Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,283)

Search Parameters:
Keywords = pattern formation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1059 KB  
Article
Integrating Fly Ash into High-Temperature Ceramic Glazes: Achieving Sustainability, Cost-Effectiveness, and Aesthetic Appeal
by Yixuan Du, Minxuan Chen, Kaibao Wang, Tianyu Wang and Legeng Wang
Sustainability 2025, 17(17), 8017; https://doi.org/10.3390/su17178017 - 5 Sep 2025
Abstract
Industrial solid waste fly ash has been widely applied in various fields as a resource for waste repurposing. The use of fly ash can significantly reduce production costs and at the same time reduce environmental pollution to achieve sustainability. This study explores the [...] Read more.
Industrial solid waste fly ash has been widely applied in various fields as a resource for waste repurposing. The use of fly ash can significantly reduce production costs and at the same time reduce environmental pollution to achieve sustainability. This study explores the feasibility of using fly ash as a raw material to formulate high-temperature ceramic glazes, examining the composition, surface phases, and texture patterns of the resultant glazes. This study systematically assesses the impact of formulation modifications on glazing qualities by XRF, XRD, and SEM testing methods. The results show that 1. in high-temperature glazes, the element that determines the degree of transparency in the surface phase is the Ti content; 2. Zinc and Ferrum are important factors that can fine-tune the color shade and crystal mention; and 3. controlling the fly ash content in the glaze can change its color and texture. The novelty of this paper lies in utilizing fly ash to create high-performance, high-value-added ceramic products that feature unique aesthetics and artistic effects. In the future, we can investigate the influence of fly ash on glaze coloration, and the formation of different texture effects, as well as achieve specific color mixing. Full article
20 pages, 11264 KB  
Article
Clay Mineral Characteristics and Smectite-to-Illite Transformation in the Chang-7 Shale, Ordos Basin: Processes and Controlling Factors
by Kun Ling, Ziyi Wang, Yaqi Cao, Yifei Liu and Lin Dong
Minerals 2025, 15(9), 951; https://doi.org/10.3390/min15090951 - 5 Sep 2025
Abstract
As critical components in continental shale systems, the composition and evolution of clay minerals are fundamental to their diagenetic processes and petrophysical properties. The Chang-7 shales in the Ordos Basin exhibit abundant clay mineral content, offering a valuable case study for clay mineral [...] Read more.
As critical components in continental shale systems, the composition and evolution of clay minerals are fundamental to their diagenetic processes and petrophysical properties. The Chang-7 shales in the Ordos Basin exhibit abundant clay mineral content, offering a valuable case study for clay mineral research under moderate diagenetic conditions. This study employed XRD analysis to determine the whole-rock mineralogy, clay mineral composition, and the evolution characteristics of illite-smectite mixed-layer minerals (I/S). Comprehensive clay mineral datasets compiled from 13 newly analyzed wells and existing literature revealed distinct lateral distribution patterns. Total Organic Carbon (TOC) analysis and vitrinite reflectance (Ro) measurements provided systematic quantification of organic matter abundance and thermal maturation parameters in the studied samples. The results reveal that the Chang-7 shale exhibits a characteristic clay mineral assemblage, with I/S (average 44.2%) predominating over illite (34.7%), followed by chlorite (15.6%) and limited kaolinite (5.4%). Frequent volcanic activities provided substantial precursor materials for smectite formation, which actively participated in subsequent illitization processes, while chlorite and kaolinite distributions were predominantly controlled by provenance inputs and sedimentary facies, respectively. Inconsistencies exist between diagenetic stages inferred from I/S mixed-layer ratios and Ro values, particularly in low-maturity samples exhibiting accelerated illitization. The observed negative correlation between TOC content and mixed-layer ratios in Well YY1 and YSC Section samples demonstrates the catalytic role of organic matter in facilitating smectite-to-illite transformation. These results systematically clarify the coupled effects of sedimentary-diagenetic processes, offering new insights into the mutual interactions between inorganic and organic phases during illitization under natural geological conditions. The findings advance the understanding of Chang-7 shale oil and gas systems and offer practical guidance for future exploration. Full article
Show Figures

