Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = pentamethylcyclopentadienyl ligand

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1922 KB  
Article
Ruthenium Decorated Tris-Silylated Germanium Zintl Clusters Featuring an Unexpected Ligand Arrangement
by Nicole S. Willeit, Viktor Hlukhyy and Thomas F. Fässler
Molecules 2025, 30(6), 1247; https://doi.org/10.3390/molecules30061247 - 11 Mar 2025
Viewed by 1119
Abstract
The incorporation of transition metal atoms into [Ge9] clusters is a widely studied area of Zintl-cluster chemistry. Recently, it was shown that clusters comprising single transition metal atoms in the cluster surface show catalytic properties. Here, we present a synthetic [...] Read more.
The incorporation of transition metal atoms into [Ge9] clusters is a widely studied area of Zintl-cluster chemistry. Recently, it was shown that clusters comprising single transition metal atoms in the cluster surface show catalytic properties. Here, we present a synthetic approach to four new compounds comprising silylated Ge9 clusters with organometallic ruthenium complexes. [η5-Ge9Hyp3]RuCp* (1), [η1-Ge9(SitBu2H)3]RuCp(PPh3)2 (2), and [Hyp3Ge9][RuCp(PPh3)2(MeCN)] (3b) (Cp = cyclopentadienyl, Cp* = pentamethylcyclopentadienyl, Hyp = Si(SiMe3)3, Ph = C6H5, tBu = tert-butyl) were characterized by means of NMR spectroscopy and single-crystal structure determination. In the case of 2, a new isomer with an approximated C4v symmetric monocapped square antiprism of nine Ge atoms with an unexpected ligand arrangement comprising three ditertbutylsilane ligands attached to the open square was obtained. [Hyp3Ge9][RuCp(PPh3)2] (3a) was characterized via NMR spectroscopy and LIFDI mass spectrometry. Overall, we were able to show that the steric demand of the ligands Cp vs. Cp* and hypersilylchloride vs. ditertbutylsilane strongly influence the arrangement of the atoms and ligands on the cluster. In addition, the solvent also affects the cluster, as it appears that the ruthenium atom in 3a dissociates from the cluster surface upon acetonitrile coordination to form 3b. These results show that choosing the right synthetic tools and ligands makes a big difference in the outcome of the metalation reaction. Full article
Show Figures

Graphical abstract

18 pages, 3153 KB  
Article
Catalytic Cascade for Biomass Valorisation: Coupled Hydrogen Transfer Initiated Dehydration and Self-Aldol Condensation for the Synthesis of 2-methyl-pent-2-enal from 1,3-propanediol
by Yueyuan Ma, Yue-Ming Wang, Fabio Lorenzini and Andrew Craig Marr
Catalysts 2024, 14(8), 481; https://doi.org/10.3390/catal14080481 - 27 Jul 2024
Cited by 1 | Viewed by 2152
Abstract
A one-pot, one-step protocol combining hydrogen transfer initiated dehydration (HTID) of 1,3-propanediol (1,3-PDO), catalysed by [Cp*IrCl2(NHC)] (Cp* = pentamethylcyclopentadienyl; NHC = carbene ligand) complexes (1-5H and 1-3F), and self-aldol condensation (SAC) of propanal (2), allowed selective production [...] Read more.
A one-pot, one-step protocol combining hydrogen transfer initiated dehydration (HTID) of 1,3-propanediol (1,3-PDO), catalysed by [Cp*IrCl2(NHC)] (Cp* = pentamethylcyclopentadienyl; NHC = carbene ligand) complexes (1-5H and 1-3F), and self-aldol condensation (SAC) of propanal (2), allowed selective production of C6 aldehyde 2-methyl-pent-2-enal (3), in ionic liquids with high substrate conversion. This shows, for the first time, the conversion of 1,3-propanediol to C6 aldehydes in one pot via a catalytic hydrogen borrowing methodology. The Ir(III) pre-catalysts and the ionic liquids were recyclable. C6 aldehyde 2-methyl-pent-2-enal could also be selectively produced in the presence of water and in neat 1,3-PDO. The efficient, selective delivery of a value-added chemical from 1,3-PDO, a major product of many whole-cell bacterial fermentation processes, shows that the combination of chemo-catalytic processing of the chemical platform via Cp*IrCl2(NHC)-catalysed HTID/SAC with bio-catalysis has the potential to allow direct valorisation of the bio-renewable feedstocks, such as waste glycerol and sugars, into valuable chemicals. Full article
(This article belongs to the Special Issue Catalysis for Reducing Carbon Footprint and Environmental Impacts)
Show Figures

