placebo-controlled, randomized trial of PEA in patients with established [...] Read more.
Background: Chemotherapy-induced peripheral neuropathy (CIPN) from oxaliplatin and taxane drugs is a bothersome toxicity. Palmitoylethanolamide (PEA) has been reported to improve myelinated nerve fiber function in patients experiencing painful CIPN. We conducted a double-blind, placebo-controlled, randomized trial of PEA in patients with established CIPN. Methods: Eligible patients were adults who had pain, numbness, tingling, or other symptoms of CIPN for at least three months following completion of paclitaxel, oxaliplatin, or cisplatin-based chemotherapy. Study patients were randomized to one of the two treatment groups (PEA versus placebo, both administered either once or twice daily). The CIPN20 questionnaire was assessed weekly. Results: A total of 17 males and 71 females participated in the study; most had neuropathy from paclitaxel. Most (85%) finished 8 weeks of treatment. There was no suggestion that either of the PEA arms did any better than the combined placebo arms. There was no signal of significant toxicity differences between the three study arms. Quality of life outcome measures were similar between the study arms, as were cognitive function evaluations. Discussion: PEA failed to improve established CIPN. Future trials might explore whether PEA may be effective in preventing CIPN or cognitive changes based on data that suggest it may be helpful in this situation. Conclusions: PEA failed to improve established chemotherapy-induced neuropathy. Full article
(This article belongs to the Special Issue Insights from the Editorial Board Member)
Show Figures

Figure 1

14 pages, 2409 KB  
Article
Single and Combined Effects of Cannabigerol (CBG) and Cannabidiol (CBD) in Mouse Models of Oxaliplatin-Associated Mechanical Sensitivity, Opioid Antinociception, and Naloxone-Precipitated Opioid Withdrawal
by Sean A. Hayduk, Amanda C. Hughes, Rachel L. Winter, Mia D. Milton and Sara Jane Ward
Biomedicines 2024, 12(6), 1145; https://doi.org/10.3390/biomedicines12061145 - 22 May 2024
Cited by 11 | Viewed by 3278
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is one of the most prevalent and dose-limiting complications in chemotherapy patients, with estimates of at least 30% of patients experiencing persistent neuropathy for months or years after treatment cessation. An emerging potential intervention for the treatment of CIPN [...] Read more.
Chemotherapy-induced peripheral neuropathy (CIPN) is one of the most prevalent and dose-limiting complications in chemotherapy patients, with estimates of at least 30% of patients experiencing persistent neuropathy for months or years after treatment cessation. An emerging potential intervention for the treatment of CIPN is cannabinoid-based pharmacotherapies. We have previously demonstrated that treatment with the psychoactive CB1/CB2 cannabinoid receptor agonist Δ9-tetrahydrocannabinol (Δ9-THC) or the non-psychoactive, minor phytocannabinoid cannabidiol (CBD) can attenuate paclitaxel-induced mechanical sensitivity in a mouse model of CIPN. We then showed that the two compounds acted synergically when co-administered in the model, giving credence to the so-called entourage effect. We and others have also demonstrated that CBD can attenuate several opioid-associated behaviors. Most recently, it was reported that another minor cannabinoid, cannabigerol (CBG), attenuated cisplatin-associated mechanical sensitivity in mice. Therefore, the goals of the present set of experiments were to determine the single and combined effects of cannabigerol (CBG) and cannabidiol (CBD) in oxaliplatin-associated mechanical sensitivity, naloxone-precipitated morphine withdrawal, and acute morphine antinociception in male C57BL/6 mice. Results demonstrated that CBG reversed oxaliplatin-associated mechanical sensitivity only under select dosing conditions, and interactive effects with CBD were sub-additive or synergistic depending upon dosing conditions too. Pretreatment with a selective α2-adrenergic, CB1, or CB2 receptor selective antagonist significantly attenuated the effect of CBG. CBG and CBD decreased naloxone-precipitated jumping behavior alone and acted synergistically in combination, while CBG attenuated the acute antinociceptive effects of morphine and CBD. Taken together, CBG may have therapeutic effects like CBD as demonstrated in rodent models, and its interactive effects with opioids or other phytocannabinoids should continue to be characterized. Full article
(This article belongs to the Special Issue Therapeutic Potential for Cannabis and Cannabinoids 2.0)
Show Figures