Figure 1

13 pages, 1905 KB  
Review
Characteristics of Myelodysplastic Syndrome with Coagulation Abnormalities and Tailored Diagnosis and Treatment
by Osamu Imataki, Makiko Uemura and Akira Kitanaka
J. Pers. Med. 2025, 15(9), 429; https://doi.org/10.3390/jpm15090429 - 5 Sep 2025
Abstract
At onset, myelodysplastic syndrome (MDS) may be complicated by coagulation and fibrinolytic abnormalities, such as disseminated intravascular coagulation (DIC), tumor lysis syndrome (TLS), infection, thromboembolism, hemophagocytic syndrome/hemophagocytic lymphohistiocytosis (HPS/HLH), hemorrhage, and hematoma formation. In these cases, the cause may be secondary. On the [...] Read more.
At onset, myelodysplastic syndrome (MDS) may be complicated by coagulation and fibrinolytic abnormalities, such as disseminated intravascular coagulation (DIC), tumor lysis syndrome (TLS), infection, thromboembolism, hemophagocytic syndrome/hemophagocytic lymphohistiocytosis (HPS/HLH), hemorrhage, and hematoma formation. In these cases, the cause may be secondary. On the other hand, it is known that platelet clotting dysfunction and fibrinolysis abnormalities are seen in the background of MDS, and primary fibrinolysis abnormalities may be complicated by adverse events associated with paraneoplastic syndrome (PNS). Coagulation fibrinolysis, as a PNS associated with MDS, is known to take the pattern of either consumptive coagulation abnormality or fibrinolytic coagulation abnormality. One mechanism of coagulation and fibrinolytic abnormalities has been shown to be the immunophenotypical pathway, and aberrant cytokine production is also associated with coagulopathy in MDS. We focused on how to differentiate an MDS-associated bleeding tendency resulting from either secondary or primary causes. In order to make this differentiation, we proposed a useful flowchart for the differentiation of solidified fibrinolysis seen at the initial MDS diagnosis. Additionally, we compared and summarized the molecular pathways of the secondary and primary causes of coagulopathy. Addressing coagulation and fibrinolytic abnormalities in MDS is required to differentiate the complexity and heterogeneity of bleeding and coagulation abnormalities. This review highlights the need to distinguish between the primary (disease-intrinsic) and secondary (reactive or complication-related) causes of coagulopathy. By proposing a diagnostic flowchart tailored to evaluate these causes at initial diagnosis, this study supports individualized risk stratification and management strategies. By comparing the molecular pathways of the two causes of coagulopathy, we provide a clinical discussion of the underlying pathologies. This aligns with the principles of personalized medicine by ensuring that treatment decisions (e.g., supportive care, anticoagulation, and antifibrinolytics) are based on the patient’s specific pathophysiological profile, rather than a one-size-fits-all approach. Full article
(This article belongs to the Section Mechanisms of Diseases)
Show Figures

Figure 1

21 pages, 11256 KB  
Article
Teashirt and C-Terminal Binding Protein Interact to Regulate Drosophila Eye Development
by Surya Jyoti Banerjee, Jennifer Curtiss, Chase Drucker and Harley Hines
Genes 2025, 16(9), 1045; https://doi.org/10.3390/genes16091045 - 5 Sep 2025
Abstract
Background and Objectives: The Drosophila retinal determination network comprises the transcription factor Teashirt (Tsh) and the transcription co-regulator C-terminal Binding Protein (CtBP), both of which are essential for normal adult eye development. Both Tsh and CtBP show a pattern of co-expression in [...] Read more.
Background and Objectives: The Drosophila retinal determination network comprises the transcription factor Teashirt (Tsh) and the transcription co-regulator C-terminal Binding Protein (CtBP), both of which are essential for normal adult eye development. Both Tsh and CtBP show a pattern of co-expression in the proliferating cells anterior to the morphogenetic furrow that demarcates the boundary between the anteriorly placed proliferating eye precursor cells and the posteriorly placed differentiating photoreceptor cells in the larval eye-precursor tissue, the eye–antennal disc. The disc ultimately develops into the adult compound eyes, antenna, and other head structures. Both Tsh and CtBP were found to interact genetically during ectopic eye formation in Drosophila, and both were present in molecular complexes purified from gut and cultured cells. However, it remained unknown whether Tsh and CtBP molecules could interact in the eye–antennal discs and elicit an effect on eye development. The present study answers these questions. Methods: 5′ GFP-tagging of the tsh gene in the Drosophila genome and 5′ FLAG-tagging of the ctbp gene were accomplished by the CRISPR-Cas9 and BAC recombineering methods, respectively, to produce GFP-Tsh- and FLAG-CtBP-fused proteins in specific transgenic Drosophila strains. Verification of these proteins’ expression in the larval eye–antennal discs was performed by immunohistological staining and confocal microscopy. Genetic screening was performed to establish functional interaction between Tsh and CtBP during eye development. Scanning Electron Microscopy was performed to image the adult eye structure. Co-immunoprecipitation and GST pulldown assays were performed to show that Tsh and CtBP interact in the cells of the third instar eye–antennal discs. Results: This study reveals that Tsh and CtBP interact genetically and physically in the Drosophila third instar larval eye–antennal disc to regulate adult eye development. This interaction is likely to limit the population of the eye precursor cells in the larval eye disc of Drosophila. Conclusions: The relative abundance of Tsh and CtBP in the third instar larval eye–antennal disc can dictate the outcome of their interaction on the Drosophila eye formation. Full article
(This article belongs to the Special Issue Genetics and Genomics of Retinal Development and Diseases)
Show Figures

