Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (221)

Search Parameters:
Keywords = paint degradation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 6263 KB  
Article
Canvas-Ground Interaction: A New Approach to Quantifying Ground Mechanical Degradation
by Gema Campo-Frances, Santi Ferrer, Diana Cayuela and Enric Carrera-Gallisà
Materials 2025, 18(17), 4041; https://doi.org/10.3390/ma18174041 - 28 Aug 2025
Viewed by 220
Abstract
Canvases and preparation layers consist of diverse materials that respond differently to mechanical stress. In a canvas painting, elongations and shrinkages can cause deformations—either recoverable or permanent—as well as shear stresses and potential cracks, which may weaken the overall structure. This study aims [...] Read more.
Canvases and preparation layers consist of diverse materials that respond differently to mechanical stress. In a canvas painting, elongations and shrinkages can cause deformations—either recoverable or permanent—as well as shear stresses and potential cracks, which may weaken the overall structure. This study aims to better understand the interaction between the canvas and preparatory strata in terms of mechanical behavior. To achieve this, a set of canvases and the same types of canvases with preparation layers were selected. Two types of linen and two types of polycotton were chosen to represent contemporary materials currently available in fine-art stores. Additionally, an accelerated aging process was applied to the samples to compare their mechanical response before and after aging. By examining the mechanical behavior of both primed and unprimed canvases through dynamometric tests, a method to evaluate the mechanical degradation attributable to the ground layer has been developed and explained in detail. This method is applicable to cases with similar characteristics. Analysis of the force/elongation graphs for the ground layer allows for the calculation of how this layer evolves with increasing elongation and how the mechanical degradation worsens. The results highlight the differing mechanical behaviors among the analyzed canvas types in both the warp and weft directions, as well as the degradation values resulting from both the aging process and the dynamometric testing of the canvases and ground layers. Full article
Show Figures

Figure 1

25 pages, 7359 KB  
Article
Street Art in the Rain: Evaluating the Durability of Protective Coatings for Contemporary Muralism Through Accelerated Rain Ageing
by Laura Pagnin, Sara Goidanich, Nicolò Guarnieri, Francesca Caterina Izzo, Jaime Jorge Hormida Henriquez and Lucia Toniolo
Coatings 2025, 15(8), 924; https://doi.org/10.3390/coatings15080924 - 7 Aug 2025
Viewed by 431
Abstract
Contemporary muralism has gained increasing cultural and social relevance in recent years, becoming a prominent form of urban artistic expression. However, its outdoor exposure makes it highly vulnerable to environmental degradation, raising significant challenges for long-term preservation. While solar radiation is widely recognized [...] Read more.
Contemporary muralism has gained increasing cultural and social relevance in recent years, becoming a prominent form of urban artistic expression. However, its outdoor exposure makes it highly vulnerable to environmental degradation, raising significant challenges for long-term preservation. While solar radiation is widely recognized as a main agent of deterioration, the impact of rainfall has received comparatively little attention. This study addresses this gap by evaluating the durability of commercial protective coatings applied to modern paints (alkyd, acrylic, and styrene-acrylic) under simulated rain exposure. The ageing protocol replicates approximately 10 years of cumulative rainfall in Central-Southern Europe. A key innovation of this research is the use of a custom-built rain chamber, uniquely designed to expose a large number of samples simultaneously under highly uniform and controlled rain conditions. The system ensures reproducible exposure through a precision-controlled moving platform and programmable rain delivery. A comprehensive set of analytical techniques was employed to assess morphological, chemical, and functional changes in the coatings and paints before and after ageing. Results highlight the limited performance of current protective materials and the need for more effective solutions for the conservation of contemporary outdoor artworks. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Figure 1