Figure 1

12 pages, 2219 KB  
Review
Manganese- and Platinum-Driven Oxidative and Nitrosative Stress in Oxaliplatin-Associated CIPN with Special Reference to Ca4Mn(DPDP)5, MnDPDP and DPDP
by Jan Olof G. Karlsson and Per Jynge
Int. J. Mol. Sci. 2024, 25(8), 4347; https://doi.org/10.3390/ijms25084347 - 15 Apr 2024
Cited by 3 | Viewed by 2466
Abstract
Platinum-containing chemotherapeutic drugs are efficacious in many forms of cancer but are dose-restricted by serious side effects, of which peripheral neuropathy induced by oxidative–nitrosative-stress-mediated chain reactions is most disturbing. Recently, hope has been raised regarding the catalytic antioxidants mangafodipir (MnDPDP) and calmangafodipir [Ca [...] Read more.
Platinum-containing chemotherapeutic drugs are efficacious in many forms of cancer but are dose-restricted by serious side effects, of which peripheral neuropathy induced by oxidative–nitrosative-stress-mediated chain reactions is most disturbing. Recently, hope has been raised regarding the catalytic antioxidants mangafodipir (MnDPDP) and calmangafodipir [Ca4Mn(DPDP)5; PledOx®], which by mimicking mitochondrial manganese superoxide dismutase (MnSOD) may be expected to overcome oxaliplatin-associated chemotherapy-induced peripheral neuropathy (CIPN). Unfortunately, two recent phase III studies (POLAR A and M trials) applying Ca4Mn(DPDP)5 in colorectal cancer (CRC) patients receiving multiple cycles of FOLFOX6 (5-FU + oxaliplatin) failed to demonstrate efficacy. Instead of an anticipated 50% reduction in the incidence of CIPN in patients co-treated with Ca4Mn(DPDP)5, a statistically significant increase of about 50% was seen. The current article deals with confusing differences between early and positive findings with MnDPDP in comparison to the recent findings with Ca4Mn(DPDP)5. The POLAR failure may also reveal important mechanisms behind oxaliplatin-associated CIPN itself. Thus, exacerbated neurotoxicity in patients receiving Ca4Mn(DPDP)5 may be explained by redox interactions between Pt2+ and Mn2+ and subtle oxidative–nitrosative chain reactions. In peripheral sensory nerves, Pt2+ presumably leads to oxidation of the Mn2+ from Ca4Mn(DPDP)5 as well as from Mn2+ in MnSOD and other endogenous sources. Thereafter, Mn3+ may be oxidized by peroxynitrite (ONOO) into Mn4+, which drives site-specific nitration of tyrosine (Tyr) 34 in the MnSOD enzyme. Conformational changes of MnSOD then lead to the closure of the superoxide (O2•−) access channel. A similar metal-driven nitration of Tyr74 in cytochrome c will cause an irreversible disruption of electron transport. Altogether, these events may uncover important steps in the mechanism behind Pt2+-associated CIPN. There is little doubt that the efficacy of MnDPDP and its therapeutic improved counterpart Ca4Mn(DPDP)5 mainly depends on their MnSOD-mimetic activity when it comes to their potential use as rescue medicines during, e.g., acute myocardial infarction. However, pharmacokinetic considerations suggest that the efficacy of MnDPDP on Pt2+-associated neurotoxicity depends on another action of this drug. Electron paramagnetic resonance (EPR) studies have demonstrated that Pt2+ outcompetes Mn2+ and endogenous Zn2+ in binding to fodipir (DPDP), hence suggesting that the previously reported protective efficacy of MnDPDP against CIPN is a result of chelation and elimination of Pt2+ by DPDP, which in turn suggests that Mn2+ is unnecessary for efficacy when it comes to oxaliplatin-associated CIPN. Full article
Show Figures

