Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = oyster peptide-zinc complex

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 8961 KB  
Article
Novel Insights into Ethanol-Soluble Oyster Peptide–Zinc-Chelating Agents: Structural Characterization, Chelation Mechanism, and Potential Protection on MEHP-Induced Leydig Cells
by Zhen Lu, Qianqian Huang, Xiaoming Qin, Fujia Chen, Enzhong Li and Haisheng Lin
Mar. Drugs 2024, 22(10), 465; https://doi.org/10.3390/md22100465 - 10 Oct 2024
Cited by 1 | Viewed by 2459
Abstract
Numerous studies have reported that mono-(2-ethylhexyl) phthalate (MEHP) (bioactive metabolite of Di(2-ethylhexyl) phthalate) has inhibitory effects on Leydig cells. This study aims to prepare an oyster peptide–zinc complex (PEP-Zn) to alleviate MEHP-induced damage in Leydig cells. Zinc-binding peptides were obtained through the following [...] Read more.
Numerous studies have reported that mono-(2-ethylhexyl) phthalate (MEHP) (bioactive metabolite of Di(2-ethylhexyl) phthalate) has inhibitory effects on Leydig cells. This study aims to prepare an oyster peptide–zinc complex (PEP-Zn) to alleviate MEHP-induced damage in Leydig cells. Zinc-binding peptides were obtained through the following processes: zinc-immobilized affinity chromatography (IMAC-Zn2+), liquid chromatography–mass spectrometry technology (LC-MS/MS) analysis, molecular docking, molecular dynamic simulation, and structural characterization. Then, the Zn-binding peptide (PEP) named Glu—His—Ala—Pro—Asn—His—Asp—Asn—Pro—Gly—Asp—Leu (EHAPNHDNPGDL) was identified. EHAPNHDNPGDL showed the highest zinc-chelating ability of 49.74 ± 1.44%, which was higher than that of the ethanol-soluble oyster peptides (27.50 ± 0.41%). In the EHAPNHDNPGDL-Zn complex, Asn-5, Asp-7, Asn-8, His-2, and Asp-11 played an important role in binding to the zinc ion. Additionally, EHAPNHDNPGDL-Zn was found to increase the cell viability, significantly increase the relative activity of antioxidant enzymes and testosterone content, and decrease malondialdehyde (MDA) content in MEHP-induced TM3 cells. The results also indicated that EHAPNHDNPGDL-Zn could alleviate MEHP-induced apoptosis by reducing the protein level of p53, p21, and Bax, and increasing the protein level of Bcl-2. These results indicate that the zinc-chelating peptides derived from oyster peptides could be used as a potential dietary zinc supplement. Full article
(This article belongs to the Special Issue The Bioactive Potential of Marine-Derived Peptides and Proteins)
Show Figures

Graphical abstract

18 pages, 9378 KB  
Article
Oyster Peptide-Zinc Complex Ameliorates Di-(2-ethylhexyl) Phthalate-Induced Testis Injury in Male Mice and Improving Gut Microbiota
by Zhen Lu, Qianqian Huang, Fujia Chen, Enzhong Li, Haisheng Lin and Xiaoming Qin
Foods 2024, 13(1), 93; https://doi.org/10.3390/foods13010093 - 27 Dec 2023
Cited by 4 | Viewed by 3115
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is a widely used plasticizer, which can cause damage to male reproductive organs, especially the atrophy of the testis. Meanwhile, DEHP can also lead to a decrease in testicular zinc content, but the role of zinc remains unclear. This study [...] Read more.
Di-(2-ethylhexyl) phthalate (DEHP) is a widely used plasticizer, which can cause damage to male reproductive organs, especially the atrophy of the testis. Meanwhile, DEHP can also lead to a decrease in testicular zinc content, but the role of zinc remains unclear. This study aims to prepare oyster peptide-zinc complex (OPZC) to alleviate DEHP-induced reproductive damage in mice. OPZC was successfully obtained through electron microscopy, X-ray diffraction, and thermogravimetric analysis, with stable structure and high water-solubility. Low dose oyster peptide-zinc complex (OPZCL) significantly reduced the reproductive damage caused by DEHP in mice. Further research had shown that OPZCL restored the content of serum hormones and the activity of oxidative stress kinases to normal, while also normalizing testicular zinc and selenium levels. In addition, it also recovered the disorder of gut microbiota, reduced the proportion of Bacteroides, increased the abundance of Ligilactobacillus, and restored the proportion of Acidobacteriota, Chloroflexi, and Proteobacteria. Therefore, OPZCL can relieve the reproductive damage caused by DEHP in mice by restoring testicular zinc homeostasis and the composition of intestinal microbiota, indicating that OPZCL has a potential protective effect on male reproductive health. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