16 pages, 1504 KB  
Review
Electrodeposition of Nickel onto Polymers: A Short Review of Plating Processes and Structural Properties
by George W. Thompson and Mohammad J. Mahtabi
Appl. Sci. 2025, 15(15), 8500; https://doi.org/10.3390/app15158500 - 31 Jul 2025
Viewed by 689
Abstract
This paper reviews the fundamental principles and techniques of nickel electrodeposition, with a particular focus on metallizing polymeric substrates. It outlines the electrochemical mechanisms involved in depositing nickel from an acidic Watts bath, detailing the roles of key electrolyte components—i.e., nickel sulfate, nickel [...] Read more.
This paper reviews the fundamental principles and techniques of nickel electrodeposition, with a particular focus on metallizing polymeric substrates. It outlines the electrochemical mechanisms involved in depositing nickel from an acidic Watts bath, detailing the roles of key electrolyte components—i.e., nickel sulfate, nickel chloride, and boric acid—and the influence of process parameters, such as current density, temperature, and pH, on deposit quality (density and surface condition) and mechanical properties. In addressing the unique challenges posed by non-conductive polymers, this review compares emerging methods like silver conductive paint, highlighting differences in deposition time, surface resistivity, and environmental impact. Additionally, this paper examines how process parameters affect the as-deposited microstructure, adhesion, and overall mechanical properties (such as hardness, ductility, and tensile strength), while identifying critical issues such as low deposition density and substrate degradation. These insights provide a structured background for optimizing electroplating processes for applications in electronics, automotive, aerospace, and biomedical sectors, and suggest future research directions to enhance deposition uniformity, sustainability, and process control. Full article
Show Figures

Figure 1

26 pages, 14851 KB  
Article
Degradation of Synthetic Restoration Materials by Xerotolerant/Xerophilic Fungi Contaminating Canvas Paintings
by Amela Kujović, Katja Kavkler, Michel Alexander Wilson-Hernandez, Miloš Vittori, Luen Zidar, Cene Gostinčar, Kristina Sepčić, Yordanis Pérez-Llano, Ramón Alberto Batista-García, Nina Gunde-Cimerman and Polona Zalar
J. Fungi 2025, 11(8), 568; https://doi.org/10.3390/jof11080568 - 30 Jul 2025
Viewed by 526
Abstract
Canvas paintings are prone to biodeterioration due to their complex chemical composition, which can support fungal growth even under controlled conditions. This study evaluated the susceptibility of common synthetic restoration materials—Lascaux glues (303 HV, 498 HV), Acrylharz P550, BEVA 371, Laropal A81, and [...] Read more.
Canvas paintings are prone to biodeterioration due to their complex chemical composition, which can support fungal growth even under controlled conditions. This study evaluated the susceptibility of common synthetic restoration materials—Lascaux glues (303 HV, 498 HV), Acrylharz P550, BEVA 371, Laropal A81, and Regalrez 1094—to degradation by fourteen xerotolerant/xerophilic fungal strains. All tested Aspergillus and Penicillium species extensively colonized, especially artificially aged materials. FTIR-PAS analysis revealed chemical changes in carbonyl and C–H bonds in Laropal A81 and Regalrez 1094 colonized by Aspergillus spp. Scanning electron microscopy (SEM) imaging showed thinning of Lascaux glues and deformation of Regalrez 1094. Transcriptomic profiling of A. puulaauensis grown on Lascaux 498 HV and Regalrez 1094 identified altered expression of genes coding for esterases and oxidases, enzymes involved in synthetic polymer degradation. Esterase activity assays using 4-nitrophenol-based substrates confirmed significant enzymatic activity correlating with the presence of ester bonds. These findings highlight the vulnerability of synthetic restoration materials, specifically Laropal A81, Regalrez 1094, and Lascaux glues, to extremophilic fungi thriving in environments with low water activity. The results emphasize the urgent need for specific knowledge on fungi and their metabolic pathways to use/develop more durable conservation materials and strategies to protect cultural heritage objects from biodeterioration. Full article
Show Figures