Figure 1

15 pages, 2483 KB  
Article
The Effects of Different Crop Rotations on the Quality of Saline Soils in the Yinbei Plain
by Jinmin Wu, Bangyan Zhang, Meiling Lin, Rui Bu, Xiaolong Bai, Xiaoli Zhang, Panting Liu and Bin Wang
Agronomy 2025, 15(9), 2131; https://doi.org/10.3390/agronomy15092131 - 5 Sep 2025
Abstract
Rice cultivation has the ability to ameliorate saline soils, but this monoculture pattern can lead to negative plant–soil feedback. In a previous study, we investigated the effects of long-term rice cultivation on saline soil chemistry, salt ions, root characteristics, and agglomerate formation, and [...] Read more.
Rice cultivation has the ability to ameliorate saline soils, but this monoculture pattern can lead to negative plant–soil feedback. In a previous study, we investigated the effects of long-term rice cultivation on saline soil chemistry, salt ions, root characteristics, and agglomerate formation, and concluded that the optimal rice planting period is 5 years. However, we do not know which crop rotation is most effective in improving this negative soil feedback and enhancing soil quality. In this study, we carried out an experiment on saline land planted with rice over 5 years and set up four different rotations, including rice–Hunan Jizi, rice–maize, rice–sweet sorghum, and rice–soybean, with perennial rice planting as CK, to analyze soil texture under different treatments. Physicochemical properties and enzyme activities were also analyzed under different treatments, and the soil quality index (SQI) was constructed using principal component analysis and correlation analysis for comprehensive evaluation of each treatment. The results showed that (1) the saline-alkali soil texture of perennial rice planting in the Yinbei Plain was silty soil, and different rice drought rotation methods changed the soil texture from silty to silty loam, which improved the fractal dimension of the soil. The fractal dimension of saline-alkali soil was significantly positively correlated with the clay volume content, negatively correlated with silt volume content, and negatively correlated with sand volume content. (2) There was no risk of structural degradation (SI > 9%) in saline-alkali soil planted in perennial rice, and it appeared that RS (rice–soybean) could improve the stability coefficient of soil structure in the 0~40 cm soil layer. (3) Different rice and drought rotation methods could significantly affect the physical and chemical properties and enzyme activities of soil, and the quality of soil in the 0~40 cm soil layer was evaluated; RS (rice–soybean) and RC (rice–maize) were suitable for rice drought rotation in the Yinbei area. The structural equation model showed that salinity and soil nutrients were the key factors restricting the improvement of saline-alkali soil quality in Yinbei. These results will deepen the current understanding of bio-modified saline soils. Full article
(This article belongs to the Section Innovative Cropping Systems)
Show Figures