Graphical abstract

15 pages, 2462 KB  
Article
(Pentamethylcyclopentadienyl)chloridoiridium(III) Complex Bearing Bidentate Ph2PCH2CH2SPh-κPS Ligand
by Gerd Ludwig, Ivan Ranđelović, Dušan Dimić, Teodora Komazec, Danijela Maksimović-Ivanić, Sanja Mijatović, Tobias Rüffer and Goran N. Kaluđerović
Biomolecules 2024, 14(4), 420; https://doi.org/10.3390/biom14040420 - 30 Mar 2024
Cited by 5 | Viewed by 2168
Abstract
The (pentamethylcyclopentadienyl)chloridoiridium(III) complex bearing a κPS-bonded Ph2PCH2CH2SPh ligand ([Ir(η5-C5Me5)Cl(Ph2P(CH2)2SPh-κP,κS)]PF6, (1)] was synthesized and [...] Read more.
The (pentamethylcyclopentadienyl)chloridoiridium(III) complex bearing a κPS-bonded Ph2PCH2CH2SPh ligand ([Ir(η5-C5Me5)Cl(Ph2P(CH2)2SPh-κP,κS)]PF6, (1)] was synthesized and characterized. Multinuclear (1H, 13C and 31P) NMR spectroscopy was employed for the determination of the structure. Moreover, SC-XRD confirmed the proposed structure belongs to the “piano stool” type. The Hirshfeld surface analysis outlined the most important intermolecular interactions in the structure. The crystallographic structure was optimized at the B3LYP-D3BJ/6-311++G(d,p)(H,C,P,S,Cl)/LanL2DZ(Ir) level of theory. The applicability of this level was verified through a comparison of experimental and theoretical bond lengths and angles, and 1H and 13C NMR chemical shifts. The Natural Bond Orbital theory was used to identify and quantify the intramolecular stabilization interactions, especially those between donor atoms and Ir(III) ions. Complex 1 was tested on antitumor activity against five human tumor cell lines: MCF-7 breast adenocarcinoma, SW480 colon adenocarcinoma, 518A2 melanoma, 8505C human thyroid carcinoma and A253 submandibular carcinoma. Complex 1 showed superior antitumor activity against cisplatin-resistant MCF-7, SW480 and 8505C cell lines. The mechanism of tumoricidal action on 8505C cells indicates the involvement of caspase-induced apoptosis, accompanied by a considerable reduction in ROS/RNS and proliferation potential of treated cells. Full article
Show Figures

Figure 1

19 pages, 8067 KB  
Article
Selective Schiff Base Formation of Group 9 Organometallic Complexes with Functionalized Spirobifluorene Ligands
by Krystal M. Cid-Seara, Raquel Pereira-Cameselle, Sandra Bolaño and Maria Talavera
Molecules 2023, 28(20), 7155; https://doi.org/10.3390/molecules28207155 - 18 Oct 2023
Viewed by 1487
Abstract
Organic amines are important compounds present in a wide variety of products, which makes the development of new systems for their detection an interesting field of study. New organometallic complexes of group 9 [MCp*X(2′-R-2-py-SBF)] (M = Ir, Rh; R = H, X = [...] Read more.
Organic amines are important compounds present in a wide variety of products, which makes the development of new systems for their detection an interesting field of study. New organometallic complexes of group 9 [MCp*X(2′-R-2-py-SBF)] (M = Ir, Rh; R = H, X = Cl (6), R = H, X = OAc (7), R = CHO, X = Cl (8)), and [IrCp*Cl(2′, 7-diCHO-2-py-SBF)] (9) (Cp* pentamethylcyclopentadienyl, SBF = 9,9’-spirobifluorene) bearing bidentate C–N ligands based on 9,9′-spirobifluorene were obtained and characterized by NMR spectroscopy, mass spectrometry, IR spectroscopy, and X-ray diffraction analysis when possible. The formation of a Schiff base to give complexes with the formula [MCp*Cl(2′-CH=NR-2-py-SBF)] (M = Ir, Rh; R = alkyl or aryl (1012)), through condensation of an amine, and the aldehyde group present in these new complexes was studied leading to a selective reactivity depending on the nature of the amine and the metal center. While the iridium complexes only react with aromatic amines, the rhodium derivative requires heat for those but can react at room temperature with aliphatic amines. Full article
(This article belongs to the Section Organometallic Chemistry)
Show Figures