Graphical abstract

35 pages, 1062 KB  
Review
Micro- and Nanoplastics in the Environment: Current State of Research, Sources of Origin, Health Risks, and Regulations—A Comprehensive Review
by Anna Kochanek, Katarzyna Grąz, Halina Potok, Anna Gronba-Chyła, Justyna Kwaśny, Iwona Wiewiórska, Józef Ciuła, Emilia Basta and Jacek Łapiński
Toxics 2025, 13(7), 564; https://doi.org/10.3390/toxics13070564 - 2 Jul 2025
Cited by 1 | Viewed by 3304
Abstract
Small-particle-produced goods, such as those used in industry, medicine, cosmetics, paints, abrasives, and plastic pellets or powders, are the main sources of microplastics. It is also possible to mention tire recycling granules here. Larger components break down in the environment to generate secondary [...] Read more.
Small-particle-produced goods, such as those used in industry, medicine, cosmetics, paints, abrasives, and plastic pellets or powders, are the main sources of microplastics. It is also possible to mention tire recycling granules here. Larger components break down in the environment to generate secondary microplastics. Microplastics, or particles smaller than 5 mm, and nanoplastics, or particles smaller than 1 μm, are the products of degradation and, in particular, disintegration processes that occur in nature as a result of several physical, chemical, and biological variables. Polypropylene, polyethylene, polyvinyl chloride (PVC), polystyrene, polyurethane, and polyethylene terephthalate (PET) are among the chemicals included in this contamination in decreasing order of quantity. Micro- and nanoplastics have been detected in the air, water, and soil, confirming their ubiquitous presence in natural environments. Their widespread distribution poses significant threats to human health, including oxidative stress, inflammation, cellular damage, and potential carcinogenic effects. The aim of this article is to review the current literature on the occurrence of micro- and nanoplastics in various environmental compartments and to analyze the associated health consequences. The article also discusses existing legal regulations and highlights the urgent need for intensified research into the toxicological mechanisms of microplastics and the development of more effective strategies for their mitigation. Full article
(This article belongs to the Section Emerging Contaminants)
Show Figures

Figure 1

17 pages, 2189 KB  
Article
The Metal Oxidation State in Cu, CuO, and Cu2O Nanoparticles Plays a Key Role in Toxicity to Sea Urchin Arbacia lixula, Paracentrotus lividus, and Sphaerechinus granularis Embryos
by Ivana Čarapar, Lara Jurković, Dijana Pavičić-Hamer, Andrej Jaklin, Maja Dutour Sikirić, Bojan Hamer and Daniel Mark Lyons
Toxics 2025, 13(6), 469; https://doi.org/10.3390/toxics13060469 - 1 Jun 2025
Viewed by 651
Abstract
Copper-based nanoparticles (as Cu2O) are a key component in marine antifouling paints and, as coatings degrade, release nanoparticles that can affect a wide range of non-target organisms. This study investigates the impact of Cu2O nanoparticles on the early development [...] Read more.
Copper-based nanoparticles (as Cu2O) are a key component in marine antifouling paints and, as coatings degrade, release nanoparticles that can affect a wide range of non-target organisms. This study investigates the impact of Cu2O nanoparticles on the early development of urchins Arbacia lixula, Paracentrotus lividus and Sphaerechinus granularis, and benchmarks their toxicity against similarly sized Cu and CuO nanoparticles and ionic copper. Concentration-dependent toxicity was noted for all forms of copper at concentrations in the 1 to 5000 µg L−1 range. EC50 values after Cu2O exposure indicated that A. lixula (99 µg L−1) was generally more sensitive than the other two species, with EC50 values of 371 µg L−1 and 606 µg L−1 noted for S. granularis and P. lividus, respectively. The same trend across species was noted for both Cu and CuO, although these nanoparticles generally showed higher EC50 values, indicating lower toxicity compared to Cu2O. LC50 values qualitatively parallel the corresponding EC50 values, with Cu2O consistently the most toxic, while Cu was less harmful, and CuO did not reach LC50 at any concentration. Again, greatest lethality was noted in A. lixula. While copper ion release from Cu was much greater than from CuO and Cu2O, the latter showed similar or greater toxicity to developing embryos compared to Cu. This indicates that copper ions are not the sole driver of toxicity of Cu2O, but there may also be a contribution derived from Cu2O redox activity within cells or at membranes that negatively impact oxidative stress defence mechanisms and metabolic pathways. Full article
(This article belongs to the Special Issue Toxicity and Safety Assessment of Exposure to Heavy Metals)
Show Figures