Figure 1

15 pages, 4260 KB  
Article
Neuroprotective Effect of Polyvalent Immunoglobulins on Mouse Models of Chemotherapy-Induced Peripheral Neuropathy
by Mohamad Mroué, Flavien Bessaguet, Angélique Nizou, Laurence Richard, Franck Sturtz, Laurent Magy, Sylvie Bourthoumieu, Aurore Danigo and Claire Demiot
Pharmaceutics 2024, 16(1), 139; https://doi.org/10.3390/pharmaceutics16010139 - 20 Jan 2024
Cited by 6 | Viewed by 2258
Abstract
The occurrence of neuropathic pain in chemotherapy-induced peripheral neuropathy (CIPN) is a major dose-limiting effect of many commonly-used anticancer agents. Polyvalent human immunoglobulins (hIg), used in the treatment of several peripheral neuropathies, may alleviate neuropathic pain. The aim of this project was to [...] Read more.
The occurrence of neuropathic pain in chemotherapy-induced peripheral neuropathy (CIPN) is a major dose-limiting effect of many commonly-used anticancer agents. Polyvalent human immunoglobulins (hIg), used in the treatment of several peripheral neuropathies, may alleviate neuropathic pain. The aim of this project was to investigate the preventive effect of hIg in two mouse models of CIPN, induced by vincristine (VCR, 100 µg/kg/d) and oxaliplatin (OXP, 6 mg/kg/3d). Human Ig were administered one day before the first injection of chemotherapy. The onset of CIPN and effects of hIg were assessed via functional tests and morphological analyses of sensory nerves. To evaluate the effect of hIg on chemotherapy cytotoxicity, viability assays were performed using hIg (0 to 12 mg/mL) combined with anticancer agents on human cancer cell lines. The preventive treatment with hIg alleviated tactile hypersensitivity and nerve injuries induced by VCR. It also alleviated tactile/cold hypersensitivities and nerve injuries induced by OXP. Treatment with hIg did not affect the cytotoxicity of either chemotherapy. Furthermore, in combination with VCR, hIg potentiated chemo-induced cell death. In conclusion, hIg is a promising therapy to prevent the onset of CIPN and potentiate chemotherapy effect on cancer, reinforcing the interest in hIg in the management of CIPN. Full article
(This article belongs to the Section Gene and Cell Therapy)
Show Figures

Figure 1

16 pages, 3103 KB  
Article
αO-Conotoxin GeXIVA[1,2] Reduced Neuropathic Pain and Changed Gene Expression in Chronic Oxaliplatin-Induced Neuropathy Mice Model
by Huanbai Wang, Xiaodan Li, Yamin Qiao, Meiting Wang, Wen Wang, J. Michael McIntosh, Dongting Zhangsun and Sulan Luo
Mar. Drugs 2024, 22(1), 49; https://doi.org/10.3390/md22010049 - 19 Jan 2024
Cited by 5 | Viewed by 3343
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a dose-limiting painful neuropathy that occurs commonly during cancer management, which often leads to the discontinuation of medication. Previous studies suggest that the α9α10 nicotinic acetylcholine receptor (nAChR)-specific antagonist αO-conotoxin GeXIVA[1,2] is effective in CIPN models; however, the [...] Read more.
Chemotherapy-induced peripheral neuropathy (CIPN) is a dose-limiting painful neuropathy that occurs commonly during cancer management, which often leads to the discontinuation of medication. Previous studies suggest that the α9α10 nicotinic acetylcholine receptor (nAChR)-specific antagonist αO-conotoxin GeXIVA[1,2] is effective in CIPN models; however, the related mechanisms remain unclear. Here, we analyzed the preventive effect of GeXIVA[1,2] on neuropathic pain in the long-term oxaliplatin injection-induced CIPN model. At the end of treatment, lumbar (L4-L6) spinal cord was extracted, and RNA sequencing and bioinformatic analysis were performed to investigate the potential genes and pathways related to CIPN and GeXIVA[1,2]. GeXIVA[1,2] inhibited the development of mechanical allodynia induced by chronic oxaliplatin treatment. Repeated injections of GeXIVA[1,2] for 3 weeks had no effect on the mice’s normal pain threshold or locomotor activity and anxiety-like behavior, as evaluated in the open field test (OFT) and elevated plus maze (EPM). Our RNA sequencing results identified 209 differentially expressed genes (DEGs) in the CIPN model, and simultaneously injecting GeXIVA[1,2] with oxaliplatin altered 53 of the identified DEGs. These reverted genes were significantly enriched in immune-related pathways represented by the cytokine–cytokine receptor interaction pathway. Our findings suggest that GeXIVA[1,2] could be a potential therapeutic compound for chronic oxaliplatin-induced CIPN management. Full article
(This article belongs to the Special Issue Conotoxin and Conotoxin Analogues: A Pharmacy Cabinet under the Sea)
Show Figures