Figure 1

13 pages, 968 KB  
Article
Chiral 8-Amino-5,6,7,8-tetrahydroquinoline Derivatives in Metal Catalysts for the Asymmetric Transfer Hydrogenation of 1-Aryl Substituted-3,4-dihydroisoquinolines as Alkaloids Precursors
by Giorgio Facchetti, Francesca Neva, Giulia Coffetti and Isabella Rimoldi
Molecules 2023, 28(4), 1907; https://doi.org/10.3390/molecules28041907 - 16 Feb 2023
Cited by 3 | Viewed by 3474
Abstract
Chiral diamines based on an 8-amino-5,6,7,8-tetrahydroquinoline backbone, known as CAMPY (L1), or the 2-methyl substituted analogue Me-CAMPY (L2) were employed as novel ligands in Cp* metal complexes for the ATH of a series of substituted dihydroisoquinolines (DHIQs), known for [...] Read more.
Chiral diamines based on an 8-amino-5,6,7,8-tetrahydroquinoline backbone, known as CAMPY (L1), or the 2-methyl substituted analogue Me-CAMPY (L2) were employed as novel ligands in Cp* metal complexes for the ATH of a series of substituted dihydroisoquinolines (DHIQs), known for being key intermediates in the synthesis of biologically active alkaloids. Different metal-based complexes were evaluated in this kind of reaction, rhodium catalysts, C3 and C4, proving most effective both in terms of reactivity and enantioselectivity. Although modest enantiomeric excess values were obtained (up to 69% ee in the case of substrate I), a satisfactory quantitative conversion was successfully fulfilled even in the case of the most demanding hindered substrates when La(OTf)3 was used as beneficial additive, opening up the possibility for a rational design of novel chiral catalysts alternatives to the Noyori-Ikariya (arene)Ru(II)/TsDPEN catalyst. Full article
(This article belongs to the Special Issue The Chemistry of Imines)
Show Figures

Graphical abstract

17 pages, 2552 KB  
Article
Interaction between [(η6-p-cym)M(H2O)3]2+ (MII = Ru, Os) or [(η5-Cp*)M(H2O)3]2+ (MIII = Rh, Ir) and Phosphonate Derivatives of Iminodiacetic Acid: A Solution Equilibrium and DFT Study
by Linda Bíró, Botond Tóth, Norbert Lihi, Etelka Farkas and Péter Buglyó
Molecules 2023, 28(3), 1477; https://doi.org/10.3390/molecules28031477 - 3 Feb 2023
Cited by 2 | Viewed by 1891
Abstract
The pH-dependent binding strengths and modes of the organometallic [(η6-p-cym)M(H2O)3]2+ (MII = Ru, Os; p-cym = 1-methyl-4-isopropylbenzene) or [(η5-Cp*)M(H2O)3]2+ (MIII = Rh, Ir; Cp* [...] Read more.
The pH-dependent binding strengths and modes of the organometallic [(η6-p-cym)M(H2O)3]2+ (MII = Ru, Os; p-cym = 1-methyl-4-isopropylbenzene) or [(η5-Cp*)M(H2O)3]2+ (MIII = Rh, Ir; Cp* = pentamethylcyclopentadienyl anion) cations towards iminodiacetic acid (H2Ida) and its biorelevant mono- and diphosphonate derivatives N-(phosphonomethyl)-glycine (H3IdaP) and iminodi(methylphosphonic acid) (H4Ida2P) was studied in an aqueous solution. The results showed that all three of the ligands form 1:1 complexes via the tridentate (O,N,O) donor set, for which the binding mode was further corroborated by the DFT method. Although with IdaP3− and Ida2P4− in mono- and bis-protonated species, where H+ might also be located at the non-coordinating N atom, the theoretical calculations revealed the protonation of the phosphonate group(s) and the tridentate coordination of the phosphonate ligands. The replacement of one carboxylate in Ida2− by a phosphonate group (IdaP3−) resulted in a significant increase in the stability of the metal complexes; however, this increase vanished with Ida2P4−, which was most likely due to some steric hindrance upon the coordination of the second large phosphonate group to form (5 + 5) joined chelates. In the phosphonate-containing systems, the neutral 1:1 complexes are the major species at pH 7.4 in the millimolar concentration range that is supported by both NMR and ESI-TOF-MS. Full article
Show Figures