Graphical abstract

17 pages, 9294 KB  
Article
Design for Sustainability by Additive Manufacturing: A Study of PLA-Based Door Handle Redesign
by Nikodmose Moges Gebre, Pasquale Gallo and Stefano Rossi
Sustainability 2025, 17(11), 4969; https://doi.org/10.3390/su17114969 - 28 May 2025
Viewed by 639
Abstract
This paper presents the redesign of a door handle as a case study in applying long-life manufacturing (LLM) principles to the furniture sector, utilizing additive manufacturing with polylactic acid (PLA), a biodegradable and sustainable polymer. The primary objective of this study is to [...] Read more.
This paper presents the redesign of a door handle as a case study in applying long-life manufacturing (LLM) principles to the furniture sector, utilizing additive manufacturing with polylactic acid (PLA), a biodegradable and sustainable polymer. The primary objective of this study is to explore the potential of PLA-based components to enhance sustainability, repairability, and durability in everyday furniture items. A door handle was chosen as a representative product to demonstrate the feasibility of this approach. The redesign emphasizes the potential for consumers to 3D print and replace parts as needed, thereby reducing waste and extending product life-cycles. To assess the material’s performance, PLA door handles were subjected to degradation tests under UV light exposure and thermal cycles, simulating real-world conditions. The redesigned handles demonstrated a mass reduction of over 50% compared to the original target, while retaining more than 95% of their initial tensile strength after 14 days of UV-B exposure and thermal cycling between 5 °C and 50 °C. The color change remained minimal, particularly for the white-painted samples, indicating satisfactory aesthetic stability. This research contributes to the growing field of sustainable design, highlighting how additive manufacturing can transform the furniture industry by promoting a circular economy through repairable, durable, and eco-friendly solutions. Full article
Show Figures

Figure 1

17 pages, 3165 KB  
Article
Impact of Degraded Aviation Paints on the Aerodynamic Performance of Aircraft Skin
by Wojciech Żyłka, Andrzej Majka, Patrycja Skała, Zygmunt Szczerba, Bogumił Cieniek and Ireneusz Stefaniuk
Materials 2025, 18(10), 2401; https://doi.org/10.3390/ma18102401 - 21 May 2025
Cited by 1 | Viewed by 668
Abstract
This study investigates the degradation of aircraft paint and its impact on aerodynamic performance, using the PZL M-20 “Mewa” aircraft as a case study. Paint samples were collected from both damaged and intact areas of the airframe and analyzed using electron paramagnetic resonance [...] Read more.
This study investigates the degradation of aircraft paint and its impact on aerodynamic performance, using the PZL M-20 “Mewa” aircraft as a case study. Paint samples were collected from both damaged and intact areas of the airframe and analyzed using electron paramagnetic resonance (EPR) spectroscopy, scanning electron microscopy (SEM), and aerodynamic testing. One of the major challenges addressed in this work was the non-destructive identification of chemical aging effects in operational paint coatings and their correlation with aerodynamic behavior. The application of EPR spectroscopy in conjunction with real-world aerodynamic testing on naturally degraded surfaces represents an innovative approach that offers both scientific insight and practical guidance for maintenance practices. The results indicate significant deterioration in aerodynamic characteristics—such as increased drag and reduced lift—due to coating damage, particularly around riveted and bolted joints. EPR spectra revealed a notable increase in the density of unpaired electron spins in aged coatings, confirming ongoing oxidative degradation processes. While this study was limited to a single aircraft, the findings highlight the critical importance of regular inspection and maintenance of paint coatings to ensure flight safety and operational efficiency. Full article
(This article belongs to the Section Corrosion)
Show Figures

Graphical abstract

13 pages, 6191 KB  
Article
Investigating the Material Composition and Degradation of Wall Paintings at Müstair Monastery Using a Mobile Multi-Spectroscopic System
by Xueshi Bai, Patrick Cassitti, Aude Brebant, Didier Brissaud, Duixiong Sun, Yaopeng Yin and Vincent Detalle
Photonics 2025, 12(5), 489; https://doi.org/10.3390/photonics12050489 - 15 May 2025
Viewed by 440
Abstract
The conservation of cultural heritage requires advanced analytical tools to assess historic materials. In the context of the IPERION-CH project, a mobile multi-spectroscopic characterisation system for the analysis of cultural heritage materials, designated SYSPECTRAL, has been developed. This system integrates Laser-Induced Breakdown Spectroscopy [...] Read more.
The conservation of cultural heritage requires advanced analytical tools to assess historic materials. In the context of the IPERION-CH project, a mobile multi-spectroscopic characterisation system for the analysis of cultural heritage materials, designated SYSPECTRAL, has been developed. This system integrates Laser-Induced Breakdown Spectroscopy (LIBS), Laser-Induced Fluorescence, Raman spectroscopy, and reflectance spectroscopy. The first application of SYSPECTRAL in a real-world setting was carried out at Müstair Monastery (UNESCO World Heritage Site since 1983) for wall paintings. In this study, stratigraphic analysis using LIBS revealed lead- and iron-based pigments in black and red hues, suggesting pigment degradation and restoration interventions. The presence of titanium in white hues indicated possible retouching. Furthermore, the presence of Egyptian blue in blue hues was identified through a combination of elemental and reflectance spectral analysis, underscoring the potential of SYSPECTRAL for heritage conservation. This approach offers comprehensive material characterization with minimal impact, a finding that is of particular significance in the context of heritage conservation. The subsequent phase of research will extend the application of SYSPECTRAL to a wider range of heritage sites, with the objective of enhancing the spectral databases and refining the analytical techniques for the purpose of improving cultural heritage conservation. Full article
Show Figures