Graphical abstract

16 pages, 2136 KB  
Article
Exploring Serum Biomarkers for Neuropathic Pain in Rat Models of Chemotherapy-Induced Peripheral Neuropathy: A Comparative Pilot Study with Oxaliplatin, Paclitaxel, Bortezomib, and Vincristine
by David Balayssac, Julie Durif, Céline Lambert, Cristelle Dalbos, Eric Chapuy, Monique Etienne, Claire Demiot, Jérôme Busserolles, Vincent Martin and Vincent Sapin
Toxics 2023, 11(12), 1004; https://doi.org/10.3390/toxics11121004 - 8 Dec 2023
Cited by 6 | Viewed by 3214
Abstract
Blood biomarkers, including neurofilament light chain (NfL), have garnered attention as potential indicators for chemotherapy-induced peripheral neuropathy (CIPN), a dose-limiting adverse effect of neurotoxic anticancer drugs. However, no blood biomarker has been established for routine application or translational research. This pilot study aimed [...] Read more.
Blood biomarkers, including neurofilament light chain (NfL), have garnered attention as potential indicators for chemotherapy-induced peripheral neuropathy (CIPN), a dose-limiting adverse effect of neurotoxic anticancer drugs. However, no blood biomarker has been established for routine application or translational research. This pilot study aimed to evaluate a limited panel of blood biomarkers in rat models of CIPN and their correlations with neuropathic pain. CIPN models were induced through repeated injections of oxaliplatin, paclitaxel, bortezomib, and vincristine. Electronic von Frey testing was used to assess tactile allodynia. Post anticancer injections, serum concentrations of 31 proteins were measured. Allodynia thresholds decreased in anticancer-treated animals compared to controls. No consistent modifications were observed in the biomarkers across CIPN models. The most noteworthy biomarkers with increased concentrations in at least two CIPN models were NfL (paclitaxel, vincristine), MCP-1, and RANTES (oxaliplatin, vincristine). Vincristine-treated animals exhibited strong correlations between LIX, MCP-1, NfL, and VEGF concentrations and tactile allodynia thresholds. No single biomarker can be recommended as a unique indicator of CIPN-related pain. Because of the study limitations (single dose of each anticancer drug, young animals, and single time measurement of biomarkers), further investigations are necessary to define the kinetics, specificities, and sensitivities of MCP-1, RANTES, and NfL. Full article
(This article belongs to the Section Exposome Analysis and Risk Assessment)
Show Figures

Figure 1

17 pages, 7736 KB  
Article
β-Caryophyllene Inhibits Oxaliplatin-Induced Peripheral Neuropathy in Mice: Role of Cannabinoid Type 2 Receptors, Oxidative Stress and Neuroinflammation
by Jonathan Paulo Agnes, Barbara dos Santos, Raquel Nascimento das Neves, Vitória Maria Marques Luciano, Larissa Benvenutti, Fernanda Capitanio Goldoni, Roberta Giusti Schran, José Roberto Santin, Nara Lins Meira Quintão and Alfeu Zanotto-Filho
Antioxidants 2023, 12(10), 1893; https://doi.org/10.3390/antiox12101893 - 22 Oct 2023
Cited by 11 | Viewed by 3338
Abstract
Peripheral neuropathy is an important adverse effect caused by some chemotherapeutic agents, including oxaliplatin (OXA). OXA-induced peripheral neuropathy (OIPN) is a challenging condition due to diagnostic complexities and a lack of effective treatment. In this study, we investigated the antiallodynic effect of β-caryophyllene [...] Read more.
Peripheral neuropathy is an important adverse effect caused by some chemotherapeutic agents, including oxaliplatin (OXA). OXA-induced peripheral neuropathy (OIPN) is a challenging condition due to diagnostic complexities and a lack of effective treatment. In this study, we investigated the antiallodynic effect of β-caryophyllene (BCP), a cannabinoid type 2 (CB2) receptor agonist, in a mouse model of OIPN. BCP treatment inhibited OXA-induced mechanical and cold allodynia in both preventive and therapeutic drug treatment regimens. Experiments with the CB2 receptor agonist GW405833 confirmed the role of CB2 receptors in OIPN. The CB2 antagonist SR144528 abrogated the anti-nociceptive effect of BCP on mechanical allodynia, without impacting OXA-induced sensitivity to cold. BCP decreased neuroinflammation, as inferred from TNF, IL-1β, IL-6, and IL-10 profiling, and also reduced ROS production, lipid peroxidation, and 4-hydroxynonenal protein adduct formation in the spinal cords of OXA-treated mice. BCP did not affect the antitumor response to OXA or its impact on blood cell counts, implying that the cytotoxicity of OXA was preserved. These results underscore BCP as a candidate drug for OIPN treatment via CB2 receptor-dependent mechanisms, and anti-inflammatory and antioxidant responses in the spinal cord. Full article
(This article belongs to the Special Issue Oxidative Stress in Tumor Genesis, Progression and Therapy)
Show Figures