14 pages, 1917 KB  
Article
Preparation and Characterization of an Oyster Peptide–Zinc Complex and Its Antiproliferative Activity on HepG2 Cells
by Bo Peng, Zhu Chen and Yejia Wang
Mar. Drugs 2023, 21(10), 542; https://doi.org/10.3390/md21100542 - 18 Oct 2023
Cited by 4 | Viewed by 2652
Abstract
It is evident that zinc supplementation is essential for maintaining good health and preventing disease. In this study, a novel oyster peptide–zinc complex with an average molecular weight of 500 Da was prepared from oyster meat and purified using ultrafiltration, ultrasound, a programmed [...] Read more.
It is evident that zinc supplementation is essential for maintaining good health and preventing disease. In this study, a novel oyster peptide–zinc complex with an average molecular weight of 500 Da was prepared from oyster meat and purified using ultrafiltration, ultrasound, a programmed cooling procedure, chelating, and dialysis. The optimal chelating process parameters obtained through a response surface methodology optimization design are a peptide/zinc ratio of 15, pH of 6.53, reaction time of 80 min, and peptide concentration of 0.06 g/mL. Then, the structure of a peptide–zinc complex (named COP2-Zn) was investigated using the UV and infrared spectrums. The results showed that the maximum absorption peak was redshifted from 224.5 nm to 228.3 nm and the main difference of the absorption peaks was 1396.4 cm−1. The cytotoxicity and antiproliferative effects of COP2-Zn were evaluated. The results showed that COP2-Zn had a better antiproliferative effect than the unchelated peptide against HepG2 cells. A DNA flow cytometric analysis showed that COP2-Zn induced S-phase arrest in HepG2 cells in a dose-dependent manner. Additionally, the flow cytometer indicated that COP2-Zn significantly induced HepG2 cell apoptosis. Full article
Show Figures

Figure 1

17 pages, 13345 KB  
Article
Oyster-Derived Zinc-Binding Peptide Modified by Plastein Reaction via Zinc Chelation Promotes the Intestinal Absorption of Zinc
by Jianpeng Li, Chen Gong, Zaiyang Wang, Ruichang Gao, Jiaoyan Ren, Xiaodong Zhou, Haiyan Wang, He Xu, Feng Xiao, Yuhui Cao and Yuanhui Zhao
Mar. Drugs 2019, 17(6), 341; https://doi.org/10.3390/md17060341 - 8 Jun 2019
Cited by 57 | Viewed by 6704
Abstract
Zinc-binding peptides from oyster (Crassostrea gigas) have potential effects on zinc supplementation. The aim of this study was to prepare efficient zinc-binding peptides from oyster-modified hydrolysates by adding exogenous glutamate according to the plastein reaction and to further explore the zinc [...] Read more.
Zinc-binding peptides from oyster (Crassostrea gigas) have potential effects on zinc supplementation. The aim of this study was to prepare efficient zinc-binding peptides from oyster-modified hydrolysates by adding exogenous glutamate according to the plastein reaction and to further explore the zinc absorption mechanism of the peptide-zinc complex (MZ). The optimum conditions for the plastein reaction were as follows: pH 5.0, 40 °C, substrate concentration of 40%, pepsin dosage of 500 U/g, reaction time of 3 h and l-[1-13C]glutamate concentration of 10 mg/mL. The results of 13C isotope labelling suggested that the addition of l-[1-13C]glutamate contributed to the increase in the zinc-binding capacity of the peptide. The hydrophobic interaction was the main mechanism of action of the plastein reaction. Ultraviolet spectra and scanning electronic microscopy (SEM) revealed that the zinc-binding peptide could bind with zinc and form MZ. Furthermore, MZ could significantly enhance zinc bioavailability in the presence of phytic acid, compared to the commonly used ZnSO4. Additionally, MZ significantly promoted the intestinal absorption of zinc mainly through two pathways, the zinc ion channel and the small peptide transport pathway. Our work attempted to increase the understanding of the zinc absorption mechanism of MZ and to support the potential application of MZ as a supplementary medicine. Full article
Show Figures

Graphical abstract

Back to TopTop