Figure 1

32 pages, 60017 KB  
Article
Preservation of Money Art: Material Degradation and Evaluation of Biopolymer Coatings as Protective Strategies
by Andrea Macchia, Irene Angela Colasanti, Francesca Irene Barbaccia, Camilla Zaratti, Giuseppe Franchino, Jessica Scarpelli, Miriam Damiano and Federica Valentini
Appl. Sci. 2025, 15(10), 5355; https://doi.org/10.3390/app15105355 - 11 May 2025
Viewed by 759
Abstract
Money Art is a growing contemporary practice where artists transform banknotes into unique visual works. While conceptually powerful, these artworks present significant conservation challenges due to their fragile substrates and complex material compositions. This study investigates the degradation behaviour of UniPosca acrylic markers [...] Read more.
Money Art is a growing contemporary practice where artists transform banknotes into unique visual works. While conceptually powerful, these artworks present significant conservation challenges due to their fragile substrates and complex material compositions. This study investigates the degradation behaviour of UniPosca acrylic markers applied on zero-euro banknotes, drawing on the techniques of artist RichardHTT, and explores bio-based protective strategies suitable for their preservation. Laboratory samples were prepared to replicate the original artwork and subjected to accelerated ageing. A multi-analytical approach was employed, including multispectral imaging, Fourier trasform infrared (FTIR) and Raman spectroscopy, and scanning electron microscopy (SEM-EDS) colorimetric analysis. Thickness and adhesion properties were assessed with contact micrometry and peel tests, while wettability was evaluated through static contact angle measurements. Four biopolymer coatings, chitosan and chitosan–nanocellulose films with varying CNC concentrations, were evaluated for their transparency, mechanical stability, and compatibility with the substrate. Results showed that painted areas, especially those with blue and black pigments, experienced marked degradation, while, after coating application, samples demonstrated improved chromatic stability, hydrophobicity, and adhesion. Importantly, all coatings were fully removable via enzymatic cleaning with α-amylase, confirming their reversibility. This research highlights the potential of chitosan-based biocomposites as conservation materials for non-traditional artworks and contributes to developing tailored, reversible strategies for contemporary art preservation. Full article
(This article belongs to the Section Materials Science and Engineering)
Show Figures

Figure 1

24 pages, 16143 KB  
Article
Influence of UV Radiation on the Appearance Quality of Fair-Faced Concrete and Mitigation Approaches
by Ao Wu, Jia Ke, Zhijie Liu and Zhonghe Shui
Materials 2025, 18(9), 2039; https://doi.org/10.3390/ma18092039 - 29 Apr 2025
Viewed by 582
Abstract
Fair-faced concrete has garnered substantial attention in recent years owing to its aesthetic appeal and eco-friendly attributes. However, as a construction material, its long-term performance is highly dependent on its service environment, particularly ultraviolet (UV) radiation. This research focuses on examining the influence [...] Read more.
Fair-faced concrete has garnered substantial attention in recent years owing to its aesthetic appeal and eco-friendly attributes. However, as a construction material, its long-term performance is highly dependent on its service environment, particularly ultraviolet (UV) radiation. This research focuses on examining the influence of UV exposure and managing the admixtures employed in concrete and investigating the effects of UV radiation on the appearance quality, pore distribution, and micro-composition of fair-faced concrete. Results indicate that UV radiation enhances moisture evaporation, increases surface and bulk porosity, and accelerates carbonation and early hydration reactions, forming more calcite on the surface. These factors degrade the appearance quality of fair-faced concrete. To mitigate UV-aging damage, two common anti-UV admixtures, nano-silica (NS) and water-based fluorocarbon paint (FC), were evaluated. Results show that both admixtures effectively improve the UV-resistance of fair-faced concrete, particularly when combined. The FC+NS group reduced the surface glossiness loss rate from 28.63% to 12.95% after 28 days of UV exposure, with surface porosity and maximum pore diameter recorded at 0.157% and 3.66 mm, respectively, indicating excellent appearance quality. These findings underscore the potential of these admixtures, both individually and in combination, to enhance the UV resistance of fair-faced concrete, sustaining its durability under prolonged UV exposure. Full article
Show Figures