Graphical abstract

16 pages, 2388 KB  
Article
Development of an In Vitro Assessment Method for Chemotherapy-Induced Peripheral Neuropathy (CIPN) by Integrating a Microphysiological System (MPS) with Morphological Deep Learning of Soma and Axonal Images
by Kazuki Matsuda, Xiaobo Han, Naoki Matsuda, Makoto Yamanaka and Ikuro Suzuki
Toxics 2023, 11(10), 848; https://doi.org/10.3390/toxics11100848 - 10 Oct 2023
Cited by 7 | Viewed by 2775
Abstract
Several anticancer drugs used in cancer therapy induce chemotherapy-induced peripheral neuropathy (CIPN), leading to dose reduction or therapy cessation. Consequently, there is a demand for an in vitro assessment method to predict CIPN and mechanisms of action (MoA) in drug candidate compounds. In [...] Read more.
Several anticancer drugs used in cancer therapy induce chemotherapy-induced peripheral neuropathy (CIPN), leading to dose reduction or therapy cessation. Consequently, there is a demand for an in vitro assessment method to predict CIPN and mechanisms of action (MoA) in drug candidate compounds. In this study, a method assessing the toxic effects of anticancer drugs on soma and axons using deep learning image analysis is developed, culturing primary rat dorsal root ganglion neurons with a microphysiological system (MPS) that separates soma from neural processes and training two artificial intelligence (AI) models on soma and axonal area images. Exposing the control compound DMSO, negative compound sucrose, and known CIPN-causing drugs (paclitaxel, vincristine, oxaliplatin, suramin, bortezomib) for 24 h, results show the somatic area-learning AI detected significant cytotoxicity for paclitaxel (* p < 0.05) and oxaliplatin (* p < 0.05). In addition, axonal area-learning AI detected significant axonopathy with paclitaxel (* p < 0.05) and vincristine (* p < 0.05). Combining these models, we detected significant toxicity in all CIPN-causing drugs (** p < 0.01) and could classify anticancer drugs based on their different MoA on neurons, suggesting that the combination of MPS-based culture segregating soma and axonal areas and AI image analysis of each area provides an effective evaluation method to predict CIPN from low concentrations and infer the MoA. Full article
(This article belongs to the Section Neurotoxicity)
Show Figures

Figure 1

22 pages, 3832 KB  
Article
PNA6, a Lactosyl Analogue of Angiotensin-(1-7), Reverses Pain Induced in Murine Models of Inflammation, Chemotherapy-Induced Peripheral Neuropathy, and Metastatic Bone Disease
by Maha I. Sulaiman, Wafaa Alabsi, Lajos Szabo, Meredith Hay, Robin Polt, Tally M. Largent-Milnes and Todd W. Vanderah
Int. J. Mol. Sci. 2023, 24(19), 15007; https://doi.org/10.3390/ijms241915007 - 9 Oct 2023
Cited by 2 | Viewed by 2089
Abstract
Pain is the most significant impairment and debilitating challenge for patients with bone metastasis. Therefore, the primary objective of current therapy is to mitigate and prevent the persistence of pain. Thus, cancer-induced bone pain is described as a multifaceted form of discomfort encompassing [...] Read more.
Pain is the most significant impairment and debilitating challenge for patients with bone metastasis. Therefore, the primary objective of current therapy is to mitigate and prevent the persistence of pain. Thus, cancer-induced bone pain is described as a multifaceted form of discomfort encompassing both inflammatory and neuropathic elements. We have developed a novel non-addictive pain therapeutic, PNA6, that is a derivative of the peptide Angiotensin-(1-7) and binds the Mas receptor to decrease inflammation-related cancer pain. In the present study, we provide evidence that PNA6 attenuates inflammatory, chemotherapy-induced peripheral neuropathy (CIPN) and cancer pain confined to the long bones, exhibiting longer-lasting efficacious therapeutic effects. PNA6, Asp-Arg-Val-Tyr-Ile-His-Ser-(O-β-Lact)-amide, was successfully synthesized using solid phase peptide synthesis (SPPS). PNA6 significantly reversed inflammatory pain induced by 2% carrageenan in mice. A second murine model of platinum drug-induced painful peripheral neuropathy was established using oxaliplatin. Mice in the oxaliplatin-vehicle treatment groups demonstrated significant mechanical allodynia compared to the oxaliplatin-PNA6 treatment group mice. In a third study modeling a complex pain state, E0771 breast adenocarcinoma cells were implanted into the femur of female C57BL/6J wild-type mice to induce cancer-induced bone pain (CIBP). Both acute and chronic dosing of PNA6 significantly reduced the spontaneous pain behaviors associated with CIBP. These data suggest that PNA6 is a viable lead candidate for treating chronic inflammatory and complex neuropathic pain. Full article
(This article belongs to the Special Issue New Advance on Molecular Targets for the Treatment of Pain)
Show Figures