Figure 1

22 pages, 4813 KB  
Article
Two out of Three Musketeers Fight against Cancer: Synthesis, Physicochemical, and Biological Properties of Phosphino CuI, RuII, IrIII Complexes
by Urszula K. Komarnicka, Alessandro Niorettini, Sandra Kozieł, Barbara Pucelik, Agata Barzowska, Daria Wojtala, Aleksandra Ziółkowska, Monika Lesiów, Agnieszka Kyzioł, Stefano Caramori, Marina Porchia and Alina Bieńko
Pharmaceuticals 2022, 15(2), 169; https://doi.org/10.3390/ph15020169 - 29 Jan 2022
Cited by 11 | Viewed by 4997
Abstract
Two novel phosphine ligands, Ph2PCH2N(CH2CH3)3 (1) and Ph2PCH2N(CH2CH2CH2CH3)2 (2), and six new metal (Cu(I), Ir(III) and Ru(II)) [...] Read more.
Two novel phosphine ligands, Ph2PCH2N(CH2CH3)3 (1) and Ph2PCH2N(CH2CH2CH2CH3)2 (2), and six new metal (Cu(I), Ir(III) and Ru(II)) complexes with those ligands: iridium(III) complexes: Ir(η5-Cp*)Cl2(1) (1a), Ir(η5-Cp*)Cl2(2) (2a) (Cp*: Pentamethylcyclopentadienyl); ruthenium(II) complexes: Ru(η6-p-cymene)Cl2(1) (1b), Ru(η6-p-cymene)Cl2(2) (2b) and copper(I) complexes: [Cu(CH3CN)2(1)BF4] (1c), [Cu(CH3CN)2(2)BF4] (2c) were synthesized and characterized using elemental analysis, NMR spectroscopy, and ESI-MS spectrometry. Copper(I) complexes turned out to be highly unstable in the presence of atmospheric oxygen in contrast to ruthenium(II) and iridium(III) complexes. The studied Ru(II) and Ir(III) complexes exhibited promising cytotoxicity towards cancer cells in vitro with IC50 values significantly lower than that of the reference drug—cisplatin. Confocal microscopy analysis showed that Ru(II) and Ir(III) complexes effectively accumulate inside A549 cells with localization in cytoplasm and nuclei. A precise cytometric analysis provided clear evidence for the predominance of apoptosis in induced cell death. Furthermore, the complexes presumably induce the changes in the cell cycle leading to G2/M phase arrest in a dose-dependent manner. Gel electrophoresis experiments revealed that Ru(II) and Ir(III) inorganic compounds showed their unusual low genotoxicity towards plasmid DNA. Additionally, metal complexes were able to generate reactive oxygen species as a result of redox processes, proved by gel electrophoresis and cyclic voltamperometry. In vitro cytotoxicity assays were also carried out within multicellular tumor spheroids and efficient anticancer action on these 3D assemblies was demonstrated. It was proven that the hydrocarbon chain elongation of the phosphine ligand coordinated to the metal ions does not influence the cytotoxic effect of resulting complexes in contrast to metal ions type. Full article
(This article belongs to the Special Issue Privileged Structures as Leads in Medicinal Chemistry)
Show Figures

Figure 1

9 pages, 3155 KB  
Article
Iridium Complex Catalyzed Hydrogen Production from Glucose and Various Monosaccharides
by Ken-ichi Fujita, Takayoshi Inoue, Toshiki Tanaka, Jaeyoung Jeong, Shohichi Furukawa and Ryohei Yamaguchi
Catalysts 2021, 11(8), 891; https://doi.org/10.3390/catal11080891 - 23 Jul 2021
Cited by 12 | Viewed by 3745
Abstract
A new catalytic system has been developed for hydrogen production from various monosaccharides, mainly glucose, as a starting material under reflux conditions in water in the presence of a water-soluble dicationic iridium complex bearing a functional bipyridine ligand. For example, the reaction of [...] Read more.
A new catalytic system has been developed for hydrogen production from various monosaccharides, mainly glucose, as a starting material under reflux conditions in water in the presence of a water-soluble dicationic iridium complex bearing a functional bipyridine ligand. For example, the reaction of D-glucose in water under reflux for 20 h in the presence of [Cp*Ir(6,6′-dihydroxy-2,2′-bipyridine)(H2O)][OTf]2 (1.0 mol %) (Cp*: pentamethylcyclopentadienyl, OTf: trifluoromethanesulfonate) resulted in the production of hydrogen gas in 95% yield. In the present catalytic reaction, it was experimentally suggested that dehydrogenation of the alcoholic moiety at 1-position of glucose proceeded. Full article
(This article belongs to the Special Issue Advance in Selective Alcohol and Polyol Oxidation Catalysis)
Show Figures