Figure 1

16 pages, 16095 KB  
Article
Mechanistic Insights into the Non-Monotonic Flame Retardancy of CPVC/ABS Composite
by Long Zhang, Lewen Liu, Shengwen Zou, Peng Qin, Zhengzhu Zhu, Shaoyun Guo and Qining Ke
Polymers 2025, 17(17), 2415; https://doi.org/10.3390/polym17172415 - 5 Sep 2025
Abstract
The chlorinated polyvinyl chloride (CPVC)/acrylonitrile–butadiene–styrene (ABS) composite represents an important class of engineering thermoplastics, offering a strong balance of flame retardancy, chemical resistance, mechanical properties, processability, and cost efficiency. Despite its widespread application, the flame-retardant mechanism in the CPVC/ABS system remains poorly understood. [...] Read more.
The chlorinated polyvinyl chloride (CPVC)/acrylonitrile–butadiene–styrene (ABS) composite represents an important class of engineering thermoplastics, offering a strong balance of flame retardancy, chemical resistance, mechanical properties, processability, and cost efficiency. Despite its widespread application, the flame-retardant mechanism in the CPVC/ABS system remains poorly understood. This work systematically investigated the non-monotonic flame-retardant behavior of CPVC/ABS composites through comprehensive characterization. The combustion performance, as determined by limiting oxygen index (LOI), UL-94 vertical burning tests, and cone calorimeter tests (CCTs), showed an unexpected pattern of flame retardancy initially improving then decreasing with reduced ABS content, which contradicted conventional expectations. The optimal composition at a CPVC/ABS ratio of 2:3 demonstrated good performance, achieving a UL-94 5VA rating and 47.3% reduction in total heat release (THR) relative to CPVC. A more stable and compact structure was observed from the morphology analysis of the residual char, and the thermogravimetric analysis further revealed a synergistic effect in carbonization behavior. The above flame-retardant mechanism could be interpreted by the combined effects of accelerated char formation during the early decomposition stage and significantly enhanced char crosslinking degree. These findings provided fundamental insights for designing high-performance flame-retardant polymer composites and facilitating their industrial implementation. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

19 pages, 1232 KB  
Article
Effectiveness of a Gamification-Based Intervention for Learning a Structured Handover System Among Undergraduate Nursing Students: A Quasi-Experimental Study
by Mauro Parozzi, Irene Meraviglia, Paolo Ferrara, Sara Morales Palomares, Stefano Mancin, Marco Sguanci, Diego Lopane, Anne Destrebecq, Maura Lusignani, Elisabetta Mezzalira, Antonio Bonacaro and Stefano Terzoni
Nurs. Rep. 2025, 15(9), 322; https://doi.org/10.3390/nursrep15090322 - 4 Sep 2025
Abstract
Background/Objectives: Effective clinical handover is a critical component of nursing care, particularly in mental health settings, where the transfer of clinical and behavioral information is essential for both patients’ and health personnel’s safety. Gamification has emerged as a promising strategy to enhance [...] Read more.
Background/Objectives: Effective clinical handover is a critical component of nursing care, particularly in mental health settings, where the transfer of clinical and behavioral information is essential for both patients’ and health personnel’s safety. Gamification has emerged as a promising strategy to enhance clinical education, yet few interventions have focused specifically on mental health care contexts. This study aimed to evaluate the effectiveness of a serious game designed to teach the SBAR (Situation, Background, Assessment, Recommendation) handover framework to undergraduate nursing students through a psychiatric care unit scenario. Methods: A quasi-experimental pre–post design was employed with a convenience sample of 48 nursing students from a Northern Italian university. Participants completed a test assessing their ability to organize clinical information according to the SBAR model before and after the game intervention. Students’ experience was assessed using the Player Experience Inventory. Results: A statistically significant improvement in SBAR application was observed post-intervention. The majority of students reported a positive experience across PXI domains such as Meaning, Challenge, Progress Feedback, and Enjoyment. Comparisons with a previously validated video-based nursing serious game showed a consistent overall pattern in response trends. Conclusions: The SG was an effective and engaging educational tool for improving structured handover skills in nursing students. Gamification may represent a valuable complement to traditional instruction in nursing education, especially in high-communication clinical areas such as mental health. Further research is needed to assess long-term retention and to explore more immersive formats. Full article
(This article belongs to the Section Nursing Education and Leadership)
Show Figures

