Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = oxythiamine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 9017 KiB  
Article
In Vitro and In Silico Studies on Cytotoxic Properties of Oxythiamine and 2′-Methylthiamine
by Marta Malinowska, Magdalena Czerniecka, Izabella Jastrzebska, Artur Ratkiewicz, Adam Tylicki and Natalia Wawrusiewicz-Kurylonek
Int. J. Mol. Sci. 2024, 25(8), 4359; https://doi.org/10.3390/ijms25084359 - 15 Apr 2024
Cited by 2 | Viewed by 1217
Abstract
It is important to search for cytostatic compounds in order to fight cancer. One of them could be 2′-methylthiamine, which is a thiamine antimetabolite with an additional methyl group at the C-2 carbon of thiazole. So far, the cytostatic potential of 2′-methylthiamine has [...] Read more.
It is important to search for cytostatic compounds in order to fight cancer. One of them could be 2′-methylthiamine, which is a thiamine antimetabolite with an additional methyl group at the C-2 carbon of thiazole. So far, the cytostatic potential of 2′-methylthiamine has not been studied. We have come forward with a simplified method of synthesis using commercially available substrates and presented a comparison of its effects, as boosted by oxythiamine, on normal skin fibroblasts and HeLa cancer cells, having adopted in vitro culture techniques. Oxythiamine has been found to inhibit the growth and metabolism of cancer cells significantly better than 2′-methylthiamine (GI50 36 and 107 µM, respectively), while 2′-methylthiamine is more selective for cancer cells than oxythiamine (SI = 180 and 153, respectively). Docking analyses have revealed that 2′-methylthiamine (ΔG −8.2 kcal/mol) demonstrates a better affinity with thiamine pyrophosphokinase than thiamine (ΔG −7.5 kcal/mol ) and oxythiamine (ΔG −7.0 kcal/mol), which includes 2′-methylthiamine as a potential cytostatic. Our results suggest that the limited effect of 2′-methylthiamine on HeLa arises from the related arduous transport as compared to oxythiamine. Given that 2′-methylthiamine may possibly inhibit thiamine pyrophosphokinase, it could once again be considered a potential cytostatic. Thus, research should be carried out in order to find the best way to improve the transport of 2′-methylthiamine into cells, which may trigger its cytostatic properties. Full article
(This article belongs to the Special Issue Drug Discovery of Compounds by Structural Design)
Show Figures

Figure 1

15 pages, 1402 KiB  
Article
Posttranslational Acylations of the Rat Brain Transketolase Discriminate the Enzyme Responses to Inhibitors of ThDP-Dependent Enzymes or Thiamine Transport
by Vasily A. Aleshin, Thilo Kaehne, Maria V. Maslova, Anastasia V. Graf and Victoria I. Bunik
Int. J. Mol. Sci. 2024, 25(2), 917; https://doi.org/10.3390/ijms25020917 - 11 Jan 2024
Cited by 4 | Viewed by 1785
Abstract
Transketolase (TKT) is an essential thiamine diphosphate (ThDP)-dependent enzyme of the non-oxidative branch of the pentose phosphate pathway, with the glucose-6P flux through the pathway regulated in various medically important conditions. Here, we characterize the brain TKT regulation by acylation in rats with [...] Read more.
Transketolase (TKT) is an essential thiamine diphosphate (ThDP)-dependent enzyme of the non-oxidative branch of the pentose phosphate pathway, with the glucose-6P flux through the pathway regulated in various medically important conditions. Here, we characterize the brain TKT regulation by acylation in rats with perturbed thiamine-dependent metabolism, known to occur in neurodegenerative diseases. The perturbations are modeled by the administration of oxythiamine inhibiting ThDP-dependent enzymes in vivo or by reduced thiamine availability in the presence of metformin and amprolium, inhibiting intracellular thiamine transporters. Compared to control rats, chronic administration of oxythiamine does not significantly change the modification level of the two detected TKT acetylation sites (K6 and K102) but doubles malonylation of TKT K499, concomitantly decreasing 1.7-fold the level of demalonylase sirtuin 5. The inhibitors of thiamine transporters do not change average levels of TKT acylation or sirtuin 5. TKT structures indicate that the acylated residues are distant from the active sites. The acylations-perturbed electrostatic interactions may be involved in conformational shifts and/or the formation of TKT complexes with other proteins or nucleic acids. Acetylation of K102 may affect the active site entrance/exit and subunit interactions. Correlation analysis reveals that the action of oxythiamine is characterized by significant negative correlations of K499 malonylation or K6 acetylation with TKT activity, not observed upon the action of the inhibitors of thiamine transport. However, the transport inhibitors induce significant negative correlations between the TKT activity and K102 acetylation or TKT expression, absent in the oxythiamine group. Thus, perturbations in the ThDP-dependent catalysis or thiamine transport manifest in the insult-specific patterns of the brain TKT malonylation and acetylations. Full article
(This article belongs to the Special Issue The Mechanism and Emerging Materials in Thiamine Catalysis)
Show Figures