Graphical abstract

18 pages, 2643 KB  
Article
A Comparative Analysis of the In Vitro Anticancer Activity of Iridium(III) {η5-C5Me4R} Complexes with Variable R Groups
by Alice De Palo, Dijana Draca, Maria Grazia Murrali, Stefano Zacchini, Guido Pampaloni, Sanja Mijatovic, Danijela Maksimovic-Ivanic and Fabio Marchetti
Int. J. Mol. Sci. 2021, 22(14), 7422; https://doi.org/10.3390/ijms22147422 - 10 Jul 2021
Cited by 16 | Viewed by 4031
Abstract
Piano-stool iridium complexes based on the pentamethylcyclopentadienyl ligand (Cp*) have been intensively investigated as anticancer drug candidates and hold much promise in this setting. A systematic study aimed at outlining the effect of Cp* mono-derivatization on the antiproliferative activity is presented here. Thus, [...] Read more.
Piano-stool iridium complexes based on the pentamethylcyclopentadienyl ligand (Cp*) have been intensively investigated as anticancer drug candidates and hold much promise in this setting. A systematic study aimed at outlining the effect of Cp* mono-derivatization on the antiproliferative activity is presented here. Thus, the dinuclear complexes [Ir(η5-C5Me4R)Cl(μ-Cl)]2 (R = Me, 1a; R = H, 1b; R = Pr, 1c; R = 4-C6H4F, 1d; R = 4-C6H4OH, 1e), their 2-phenylpyridyl mononuclear derivatives [Ir(η5-C5Me4R)(kN,kCPhPy)Cl] (2a–d), and the dimethylsulfoxide complex [Ir{η5-C5Me4(4-C6H4OH)}Cl2S-Me2S=O)] (3) were synthesized, structurally characterized, and assessed for their cytotoxicity towards a panel of six human and rodent cancer cell lines (mouse melanoma, B16; rat glioma, C6; breast adenocarcinoma, MCF-7; colorectal carcinoma, SW620 and HCT116; ovarian carcinoma, A2780) and one primary, human fetal lung fibroblast cell line (MRC5). Complexes 2b (R = H) and 2d (4-C6H4F) emerged as the most active ones and were selected for further investigation. They did not affect the viability of primary mouse peritoneal cells, and their tumoricidal action arises from the combined influence on cellular proliferation, apoptosis and senescence. The latter is triggered by mitochondrial failure and production of reactive oxygen and nitrogen species. Full article
Show Figures