Figure 1

17 pages, 10795 KB  
Article
Lithofacies Characteristics of Point Bars and Their Control on Incremental Oil Recovery Distribution During Surfactant–Polymer Flooding: A Case Study from the Gudao Oilfield
by Xilei Liu, Changchun Guo, Qi Chen, Minghao Zhao and Yuming Liu
Energies 2025, 18(17), 4703; https://doi.org/10.3390/en18174703 - 4 Sep 2025
Abstract
Meandering river point bar sand bodies, serving as critical reservoir units, exhibit significant lithofacies heterogeneity that governs remaining oil distribution patterns. Taking the Guantao Formation in the Gudao Oilfield as an example, this study integrates core observation, pore-throat structure characterization, and numerical simulation [...] Read more.
Meandering river point bar sand bodies, serving as critical reservoir units, exhibit significant lithofacies heterogeneity that governs remaining oil distribution patterns. Taking the Guantao Formation in the Gudao Oilfield as an example, this study integrates core observation, pore-throat structure characterization, and numerical simulation to reveal lithofacies characteristics of point bar sand bodies and their controlling mechanisms on incremental oil recovery distribution during surfactant–polymer (SP) flooding. The results demonstrate that point bar lithofacies display planar grain-size fining from concave to convex banks, with vertical upward-fining sequences (point bar medium sandstone facies → fine sandstone facies → siltstone facies). Physical property variations among lithofacies lead to remaining oil enrichment in relatively low-permeability portions of fine sandstone facies and low-permeability siltstone facies after waterflooding. SP flooding significantly enhances remaining oil mobilization through a “lithofacies-controlled percolation—chemical synergy” coupling mechanisms. The petrophysical heterogeneity formed by vertical lithofacies assemblages in the reservoir directly governs the targeted zones of chemical agent action (with interfacial tension reduction preferentially occurring in high-permeability lithofacies, while viscosity control dominates sweep enhancement in low-permeability lithofacies). This results in a distinct spatial differentiation of the incremental oil recovery, characterized by a spindle-shaped sweep improvement zone and a dam-type displacement efficiency enhancement zone. Full article
(This article belongs to the Special Issue Enhanced Oil Recovery: Numerical Simulation and Deep Machine Learning)
Show Figures

Figure 1

26 pages, 4875 KB  
Article
Photocatalytic Degradation of Methylene Blue Dye with g-C3N4/ZnO Nanocomposite Materials Using Visible Light
by Juan C. Pantoja-Espinoza, Gema A. DelaCruz-Alderete and Francisco Paraguay-Delgado
Catalysts 2025, 15(9), 851; https://doi.org/10.3390/catal15090851 - 4 Sep 2025
Abstract
The g-C3N4/ZnO nanocomposite materials were applied to degrade methylene blue (MB). The samples were characterized and evaluated to study the adsorption and photocatalytic degradation under visible light. The g-C3N4 was incorporated at percentages of 5%, 10%, [...] Read more.
The g-C3N4/ZnO nanocomposite materials were applied to degrade methylene blue (MB). The samples were characterized and evaluated to study the adsorption and photocatalytic degradation under visible light. The g-C3N4 was incorporated at percentages of 5%, 10%, 20%, and 40% relative to the ZnO weight. These composite materials were prepared using a solvothermal microwave technique. The structural, textural, morphological, and optical properties were investigated using XRD, FTIR, SEM, EDS, STEM, BET, UV-Vis, and XPS techniques. The XRD patterns of the samples showed the coexistence of crystalline phases of g-C3N4 and ZnO, while images and elemental composition analysis confirmed the formation of nanocomposite samples. The UV-Vis spectrum revealed a redshift in the absorption edge of the nanocomposites, indicating improved light-harvesting capability. The synthesized material g-C3N4/ZnO (20/80), with a surface area of 25 m2/g, exhibited higher photocatalytic performance, achieving 85% degradation of MB after 100 min under visible light, which corresponds to nearly three times the degradation efficiency of commercial P25-TiO2 (31%) under the same conditions. The reusability and stability tests were conducted up to the fifth cycle, and this material showed 77% degradation, indicating good stability. This nanocomposite material has good potential as a photocatalyst for solar-driven MB. Full article
(This article belongs to the Special Issue Recent Advances in Photocatalysis for Environmental Applications)
Show Figures

