The Bioactive Potential of Marine-Derived Peptides and Proteins

A special issue of Marine Drugs (ISSN 1660-3397). This special issue belongs to the section "Marine Biotechnology Related to Drug Discovery or Production".

Deadline for manuscript submissions: 31 December 2024 | Viewed by 1647

Special Issue Editors


E-Mail Website
Guest Editor
Research Group for Bioactives—Analysis and Application, National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
Interests: protein hydrolysis; bioactive compounds; antioxidants; lipid oxidation; peptide purification and characterization; marine protein and oil; algae proteins and polyphenols; marine side-streams; functional foods; pharmaceuticals and nutraceuticals; emulsions

E-Mail Website
Guest Editor
Research Group for Bioactives—Analysis and Application, National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
Interests: antioxidants, bioactive compounds, protein hydrolysis, functional foods, emulsions, marine protein and oil, emulsions, marine biomasses and underutilized marine biomasses, lipid oxidation
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Marine ecosystems host organisms that are a treasure trove of bioactive compounds, including bioactive peptides and proteins. These molecules exhibit significant potential for various applications, including antioxidants, antihypertensives, and anti-obesity agents, among others. Therefore, it is crucial to give special attention to marine-based proteins and peptides in relation to their bioactive properties, finding sustainable and natural substitutes for chemical compounds.

In this Special Issue, we focus on the latest advancements concerning the discovery, characterization, and utilization of bioactive peptides and proteins derived from marine sources. Our objective is to explore their bioactive properties across diverse contexts, investigating their roles in nutrition, functional foods, beverages, pharmaceuticals, nutraceuticals, and biotechnology, emphasizing their distinctive properties and associated benefits. Therefore, we invite academic and industrial scientists and researchers to submit their research and review articles, contributing to a comprehensive understanding of these marine bioactive compounds and fostering further innovation in this promising field.

Dr. Sakhi Ghelichi 
Dr. Ann-Dorit Moltke Sørensen
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Marine Drugs is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • marine bioactive proteins and peptides
  • fish, algae, and marine side-stream
  • antioxidants
  • enzymatic treatments and protein hydrolysates
  • peptide purification and characterization
  • antimicrobial properties
  • antihypertensive properties
  • anti-obesity and anti-diabetic properties
  • anticancer properties
  • anti-inflammatory properties

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

15 pages, 3632 KiB  
Article
Glutamic-Alanine Rich Glycoprotein from Undaria pinnatifida: A Promising Natural Anti-Inflammatory Agent
by Md Saifur Rahman, Md Badrul Alam, Marufa Naznin, Mst Hur Madina and S. M. Rafiquzzaman
Mar. Drugs 2024, 22(9), 383; https://doi.org/10.3390/md22090383 - 26 Aug 2024
Viewed by 483
Abstract
This study aimed to assess the anti-inflammatory properties of a bioactive glutamic-alanine rich glycoprotein (GP) derived from Undaria pinnatifida on both LPS-stimulated RAW264.7 cells, peritoneal macrophages, and mouse models of carrageenan- and xylene-induced inflammation, investigating the underlying molecular mechanisms. In both in-vitro and [...] Read more.
This study aimed to assess the anti-inflammatory properties of a bioactive glutamic-alanine rich glycoprotein (GP) derived from Undaria pinnatifida on both LPS-stimulated RAW264.7 cells, peritoneal macrophages, and mouse models of carrageenan- and xylene-induced inflammation, investigating the underlying molecular mechanisms. In both in-vitro and in-vivo settings, GP was found to reduce the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) while also inhibiting the production of nitric oxide (NO) and prostaglandin E2 (PGE2) in response to lipopolysaccharide (LPS) stimulation. GP treatment significantly impeded the nuclear translocation of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway by blocking the phosphorylation of IKKα and IκBα, leading to a reduction in proinflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6). Additionally, GP effectively inhibited the activation of mitogen-activated protein kinases (MAPKs), with specific inhibitors of p38 and extra-cellular signal regulated kinase (ERK) enhancing GP’s anti-inflammatory efficacy. Notably, GP administration at 10 mg/kg/day (p.o.) markedly reduced carrageenan-induced paw inflammation and xylene-induced ear edema by preventing the infiltration of inflammatory cells into targeted tissues. GP treatment also downregulated key inflammatory markers, including iNOS, COX-2, IκBα, and NF-κB, by suppressing the phosphorylation of p38 and ERK, thereby improving the inflammatory index in both carrageenan- and xylene-induced mouse models. These findings suggest that marine resources, particularly seaweeds like U. pinnatifida, could serve as valuable sources of natural anti-inflammatory proteins for the effective treatment of inflammation and related conditions. Full article
(This article belongs to the Special Issue The Bioactive Potential of Marine-Derived Peptides and Proteins)
Show Figures

Figure 1

21 pages, 6311 KiB  
Article
Investigation of Antioxidant Activity of Protein Hydrolysates from New Zealand Commercial Low-Grade Fish Roes
by Shuxian Li, Alan Carne and Alaa El-Din Ahmed Bekhit
Mar. Drugs 2024, 22(8), 364; https://doi.org/10.3390/md22080364 - 11 Aug 2024
Viewed by 988
Abstract
The objective of this study was to investigate the nutrient composition of low-grade New Zealand commercial fish (Gemfish and Hoki) roe and to investigate the effects of delipidation and freeze-drying processes on roe hydrolysis and antioxidant activities of their protein hydrolysates. Enzymatic hydrolysis [...] Read more.
The objective of this study was to investigate the nutrient composition of low-grade New Zealand commercial fish (Gemfish and Hoki) roe and to investigate the effects of delipidation and freeze-drying processes on roe hydrolysis and antioxidant activities of their protein hydrolysates. Enzymatic hydrolysis of the Hoki and Gemfish roe homogenates was carried out using three commercial proteases: Alcalase, bacterial protease HT, and fungal protease FP-II. The protein and lipid contents of Gemfish and Hoki roes were 23.8% and 7.6%; and 17.9% and 10.1%, respectively. The lipid fraction consisted mainly of monounsaturated fatty acid (MUFA) in both Gemfish roe (41.5%) and Hoki roe (40.2%), and docosahexaenoic (DHA) was the dominant polyunsaturated fatty acid (PUFA) in Gemfish roe (21.4%) and Hoki roe (18.6%). Phosphatidylcholine was the main phospholipid in Gemfish roe (34.6%) and Hoki roe (28.7%). Alcalase achieved the most extensive hydrolysis, and its hydrolysate displayed the highest 2,2-dipheny1-1-picrylhydrazyl (DPPH)˙ and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging activities and ferric reducing antioxidant power (FRAP). The combination of defatting and freeze-drying treatments reduced DPPH˙ scavenging activity (by 38%), ABTS˙ scavenging activity (by 40%) and ferric (Fe3+) reducing power by18% (p < 0.05). These findings indicate that pre-processing treatments of delipidation and freeze-drying could negatively impact the effectiveness of enzymatic hydrolysis in extracting valuable compounds from low grade roe. Full article
(This article belongs to the Special Issue The Bioactive Potential of Marine-Derived Peptides and Proteins)
Show Figures

Figure 1

Back to TopTop