Graphical abstract

23 pages, 8454 KB  
Article
Donor Atom Preference of Organoruthenium and Organorhodium Cations on the Interaction with Novel Ambidentate (N,N) and (O,O) Chelating Ligands in Aqueous Solution
by Sándor Nagy, András Ozsváth, Attila Cs. Bényei, Etelka Farkas and Péter Buglyó
Molecules 2021, 26(12), 3586; https://doi.org/10.3390/molecules26123586 - 11 Jun 2021
Cited by 4 | Viewed by 3172
Abstract
Two novel, pyridinone-based chelating ligands containing separated (O,O) and (Namino,Nhet) chelating sets (Namino = secondary amine; Nhet = pyrrole N for H(L3) (1-(3-(((1H-pyrrole-2-yl)methyl)-amino)propyl)-3-hydroxy-2-methylpyridin-4(1H)-one) or pyridine N for H(L5) (3-hydroxy-2-methyl-1-(3-((pyridin-2-ylmethyl)amino)propyl)pyridin-4(1H)-one)) were synthesized via reduction of the appropriate imines. [...] Read more.
Two novel, pyridinone-based chelating ligands containing separated (O,O) and (Namino,Nhet) chelating sets (Namino = secondary amine; Nhet = pyrrole N for H(L3) (1-(3-(((1H-pyrrole-2-yl)methyl)-amino)propyl)-3-hydroxy-2-methylpyridin-4(1H)-one) or pyridine N for H(L5) (3-hydroxy-2-methyl-1-(3-((pyridin-2-ylmethyl)amino)propyl)pyridin-4(1H)-one)) were synthesized via reduction of the appropriate imines. Their proton dissociation processes were explored, and the molecular structures of two synthons were assessed by X-ray crystallography. These ambidentate chelating ligands are intended to develop Co(III)/PGM (PGM = platinum group metal) heterobimetallic multitargeted complexes with anticancer potential. To explore their metal ion binding ability, the interaction with Pd(II), [(η6-p-cym)Ru]2+ and [(η5-Cp*)Rh]2+ (p-cym = 1-methyl-4-isopropylbenzene, Cp* = pentamethyl-cyclopentadienyl anion) cations was studied in aqueous solution with the combined use of pH-potentiometry, NMR and HR ESI-MS. In general, organorhodium was found to form more labile complexes over ruthenium, while complexation of the (N,N) chelating set was slower than the processes of the pyridinone unit with (O,O) coordination. Formation of the organoruthenium complexes starts at lower pH (higher thermodynamic stabilities of the corresponding complexes) than for [(η5-Cp*)Rh]2+ but, due to the higher affinity of [η6-p-cym)Ru]2+ towards hydrolysis, the complexed ligands are capable of competing with hydroxide ion in a lesser extent than for the rhodium systems. As a result, under biologically relevant conditions, the rhodium binding effectivity of the ligands becomes comparable or even slightly higher than their effectivity towards ruthenium. Our results indicate that H(L3) is a less efficient (N,N) chelator for these metal ions than H(L5). Similarly, due to the relative effectivity of the (O,O) and (N,N) chelates at a 1:1 metal-ion-to-ligand ratio, H(L5) coordinates in a (N,N) manner to both cations in the whole pH range studied while, for H(L3), the complexation starts with (O,O) coordination. At a 2:1 metal-ion-to-ligand ratio, H(L3) cannot hinder the intensive hydrolysis of the second metal ion, although a small amount of 2:1 complex with [(η5-Cp*)Rh]2+ can also be detected. Full article
Show Figures

Figure 1

24 pages, 5206 KB  
Review
Rh(I) Complexes in Catalysis: A Five-Year Trend
by Serenella Medici, Massimiliano Peana, Alessio Pelucelli and Maria Antonietta Zoroddu
Molecules 2021, 26(9), 2553; https://doi.org/10.3390/molecules26092553 - 27 Apr 2021
Cited by 17 | Viewed by 5734
Abstract
Rhodium is one of the most used metals in catalysis both in laboratory reactions and industrial processes. Despite the extensive exploration on “classical” ligands carried out during the past decades in the field of rhodium-catalyzed reactions, such as phosphines, and other common types [...] Read more.
Rhodium is one of the most used metals in catalysis both in laboratory reactions and industrial processes. Despite the extensive exploration on “classical” ligands carried out during the past decades in the field of rhodium-catalyzed reactions, such as phosphines, and other common types of ligands including N-heterocyclic carbenes, ferrocenes, cyclopentadienyl anion and pentamethylcyclopentadienyl derivatives, etc., there is still lively research activity on this topic, with considerable efforts being made toward the synthesis of new preformed rhodium catalysts that can be both efficient and selective. Although the “golden age” of homogeneous catalysis might seem over, there is still plenty of room for improvement, especially from the point of view of a more sustainable chemistry. In this review, temporally restricted to the analysis of literature during the past five years (2015–2020), the latest findings and trends in the synthesis and applications of Rh(I) complexes to catalysis will be presented. From the analysis of the most recent literature, it seems clear that rhodium-catalyzed processes still represent a stimulating challenge for the metalloorganic chemist that is far from being over. Full article
(This article belongs to the Special Issue Exclusive Feature Papers in Inorganic Chemistry)
Show Figures