Graphical abstract

19 pages, 5076 KB  
Communication
Low-Temperature-Induced Changes in Rice Panicle Architectures and Their Robustness in Extremely Cold-Tolerant Cultivars
by Masato Kisara, Aisha Ahmad Abu and Atsushi Higashitani
Plants 2025, 14(17), 2759; https://doi.org/10.3390/plants14172759 - 3 Sep 2025
Abstract
Low-temperature (LT) stress remains a challenge in rice cultivation and breeding. Despite global warming, cold waves cause damage to rice plants, particularly during pollen development. LTs during early panicle formation worsen pollen formation defects, but the underlying mechanisms remain unclear. We investigated the [...] Read more.
Low-temperature (LT) stress remains a challenge in rice cultivation and breeding. Despite global warming, cold waves cause damage to rice plants, particularly during pollen development. LTs during early panicle formation worsen pollen formation defects, but the underlying mechanisms remain unclear. We investigated the effects of low temperatures (19.0 °C and 18.5 °C) throughout reproductive growth on the panicle architecture and fertility of 28 japonica rice varieties with different LT tolerances. LT-sensitive varieties like Sasanishiki and conventional LT-tolerant varieties like Hitomebore showed increased spikelet densities on basal branches, whereas extremely LT-tolerant varieties like Tohoku 234 maintained a stable panicle architecture. RNA sequencing of the early panicles revealed LT-induced expression of stress response genes in all varieties. Compared with Hitomebore and Sasanishiki, in Tohoku 234, the expression of genes involved in flowering and sugar metabolism—such as OsGI and OsTOC1—showed stepwise induction with decreasing temperatures, while the expression of genes related to the cell cycle exhibited stepwise suppression. In addition, 24 genes with variety-specific expression patterns were identified. These findings suggested that LTs during the early reproductive stage increased spikelet numbers, along with total anther numbers, which may reduce the pollen formation capacity within each anther in LT-susceptible varieties. This study offers insights into rice’s LT tolerance mechanisms. Full article
(This article belongs to the Special Issue Plant Functioning Under Abiotic Stress)
Show Figures

Figure 1

20 pages, 4774 KB  
Review
Review of the Integration of Fused Filament Fabrication with Complementary Methods for Fabricating Hierarchical Porous Polymer Structures
by Savvas Koltsakidis and Dimitrios Tzetzis
Appl. Sci. 2025, 15(17), 9703; https://doi.org/10.3390/app15179703 - 3 Sep 2025
Abstract
Hierarchically porous polymers can unite macro-scale architected voids with micro-scale pores, enabling unique combinations of low density, high surface area, and controlled transport properties that are difficult to achieve with traditional methods. This review outlines the current advancements in creating such multiscale architectures [...] Read more.
Hierarchically porous polymers can unite macro-scale architected voids with micro-scale pores, enabling unique combinations of low density, high surface area, and controlled transport properties that are difficult to achieve with traditional methods. This review outlines the current advancements in creating such multiscale architectures using fused filament fabrication (FFF), the most widely used polymer additive manufacturing technique. Unlike earlier reviews that consider lattice architectures and foaming chemistries separately, this work integrates both within a single analysis. It begins with an overview of FFF fundamentals and how process parameters affect macropore formation. Design strategies for achieving macroporosity (≳100 µm) with a single thermoplastic are presented and categorized: 2D infill patterns, strut-based lattices, triply periodic minimal surfaces (TPMS), and Voronoi structures, along with functionally graded approaches. The discussion then shifts to functional filaments incorporating chemical or physical blowing agents, thermally expandable or hollow microspheres, and sacrificial porogens, which create microporosity (≲100 µm) either in situ or through post-processing. Each material approach is connected to case studies that demonstrate its application. A comparative analysis highlights the advantages of each method. Key challenges such as viscosity control, thermal gradient management, dimensional instability during foaming, environmental concerns, and the absence of standardized porosity measurement techniques are addressed. Finally, emerging solutions and future directions are explored. Overall, this review provides a comprehensive perspective on strategies that enhance FFF’s capability to fabricate hierarchically porous polymer structures. Full article
(This article belongs to the Special Issue Feature Review Papers in Additive Manufacturing Technologies)
Show Figures