Figure 1

9 pages, 981 KB  
Opinion
Exacerbated Neuropathy in POLAR A and M Trials Due to Redox Interaction of PledOx-Associated Mn2+ and Oxaliplatin-Associated Pt2+
by Jan Olof G. Karlsson, Per Jynge and Louis J. Ignarro
Antioxidants 2023, 12(3), 608; https://doi.org/10.3390/antiox12030608 - 1 Mar 2023
Cited by 5 | Viewed by 3238
Abstract
Disappointing results from the POLAR A and M phase III trials involving colorectal cancer patients on chemotherapy with FOLFOX6 in curative (A) and palliative (M) settings have been reported by the principal investigators and the sponsor (PledPharma AB/Egetis Therapeutics AB). FOLFOX6, oxaliplatin in [...] Read more.
Disappointing results from the POLAR A and M phase III trials involving colorectal cancer patients on chemotherapy with FOLFOX6 in curative (A) and palliative (M) settings have been reported by the principal investigators and the sponsor (PledPharma AB/Egetis Therapeutics AB). FOLFOX6, oxaliplatin in combination with 5-fluorouracil (5-FU), possesses superior tumoricidal activity in comparison to 5-FU alone, but suffers seriously from dose-limiting platinum-associated Chemotherapy-Induced Peripheral Neuropathy (CIPN). The aim of the POLAR trials was to demonstrate that PledOx [calmangafodipir; Ca4Mn(DPDP)5] reduced the incidence of persistent CIPN from 40% to 20%. However, this assumption was based on “explorative” data in the preceding PLIANT phase II trial, which did not mirror the expected incidence of unwanted toxicity in placebo patients. In POLAR A and M, the assessment of PledOx efficacy was conducted in patients that received at least six cycles of FOLFOX6, enabling analyses of efficacy in 239 A and 88 M patients. Instead of a hypothesized improvement from 40% to 20% incidence of persistent CIPN in the PledOx group, i.e., a 50% improvement, the real outcome was the opposite, i.e., an about 50% worsening in this bothersome toxicity. Mechanisms that may explain the disastrous outcome, with a statistically significant number of patients being seriously injured after having received PledOx, indicate interactions between two redox active metal cations, Pt2+ (oxaliplatin) and Mn2+ (PledOx). A far from surprising causal relationship that escaped prior detection by the study group and the sponsor. Most importantly, recently published data (ref 1) unequivocally indicate that the PLIANT study was not suited to base clinical phase III studies on. In conclusion, the POLAR and PLIANT trials show that PledOx and related manganese-containing compounds are unsuited for co-treatment with platinum-containing compounds. For use as a therapeutic adjunct in rescue treatment, like in ischemia-reperfusion of the heart or other organs, or in acetaminophen (paracetamol)-associated liver failure, there is little or nothing speaking against the use of PledOx or other PLED compounds. However, this must be thoroughly documented in more carefully designed clinical trials. Full article
Show Figures