Figure 1

9 pages, 2018 KiB  
Article
Tolerance of Human Fibroblasts to Benfo-Oxythiamine In Vitro
by Ming Yan, Ralf Smeets, Martin Gosau, Tobias Vollkommer, Sandra Fuest, Eva Stetzer, Lan Kluwe, Johannes F. Coy and Simon Burg
Int. J. Environ. Res. Public Health 2022, 19(7), 4112; https://doi.org/10.3390/ijerph19074112 - 30 Mar 2022
Cited by 3 | Viewed by 2247
Abstract
Objectives: To explore the potential application of B-OT in the aspiration tract. Materials and Methods: We conceived and optimized an in vitro model simulating the mouth-washing process to assess tolerance to B-OT on primary human gingival fibroblasts. Cells derived from 4 unrelated donors [...] Read more.
Objectives: To explore the potential application of B-OT in the aspiration tract. Materials and Methods: We conceived and optimized an in vitro model simulating the mouth-washing process to assess tolerance to B-OT on primary human gingival fibroblasts. Cells derived from 4 unrelated donors were flushed with medium containing drugs of various concentration for one minute twice daily for 3 days. Results: No effect was seen on the cells up to 1000 µM B-OT. In addition, we treated the cells with B-OT permanently in medium, corresponding to a systemic treatment. No effect was seen by 10 µM B-OT and only a slight reduction (approximately 10%) was seen by 100 µM B-OT. Conclusions: Our results suggest good tolerance of oral cells for B-OT, favoring the further development of this antiviral reagent as a mouth-washing solution and nasal spray. Full article
(This article belongs to the Special Issue Oral Health — Prevention, Diagnostics, Therapy and Quality of Life)
Show Figures

Figure 1

11 pages, 2422 KiB  
Article
Targeting the Pentose Phosphate Pathway for SARS-CoV-2 Therapy
by Denisa Bojkova, Rui Costa, Philipp Reus, Marco Bechtel, Mark-Christian Jaboreck, Ruth Olmer, Ulrich Martin, Sandra Ciesek, Martin Michaelis and Jindrich Cinatl
Metabolites 2021, 11(10), 699; https://doi.org/10.3390/metabo11100699 - 13 Oct 2021
Cited by 31 | Viewed by 9791
Abstract
SARS-CoV-2 is causing the coronavirus disease 2019 (COVID-19) pandemic, for which effective pharmacological therapies are needed. SARS-CoV-2 induces a shift of the host cell metabolism towards glycolysis, and the glycolysis inhibitor 2-deoxy-d-glucose (2DG), which interferes with SARS-CoV-2 infection, is under development [...] Read more.
SARS-CoV-2 is causing the coronavirus disease 2019 (COVID-19) pandemic, for which effective pharmacological therapies are needed. SARS-CoV-2 induces a shift of the host cell metabolism towards glycolysis, and the glycolysis inhibitor 2-deoxy-d-glucose (2DG), which interferes with SARS-CoV-2 infection, is under development for the treatment of COVID-19 patients. The glycolytic pathway generates intermediates that supply the non-oxidative branch of the pentose phosphate pathway (PPP). In this study, the analysis of proteomics data indicated increased transketolase (TKT) levels in SARS-CoV-2-infected cells, suggesting that a role is played by the non-oxidative PPP. In agreement, the TKT inhibitor benfooxythiamine (BOT) inhibited SARS-CoV-2 replication and increased the anti-SARS-CoV-2 activity of 2DG. In conclusion, SARS-CoV-2 infection is associated with changes in the regulation of the PPP. The TKT inhibitor BOT inhibited SARS-CoV-2 replication and increased the activity of the glycolysis inhibitor 2DG. Notably, metabolic drugs like BOT and 2DG may also interfere with COVID-19-associated immunopathology by modifying the metabolism of immune cells in addition to inhibiting SARS-CoV-2 replication. Hence, they may improve COVID-19 therapy outcomes by exerting antiviral and immunomodulatory effects. Full article
(This article belongs to the Section Pharmacology and Drug Metabolism)
Show Figures