Figure 1

15 pages, 3907 KB  
Article
High-Dosage Gamma Irradiation Alters Lotus (Nelumbo nucifera Gaertn.) Seedling Structure: A Morphological and Anatomical Perspective
by Pornsawan Sutthinon, Piyanuch Orpong, Paveena Kaewubon, Sureerat Yenchon, Orawan Detrueang and Sutthinut Soonthornkalump
Int. J. Plant Biol. 2025, 16(3), 101; https://doi.org/10.3390/ijpb16030101 - 3 Sep 2025
Abstract
The lotus (Nelumbo nucifera Gaertn.) is an ornamental aquatic plant, highly valued in Asian cultures for its religious symbolism, culinary uses, and medicinal properties. However, the lotus exhibits low genetic diversity in nature, which limits the genetic resources available for breeding programs. [...] Read more.
The lotus (Nelumbo nucifera Gaertn.) is an ornamental aquatic plant, highly valued in Asian cultures for its religious symbolism, culinary uses, and medicinal properties. However, the lotus exhibits low genetic diversity in nature, which limits the genetic resources available for breeding programs. Gamma irradiation is an effective method for inducing genetic variation in lotus breeding. The present study examines the gamma sensitivity of lotus seedlings, along with the morphological and anatomical changes induced by various gamma dosages. The results showed that high-dose gamma irradiation (≥100 Gy) significantly inhibited seedling growth and altered most anatomical parameters, each exhibiting distinct dose–response patterns except for midrib diameter. The 100 Gy treatment resulted in the maximum stem diameter, while root diameter peaked at 500 Gy, and the highest dose (600 Gy) produced the largest petioles. Gamma irradiation also triggered tannin accumulation and reduced aerenchyma formation in the leaves. The obtained results demonstrate organ-specific responses to gamma irradiation in the lotus, with leaves being the most sensitive, while petioles, stems, and roots exhibited more variable dose-dependent effects. Full article
(This article belongs to the Section Plant Reproduction)
Show Figures

Figure 1

22 pages, 4183 KB  
Article
Estimation of PM2.5 Vertical Profiles from MAX-DOAS Observations Based on Machine Learning Algorithms
by Qihua Li, Jinyi Luo, Hanwen Qin, Shun Xia, Zhiguo Zhang, Chengzhi Xing, Wei Tan, Haoran Liu and Qihou Hu
Remote Sens. 2025, 17(17), 3063; https://doi.org/10.3390/rs17173063 - 3 Sep 2025
Abstract
The vertical profile of PM2.5 is important for understanding its secondary formation, transport, and deposition at high altitudes; it also provides important data support for studying the causes and sources of PM2.5 near the ground. Based on machine learning methods, this [...] Read more.
The vertical profile of PM2.5 is important for understanding its secondary formation, transport, and deposition at high altitudes; it also provides important data support for studying the causes and sources of PM2.5 near the ground. Based on machine learning methods, this study fully utilized simultaneous Multi-Axis Differential Optical Absorption Spectroscopy measurements of multiple air pollutants in the atmosphere and employed the measured vertical profiles of aerosol extinction—as well as the vertical profiles of precursors such as NO2 and SO2—to evaluate the vertical distribution of PM2.5 concentration. Three machine learning models (eXtreme Gradient Boosting, Random Forest, and back-propagation neural network) were evaluated using Multi-Axis Differential Optical Absorption Spectroscopy instruments in four typical cities in China: Beijing, Lanzhou, Guangzhou, and Hefei. According to the comparison between estimated PM2.5 and in situ measurements on the ground surface in the four cities, the eXtreme Gradient Boosting model has the best estimation performance, with the Pearson correlation coefficient reaching 0.91. In addition, the in situ instrument mounted on the meteorological observation tower in Beijing was used to validate the estimated PM2.5 profile, and the Pearson correlation coefficient at each height was greater than 0.7. The average PM2.5 vertical profiles in the four typical cities all show an exponential pattern. In Beijing and Guangzhou, PM2.5 can diffuse to high altitudes between 500 and 1000 m; in Lanzhou, it can diffuse to around 1500 m, while it is primarily distributed between the near surface and 500 m in Hefei. Based on the vertical distribution of PM2.5 mass concentration in Beijing, a high-altitude PM2.5 pollutant transport event was identified from January 19th to 21st, 2021, which was not detected by ground-based in situ instruments. During this process, PM2.5 was transported from the 200 to 1500 m altitude level and then sank to the near surface, causing the concentration on the ground surface to continuously increase. The sinking process contributes to approximately 7% of the ground surface PM2.5 every hour. Full article
(This article belongs to the Section AI Remote Sensing)
Show Figures