Figure 1

12 pages, 3108 KB  
Article
Prevention of Chemotherapy-Induced Peripheral Neuropathy by Inhibiting C-X-C Motif Chemokine Receptor 2
by Hee Seong Cho, Young In Choi, Seon Uk Park, Yi Seul Han, Jean Kwon and Sung Jun Jung
Int. J. Mol. Sci. 2023, 24(3), 1855; https://doi.org/10.3390/ijms24031855 - 17 Jan 2023
Cited by 4 | Viewed by 2937
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a major drawback in the use of chemotherapeutic agents for patients with cancer. Although studies have investigated a broad number of molecules that might be related to CIPN, the differences in the chemokine pathways between various chemotherapeutic agents, [...] Read more.
Chemotherapy-induced peripheral neuropathy (CIPN) is a major drawback in the use of chemotherapeutic agents for patients with cancer. Although studies have investigated a broad number of molecules that might be related to CIPN, the differences in the chemokine pathways between various chemotherapeutic agents, such as vincristine and oxaliplatin, which are some of the most widely used treatments, have not been fully elucidated. We confirmed that the administration (intraperitoneal injections for seven days) of vincristine (0.1 mg/kg) and oxaliplatin (3 mg/kg) induced pain by using the von Frey behavioral test. Subsequent applications with vincristine and oxaliplatin led to mechanical allodynia that lasted more than one week from the fifth day. After the induction of mechanical allodynia, the mRNA expression of CXCR2, CXCL1, CXCL3, and CXCL5 was examined in the dorsal root ganglia (DRG) and spinal cord of the CIPN models. As a result, the mRNA expression of CXCR2 robustly increased in the lumbar spinal cord in the oxaliplatin-treated mice. Next, to evaluate the involvement of CXCR2 in CIPN, reparixin, a CXCR1/2 inhibitor, was administered intrathecally or intraperitoneally with vincristine or oxaliplatin and was further verified by treatment with ruxolitinib, which inhibits Janus kinase 2 downstream of the CXCR1/2 pathway. Reparixin and ruxolitinib blocked oxaliplatin-induced allodynia but not vincristine-induced allodynia, which suggests that CXCR2-related pathways are associated with the development of oxaliplatin-induced neuropathy. Together with the above results, this suggests that the prevention of oxaliplatin-induced neuropathy by CXCR2 inhibition can lead to successful chemotherapy, and it is important to provide appropriate countermeasures against CIPN development for each specific chemotherapeutic agent. Full article
(This article belongs to the Collection Feature Papers in Molecular Neurobiology)
Show Figures

Figure 1

14 pages, 3817 KB  
Article
Syringaresinol Alleviates Oxaliplatin-Induced Neuropathic Pain Symptoms by Inhibiting the Inflammatory Responses of Spinal Microglia
by Ji Hwan Lee, Jong Hee Choi, Jaihwan Kim, Tai Wan Kim, Ji-Young Kim, Geehoon Chung, Ik-Hyun Cho, Dae Sik Jang and Sun Kwang Kim
Molecules 2022, 27(23), 8138; https://doi.org/10.3390/molecules27238138 - 23 Nov 2022
Cited by 14 | Viewed by 2740
Abstract
Oxaliplatin-induced peripheral neuropathy (OIPN) is a serious side effect that impairs the quality of life of patients treated with the chemotherapeutic agent, oxaliplatin. The underlying pathophysiology of OIPN remains unclear, and there are no effective therapeutics. This study aimed to investigate the causal [...] Read more.
Oxaliplatin-induced peripheral neuropathy (OIPN) is a serious side effect that impairs the quality of life of patients treated with the chemotherapeutic agent, oxaliplatin. The underlying pathophysiology of OIPN remains unclear, and there are no effective therapeutics. This study aimed to investigate the causal relationship between spinal microglial activation and OIPN and explore the analgesic effects of syringaresinol, a phytochemical from the bark of Cinnamomum cassia, on OIPN symptoms. The causality between microglial activation and OIPN was investigated by assessing cold and mechanical allodynia in mice after intrathecal injection of the serum supernatant from a BV-2 microglial cell line treated with oxaliplatin. The microglial inflammatory response was measured based on inducible nitric oxide synthase (iNOS), phosphorylated extracellular signal-regulated kinase (p-ERK), and phosphorylated nuclear factor-kappa B (p-NF-κB) expression in the spinal dorsal horn. The effects of syringaresinol were tested using behavioral and immunohistochemical assays. We found that oxaliplatin treatment activated the microglia to increase inflammatory responses, leading to the induction of pain. Syringaresinol treatment significantly ameliorated oxaliplatin-induced pain and suppressed microglial expression of inflammatory signaling molecules. Thus, we concluded that the analgesic effects of syringaresinol on OIPN were achieved via the modulation of spinal microglial inflammatory responses. Full article
Show Figures

Figure 1

Back to TopTop