Figure 1

18 pages, 1386 KiB  
Review
EDIM-TKTL1/Apo10 Blood Test: An Innate Immune System Based Liquid Biopsy for the Early Detection, Characterization and Targeted Treatment of Cancer
by Johannes F. Coy
Int. J. Mol. Sci. 2017, 18(4), 878; https://doi.org/10.3390/ijms18040878 - 20 Apr 2017
Cited by 16 | Viewed by 9918
Abstract
Epitope detection in monocytes (EDIM) represents a liquid biopsy exploiting the innate immune system. Activated monocytes (macrophages) phagocytose unwanted cells/cell fragments from the whole body including solid tissues. As they return to the blood, macrophages can be used for a non-invasive detection of [...] Read more.
Epitope detection in monocytes (EDIM) represents a liquid biopsy exploiting the innate immune system. Activated monocytes (macrophages) phagocytose unwanted cells/cell fragments from the whole body including solid tissues. As they return to the blood, macrophages can be used for a non-invasive detection of biomarkers, thereby providing high sensitivity and specificity, because the intracellular presence of biomarkers is due to an innate immune response. Flow cytometry analysis of blood enables the detection of macrophages and phagocytosed intracellular biomarkers. In order to establish a pan-cancer test, biomarkers for two fundamental biophysical mechanisms have been exploited. The DNaseX/Apo10 protein epitope is a characteristic of tumor cells with abnormal apoptosis and proliferation. Transketolase-like 1 (TKTL1) is a marker for an anaerobic glucose metabolism (Warburg effect), which is concomitant with invasive growth/metastasis and resistant to radical and apoptosis inducing therapies. The detection of Apo10 and TKTL1 in blood macrophages allowed a sensitive (95.8%) and specific (97.3%) detection of prostate, breast and oral squamous cell carcinomas. Since TKTL1 represents a drugable target, the EDIM based detection of TKTL1 enables a targeted cancer therapy using the vitamin derivatives oxythiamine or benfo-oxythiamine. Full article
(This article belongs to the Special Issue Liquid Biopsy for Clinical Application)
Show Figures

Figure 1

25 pages, 2613 KiB  
Article
Mitochondrial Impairment May Increase Cellular NAD(P)H: Resazurin Oxidoreductase Activity, Perturbing the NAD(P)H-Based Viability Assays
by Vasily A. Aleshin, Artem V. Artiukhov, Henry Oppermann, Alexey V. Kazantsev, Nikolay V. Lukashev and Victoria I. Bunik
Cells 2015, 4(3), 427-451; https://doi.org/10.3390/cells4030427 - 21 Aug 2015
Cited by 38 | Viewed by 8534
Abstract
Cellular NAD(P)H-dependent oxidoreductase activity with artificial dyes (NAD(P)H-OR) is an indicator of viability, as the cellular redox state is important for biosynthesis and antioxidant defense. However, high NAD(P)H due to impaired mitochondrial oxidation, known as reductive stress, should increase NAD(P)H-OR yet perturb viability. [...] Read more.
Cellular NAD(P)H-dependent oxidoreductase activity with artificial dyes (NAD(P)H-OR) is an indicator of viability, as the cellular redox state is important for biosynthesis and antioxidant defense. However, high NAD(P)H due to impaired mitochondrial oxidation, known as reductive stress, should increase NAD(P)H-OR yet perturb viability. To better understand this complex behavior, we assayed NAD(P)H-OR with resazurin (Alamar Blue) in glioblastoma cell lines U87 and T98G, treated with inhibitors of central metabolism, oxythiamin, and phosphonate analogs of 2-oxo acids. Targeting the thiamin diphosphate (ThDP)-dependent enzymes, the inhibitors are known to decrease the NAD(P)H production in the pentose phosphate shuttle and/or upon mitochondrial oxidation of 2-oxo acids. Nevertheless, the inhibitors elevated NAD(P)H-OR with resazurin in a time- and concentration-dependent manner, suggesting impaired NAD(P)H oxidation rather than increased viability. In particular, inhibition of the ThDP-dependent enzymes affects metabolism of malate, which mediates mitochondrial oxidation of cytosolic NAD(P)H. We showed that oxythiamin not only inhibited mitochondrial 2-oxo acid dehydrogenases, but also induced cell-specific changes in glutamate and malate dehydrogenases and/or malic enzyme. As a result, inhibition of the 2-oxo acid dehydrogenases compromises mitochondrial metabolism, with the dysregulated electron fluxes leading to increases in cellular NAD(P)H-OR. Perturbed mitochondrial oxidation of NAD(P)H may thus complicate the NAD(P)H-based viability assay. Full article
(This article belongs to the Special Issue NAD+ Metabolism and Signaling)
Show Figures

Figure 1

Back to TopTop