Figure 1

19 pages, 9850 KB  
Article
Micro-CT and Histomorphometric Analysis of Degradability and New Bone Formation of Anodized Mg-Ca System
by Jihyun Kim, Yoona Jung, Yong-Seok Lee, Seong-Won Choi, Geelsu Hwang and Kwidug Yun
Biomimetics 2025, 10(9), 583; https://doi.org/10.3390/biomimetics10090583 - 3 Sep 2025
Viewed by 111
Abstract
The surface treatments and various magnesium alloys are applied to improve the fast degradation rate and resulting negative effects of magnesium alloys. This study aimed to assess the effect of anodic oxidation treatment of magnesium–calcium (Mg-Ca) systems by creating artificial bone defects in [...] Read more.
The surface treatments and various magnesium alloys are applied to improve the fast degradation rate and resulting negative effects of magnesium alloys. This study aimed to assess the effect of anodic oxidation treatment of magnesium–calcium (Mg-Ca) systems by creating artificial bone defects in the tibia of rats. The cylinder magnesium implants were fabricated using a Mg-xCa (x = 0, 1, 5 wt.%) binary alloy. Degradability and new bone formation were observed at two and six weeks using micro-CT. Histomorphometric parameters were evaluated with Goldner’s trichrome staining. The degradation rate decreased depending on the amount of calcium added. The parameters related to bone formation revealed an increasing pattern depending on the addition of calcium, anodic oxidation, and time. The amount of absorbed magnesium to assess degradability of magnesium implants by the histomorphometric analysis revealed a high value in the untreated group at two and six weeks. Bone healing parameters increased depending on the amount of calcium added, anodic oxidation treatment, and region of interest (ROI—0.5 mm, 1.00 mm, 1.5 mm, and 2.0 mm). Biodegradable magnesium systems have the potential to replace bone screws and plates. Combination with calcium combined with anodization surface treatment can improve initial corrosion resistance and promote bone formation. Full article
(This article belongs to the Section Biomimetics of Materials and Structures)
Show Figures

Graphical abstract

21 pages, 9867 KB  
Article
Time, Space, and Dynamic Split of Loss Sources in LPT by Means of Phase-Locked Proper Orthogonal Decomposition
by Matteo Russo, Matteo Dellacasagrande, Francesca Satta, Davide Lengani, Daniele Simoni, Juri Bellucci, Matteo Giovannini, Angelo Alberto Granata and Monica Gily
Int. J. Turbomach. Propuls. Power 2025, 10(3), 25; https://doi.org/10.3390/ijtpp10030025 - 2 Sep 2025
Viewed by 146
Abstract
In this study, a procedure based on Phase-locked Proper Orthogonal Decomposition (PPOD) was applied to Large Eddy Simulations (LESs) of two low-pressure turbine blades operating with unsteady inflow. This decomposition allows the inspection of the effect of blade loading on loss generation mechanisms, [...] Read more.
In this study, a procedure based on Phase-locked Proper Orthogonal Decomposition (PPOD) was applied to Large Eddy Simulations (LESs) of two low-pressure turbine blades operating with unsteady inflow. This decomposition allows the inspection of the effect of blade loading on loss generation mechanisms, focusing especially on their variation throughout the incoming wake period. After sorting snapshots based on their phase within the wake cycle using temporal POD coefficients associated with wake migration, POD was reapplied to each sub-ensemble of snapshots at a given phase, providing an optimal representation of the dynamics at fixed wake locations. This highlighted the effects of the migration, bowing, tilting, and reorientation of the incoming wake filaments, as well as the breakup of streaky structures in the blade boundary layer and the formation of Von Karman vortices at the blade trailing edge. PPOD offered us the opportunity to observe how all these processes are modulated and change throughout the wake period. The comparison between the two analyzed blades showed that overall loss generation follows similar temporal patterns during the wake-passing cycle, increasing with the propagation of the upstream wake and reaching its maximum value when the wake is in the peak suction position. According to the specific blade loading distribution, the production of TKE was observed in different regions of the computational domain. The described procedure may contribute to the development of advanced design processes based on physically informed strategies. Full article
Show Figures

Figure 1

Back to TopTop