Figure 1

11 pages, 1496 KB  
Article
Impact of the Metal Center and Leaving Group on the Anticancer Activity of Organometallic Complexes of Pyridine-2-carbothioamide
by Jahanzaib Arshad, Kelvin K. H. Tong, Sanam Movassaghi, Tilo Söhnel, Stephen M. F. Jamieson, Muhammad Hanif and Christian G. Hartinger
Molecules 2021, 26(4), 833; https://doi.org/10.3390/molecules26040833 - 5 Feb 2021
Cited by 19 | Viewed by 3458
Abstract
RuII(cym)Cl (cym = η6-p-cymene) complexes of pyridinecarbothioamides have shown potential for development as orally active anticancer metallodrugs, underlined by their high selectivity towards plectin as the molecular target. In order to investigate the impact of the metal [...] Read more.
RuII(cym)Cl (cym = η6-p-cymene) complexes of pyridinecarbothioamides have shown potential for development as orally active anticancer metallodrugs, underlined by their high selectivity towards plectin as the molecular target. In order to investigate the impact of the metal center on the anticancer activity and their physicochemical properties, the Os(cym), Rh- and Ir(Cp*) (Cp* = pentamethylcyclopentadienyl) analogues of the most promising and orally active compound plecstatin 2 were prepared and characterized by spectroscopic techniques and X-ray diffraction analysis. Dissolution in aqueous medium results in quick ligand exchange reactions; however, over time no further changes in the 1H NMR spectra were observed. The Rh- and Ir(Cp*) complexes were investigated for their reactions with amino acids, and while they reacted with Cys, no reaction with His was observed. Studies on the in vitro anticancer activity identified the Ru derivatives as the most potent, independent of their halido leaving group, while the Rh derivative was more active than the Ir analogue. This demonstrates that the metal center has a significant impact on the anticancer activity of the compound class. Full article
Show Figures

Graphical abstract

22 pages, 1804 KB  
Article
Thiourea-Derived Chelating Ligands and Their Organometallic Compounds: Investigations into Their Anticancer Activity
by Kelvin K. H. Tong, Muhammad Hanif, James H. Lovett, Katja Hummitzsch, Hugh H. Harris, Tilo Söhnel, Stephen M. F. Jamieson and Christian G. Hartinger
Molecules 2020, 25(16), 3661; https://doi.org/10.3390/molecules25163661 - 11 Aug 2020
Cited by 14 | Viewed by 4893
Abstract
Thiones have been investigated as ligands in metal complexes with catalytic and biological activity. We report the synthesis, characterization, and biological evaluation of a series of MII/III complexes of the general formulae [MII(cym)(L)Cl]X (cym = η6-p-cymene) [...] Read more.
Thiones have been investigated as ligands in metal complexes with catalytic and biological activity. We report the synthesis, characterization, and biological evaluation of a series of MII/III complexes of the general formulae [MII(cym)(L)Cl]X (cym = η6-p-cymene) or [MIII(Cp*)(L)Cl]X (Cp* = η5-pentamethylcyclopentadienyl), where X = Cl or PF6, and L represents heterocyclic derivatives of thiourea. The thiones feature a benzyl-triazolyl pendant and they act as bidentate ligands via N,S-coordination to the metal centers. Several derivatives have been investigated by single-crystal X-ray diffraction analysis. NMR investigations showed a counterion-dependent shift of several protons due to the interaction with the counterions. These NMR investigations were complemented with X-ray diffraction analysis data and the effects of different counterions on the secondary coordination sphere were also investigated by DFT calculations. In biological studies, the Ir benzimidazole derivative was found to accumulate in the cytoplasm and it was the most cytotoxic derivative investigated. Full article
(This article belongs to the Special Issue Advances in Anticancer Drug Discovery)
Show Figures