Figure 1

28 pages, 10216 KB  
Article
Stability and Degradation Issues of Manganese Violet Pigment in Polymeric Paints: Morphological and Chemical Changes Under SO2 and Humidity Exposure
by Laura Pagnin, Giulia Cardin, Valentina Pintus, Michele Back, Farkas Pintér, Katja Sterflinger and Francesca Caterina Izzo
Appl. Sci. 2025, 15(9), 4630; https://doi.org/10.3390/app15094630 - 22 Apr 2025
Viewed by 998
Abstract
This study focuses on investigating the stability of modern and contemporary paints based on manganese violet pigment PV16 (NH4MnP2O7) when exposed to atmospheric pollutants, specifically sulfur dioxide (SO2) in the presence of high relative humidity. [...] Read more.
This study focuses on investigating the stability of modern and contemporary paints based on manganese violet pigment PV16 (NH4MnP2O7) when exposed to atmospheric pollutants, specifically sulfur dioxide (SO2) in the presence of high relative humidity. In particular, this study aims to investigate the role of PV16 in increasing the degradation processes of various modern binders. Therefore, the objectives of this research can be divided into (i) evaluating the chemical modifications involving PV16, (ii) investigating the degradation processes that occur in different organic matrices (i.e., drying oil, alkyd resin, and acrylic and styrene–acrylic emulsions), and (iii) comparing the chemical stability of model and commercial paints. The paints were analyzed by 3D Optical Microscopy, Attenuated total Reflection–Fourier-Transform Infrared spectroscopy (ATR-FTIR) and μ-Raman Spectroscopy, Scanning Electron Microscope coupled with Energy Dispersive X-Ray spectroscopy (SEM-EDX), X-Ray Powder Diffraction (XRPD), Fiber Optic Reflectance Spectroscopy (FORS), Pyrolysis–Gas Chromatography–Mass Spectrometry (Py-GC/MS), and Thermally assisted Hydrolysis and Methylation (THM) of Py-GC/MS (THM-Py-GC/MS). The results show that when exposed to high relative humidity and SO2, PV16 presents a colorimetric change from violet to grey; several compounds crystallize on the surface; and, depending on the binder, various degradation reactions occur. This study highlights the susceptibility of manganese violet pigment PV16 under certain environmental conditions, which may be considered to define adequate conservation strategies for works of art containing this specific pigment. Additionally, the results obtained within this investigation point out the need to expand the chemical knowledge of this material for engineering, sensing, and industrial applications. Full article
Show Figures

Figure 1

19 pages, 10031 KB  
Article
The Reflections of Archaeological Studies on Contemporary Glass Art: Phrygian Valley
by Selvin Yeşilay and Özlem Güvenir
Arts 2025, 14(2), 40; https://doi.org/10.3390/arts14020040 - 7 Apr 2025
Viewed by 1153
Abstract
Archaeology is a well-established discipline that sheds light on human history and uncovers the mysteries of materials, their origins, production methods, and areas of use. It provides significant insights into various topics such as the production history of glass and other materials, trade [...] Read more.
Archaeology is a well-established discipline that sheds light on human history and uncovers the mysteries of materials, their origins, production methods, and areas of use. It provides significant insights into various topics such as the production history of glass and other materials, trade routes, manufacturing processes, degradation mechanisms, regional usages, and coloring com-positions. Glass, an ancient yet contemporary material, can transmit, absorb, and reflect light. Appreciating glass art requires recognizing its rich history, offering artists technical and aesthetic possibilities in modern life and architecture. This study examines the influence of archaeological research and the artistic character of ancient glass on contemporary glass art. Archaeological findings from Turkey and around the world have been reviewed, with a particular focus on the Phrygian Valley, located in and around Eskişehir, an important region for the Phrygian civilization. Artifacts unearthed through excavations and sur-face surveys conducted in the Phrygian Valley, and preserved in the Eskişehir Eti Archaeology Museum, have been analyzed. The museum houses approximately 22.500 artifacts, including sculptures, steles, ceramics, glass vessels, metal objects, jewelry, and coins. Inspired by these artifacts and Phrygian culture, original glass designs have been created using techniques such as stained glass, lampworking, and glass painting. The aim of the study is to interpret Phrygian art and culture through innovative designs. Full article
(This article belongs to the Section Applied Arts)
Show Figures

Figure 1

21 pages, 9031 KB  
Article
The Use and Deterioration of Intumescent Fire-Retardant Paint on Louise Nevelson’s Erol Beker Chapel of the Good Shepherd
by Lora V. Angelova, Aaron Shugar, Christopher A. Maines, Satoko Tanimoto, Martha Singer, Jean Dommermuth, Hannah Duggan, Teresa T. Duncan, Adam C. Finnefrock and Jennifer L. Mass
Heritage 2025, 8(4), 128; https://doi.org/10.3390/heritage8040128 - 3 Apr 2025
Cited by 1 | Viewed by 1341
Abstract
Louise Nevelson’s Erol Beker Chapel of the Good Shepherd (1977) is a sculptural environment consisting of wooden sculptures painted a monochromatic white color. The paints show signs of degradation including cracking, chipping, peeling, and the formation of blisters and powdery efflorescence. A significant [...] Read more.
Louise Nevelson’s Erol Beker Chapel of the Good Shepherd (1977) is a sculptural environment consisting of wooden sculptures painted a monochromatic white color. The paints show signs of degradation including cracking, chipping, peeling, and the formation of blisters and powdery efflorescence. A significant amount of pentaerythritol (PER) detected during a former analysis was concluded to originate from an alkyd paint. We show that the PER originates from the PVAc paint on the sculptures, which we have determined to be an intumescent, fire-retardant (IFR) coating. IFR paints and coatings are functional materials designed specifically to delay the combustion of their substrate. At least one other sculpture by Louise Nevelson is known to have been painted with an IFR coating. Our analyses by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX), pyrolysis–gas chromatography/mass spectrometry (Py-GCMS), and cross-section microscopy show the presence and distribution of common IFR additives including PER, dicyandiamide, melamine, inositol, ethylenediamine, and phosphates. These are present throughout the PVAc paint and are enriched in the powdery efflorescence. In addition, the degradation behavior of the paint is typical for IFR coating systems that have been exposed to uncontrolled environmental conditions and especially high humidity events. Full article
(This article belongs to the Special Issue Molecular Spectroscopy in Art and Archaeology)
Show Figures

Figure 1

16 pages, 5049 KB  
Article
Uncovering Microbial Diversity and Community Structure of Black Spots Residing in Tomb Mural Painting
by Qiang Li, Zhang He, Zeng Wang, Aidong Chen and Chao Wu
Microorganisms 2025, 13(4), 755; https://doi.org/10.3390/microorganisms13040755 - 26 Mar 2025
Viewed by 448
Abstract
Microbes colonizing cultural artifacts are a ubiquitous phenomenon which may occur during burial, post-excavation, and storage periods, thereby seriously affecting sustainable heritage conservation. In this study, high-throughput sequencing technology was applied to analyze the microbial community structure in ancient mural paintings and the [...] Read more.
Microbes colonizing cultural artifacts are a ubiquitous phenomenon which may occur during burial, post-excavation, and storage periods, thereby seriously affecting sustainable heritage conservation. In this study, high-throughput sequencing technology was applied to analyze the microbial community structure in ancient mural paintings and the surrounding air, as well as to identify the most characteristic taxa causing black spot contamination. The results showed that members of the genera Gliomastix and Ochroconis were highly abundant in black-spots-contaminated areas and rarely detected in the air and uncontaminated mural paintings. Air samples of the two tombs showed no significant difference in Chao1 and Shannon indices, whereas statistically significant differences were observed compared to those samples collected from black spots. The taxonomic diversity of the microbial community in the soil-covered mural paintings and air exhibited similar structures at the genus level. Moreover, when compared to other areas of the two tombs, the samples from black spots differed not only in microbial community composition but also in microbial assembly processes and the co-occurrence patterns, such as much less network complexity in the black spots area. Functional predictions uncover the presence of microbial functional profiles involved in nitrogen cycling, organic matter degradation, and animal and human pathogens, representing a potential threat to cultural relics and public health. These results advance our understanding of the impacts of archeological excavations on the microbial community variation in tomb mural paintings. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

Back to TopTop