Graphical abstract

8 pages, 2045 KB  
Communication
Synthesis of a Half-Sandwich Hydroxidoiridium(III) Complex Bearing a Nonprotic N-Sulfonyldiamine Ligand and Its Transformations Triggered by the Brønsted Basicity
by Shoko Kamezaki, Yoshihito Kayaki, Shigeki Kuwata and Takao Ikariya
Inorganics 2019, 7(10), 125; https://doi.org/10.3390/inorganics7100125 - 17 Oct 2019
Cited by 2 | Viewed by 3878
Abstract
Synthesis and reactivities of a new mononuclear hydroxidoiridium(III) complex with a pentamethylcyclopentadienyl (Cp*) ligand are reported. The hydroxido ligand was introduced into an iridium complex having a nonprotic amine chelate derived from N-mesyl-N’,N’-dimethylethylenediamine by substitution of the chloride [...] Read more.
Synthesis and reactivities of a new mononuclear hydroxidoiridium(III) complex with a pentamethylcyclopentadienyl (Cp*) ligand are reported. The hydroxido ligand was introduced into an iridium complex having a nonprotic amine chelate derived from N-mesyl-N’,N’-dimethylethylenediamine by substitution of the chloride ligand using KOH. The resulting hydroxidoiridium complex was characterized by NMR spectroscopy, elemental analysis, and X-ray crystallography. The hydroxido complex was able to deprotonate benzamide and acetonitrile, and showed an ability to accept a hydride from 2-propanol to generate the corresponding hydrido complex quantitatively. In the reaction with mandelonitrile, a cyanide anion was transferred to the iridium center in preference to the hydride transfer. The cyanidoiridium complex was also identified in the reaction with acetone cyanohydrin, and could serve as catalyst species in the transfer hydrocyanation of benzaldehyde. Full article
(This article belongs to the Special Issue Iridium Complexes)
Show Figures

Graphical abstract

27 pages, 6258 KB  
Article
C–H-Bond Activation and Isoprene Polymerization Studies Applying Pentamethylcyclopentadienyl-Supported Rare-Earth-Metal Bis(Tetramethylaluminate) and Dimethyl Complexes
by Christoph O. Hollfelder, Melanie Meermann-Zimmermann, Georgios Spiridopoulos, Daniel Werner, Karl W. Törnroos, Cäcilia Maichle-Mössmer and Reiner Anwander
Molecules 2019, 24(20), 3703; https://doi.org/10.3390/molecules24203703 - 15 Oct 2019
Cited by 9 | Viewed by 3573
Abstract
As previously shown for lutetium and yttrium, 1,2,3,4,5-pentamethylcyclopentadienyl (C5Me5 = Cp*)-bearing rare-earth metal dimethyl half-sandwich complexes [Cp*LnMe2]3 are now also accessible for holmium, dysprosium, and terbium via tetramethylaluminato cleavage of [Cp*Ln(AlMe4)2] with diethyl [...] Read more.
As previously shown for lutetium and yttrium, 1,2,3,4,5-pentamethylcyclopentadienyl (C5Me5 = Cp*)-bearing rare-earth metal dimethyl half-sandwich complexes [Cp*LnMe2]3 are now also accessible for holmium, dysprosium, and terbium via tetramethylaluminato cleavage of [Cp*Ln(AlMe4)2] with diethyl ether (Ho, Dy) and tert-butyl methyl ether (TBME) (Tb). C–H-bond activation and ligand redistribution reactions are observed in case of terbium and are dominant for the next larger-sized gadolinium, as evidenced by the formation of mixed methyl/methylidene clusters [(Cp*Ln)5(CH2)(Me)8] and metallocene dimers [Cp*2Ln(AlMe4)]2 (Ln = Tb, Gd). Applying TBME as a “cleaving” reagent can result in both TBME deprotonation and ether cleavage, as shown for the formation of the 24-membered macrocycle [(Cp*Gd)2(Me)(CH2OtBu)2(AlMe4)]4 or monolanthanum complex [Cp*La(AlMe4){Me3Al(CH2)OtBu}] and monoyttrium complex [Cp*Y(AlMe4)(Me3AlOtBu)], respectively. Complexes [Cp*Ln(AlMe4)2] (Ln = Ho, Dy, Tb, Gd) and [Cp*LnMe2]3 (Ln = Ho, Dy) are applied in isoprene and 1,3-butadiene polymerization, upon activation with borates [Ph3C][B(C6F5)4] and [PhNHMe2][B(C6F5)4], as well as borane B(C6F5)3. The trans-directing effect of AlMe3 in the binary systems [Cp*Ln(AlMe4)2]/borate is revealed and further corroborated by the fabrication of high-cis-1,4 polybutadiene (97%) with “aluminum-free” [Cp*DyMe2]3/[Ph3C][B(C6F5)4]. The formation of multimetallic active species is supported by the polymerization activity of pre-isolated cluster [(Cp*Ho)3Me4(CH2)(thf)2]. Full article
(This article belongs to the Special Issue Well-Defined Metal Complex Catalysts for Olefin Polymerization)
Show Figures

Graphical abstract

Back to TopTop