Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = perceptual magnet effect

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2639 KiB  
Article
Functional Connectivity Biomarker Extraction for Schizophrenia Based on Energy Landscape Machine Learning Techniques
by Janerra D. Allen, Sravani Varanasi, Fei Han, L. Elliot Hong and Fow-Sen Choa
Sensors 2024, 24(23), 7742; https://doi.org/10.3390/s24237742 - 4 Dec 2024
Cited by 1 | Viewed by 1212
Abstract
Brain connectivity represents the functional organization of the brain, which is an important indicator for evaluating neuropsychiatric disorders and treatment effects. Schizophrenia is associated with impaired functional connectivity but characterizing the complex abnormality patterns has been challenging. In this work, we used resting-state [...] Read more.
Brain connectivity represents the functional organization of the brain, which is an important indicator for evaluating neuropsychiatric disorders and treatment effects. Schizophrenia is associated with impaired functional connectivity but characterizing the complex abnormality patterns has been challenging. In this work, we used resting-state functional magnetic resonance imaging (fMRI) data to measure functional connectivity between 55 schizophrenia patients and 63 healthy controls across 246 regions of interest (ROIs) and extracted the disease-related connectivity patterns using energy landscape (EL) analysis. EL analysis captures the complexity of brain function in schizophrenia by focusing on functional brain state stability and region-specific dynamics. Age, sex, and smoker demographics between patients and controls were not significantly different. However, significant patient and control differences were found for the brief psychiatric rating scale (BPRS), auditory perceptual trait and state (APTS), visual perceptual trait and state (VPTS), working memory score, and processing speed score. We found that the brains of individuals with schizophrenia have abnormal energy landscape patterns between the right and left rostral lingual gyrus, and between the left lateral and orbital area in 12/47 regions. The results demonstrate the potential of the proposed imaging analysis workflow to identify potential connectivity biomarkers by indexing specific clinical features in schizophrenia patients. Full article
Show Figures

Figure 1

17 pages, 2292 KiB  
Article
Maintenance of Bodily Expressions Modulates Functional Connectivity Between Prefrontal Cortex and Extrastriate Body Area During Working Memory Processing
by Jie Ren, Mingming Zhang, Shuaicheng Liu, Weiqi He and Wenbo Luo
Brain Sci. 2024, 14(12), 1172; https://doi.org/10.3390/brainsci14121172 - 22 Nov 2024
Cited by 1 | Viewed by 881
Abstract
Background/Objectives: As a form of visual input, bodily expressions can be maintained and manipulated in visual working memory (VWM) over a short period of time. While the prefrontal cortex (PFC) plays an indispensable role in top-down control, it remains largely unclear whether this [...] Read more.
Background/Objectives: As a form of visual input, bodily expressions can be maintained and manipulated in visual working memory (VWM) over a short period of time. While the prefrontal cortex (PFC) plays an indispensable role in top-down control, it remains largely unclear whether this region also modulates the VWM storage of bodily expressions during a delay period. Therefore, the two primary goals of this study were to examine whether the emotional bodies would elicit heightened brain activity among areas such as the PFC and extrastriate body area (EBA) and whether the emotional effects subsequently modulate the functional connectivity patterns for active maintenance during delay periods. Methods: During functional magnetic resonance imaging (fMRI) scanning, participants performed a delayed-response task in which they were instructed to view and maintain a body stimulus in working memory before emotion categorization (happiness, anger, and neutral). If processing happy and angry bodies consume increased cognitive demands, stronger PFC activation and its functional connectivity with perceptual areas would be observed. Results: Results based on univariate and multivariate analyses conducted on the data collected during stimulus presentation revealed an enhanced processing of the left PFC and left EBA. Importantly, subsequent functional connectivity analyses performed on delayed-period data using a psychophysiological interaction model indicated that functional connectivity between the PFC and EBA increases for happy and angry bodies compared to neutral bodies. Conclusions: The emotion-modulated coupling between the PFC and EBA during maintenance deepens our understanding of the functional organization underlying the VWM processing of bodily information. Full article
(This article belongs to the Section Cognitive, Social and Affective Neuroscience)
Show Figures

Figure 1

17 pages, 2128 KiB  
Article
Long-Term Bridge Training Induces Functional Plasticity Changes in the Brain of Early-Adult Individuals
by Bingjie Zhao, Yan Liu, Zheng Wang, Qihan Zhang and Xuejun Bai
Behav. Sci. 2024, 14(6), 469; https://doi.org/10.3390/bs14060469 - 31 May 2024
Cited by 1 | Viewed by 1064
Abstract
The aim of this study was to investigate the impact of extended bridge expertise on rapid perceptual processing and brain functional plasticity in early adulthood, utilizing functional magnetic resonance imaging (fMRI). In this investigation, we compared 6 high-level college bridge players with 25 [...] Read more.
The aim of this study was to investigate the impact of extended bridge expertise on rapid perceptual processing and brain functional plasticity in early adulthood, utilizing functional magnetic resonance imaging (fMRI). In this investigation, we compared 6 high-level college bridge players with 25 college students lacking bridge experience, assessing their intelligence and working memory. Additionally, we scrutinized behavioral performance and whole-brain activation patterns during an image perceptual judgment task. Findings indicated significant group and interaction effects at the behavioral level. Bridge players exhibited prolonged reaction times and enhanced accuracy on card tasks. At the neural level, the activation level of bridge players in the occipital lobe exceeded that of ordinary college students, with more pronounced group effects in the motor area and inferior parietal lobule during card tasks. This implies that bridge expertise in early adulthood induces functional plasticity changes in regions associated with visual processing and automated mathematical computation. Full article
Show Figures

Figure 1

26 pages, 2275 KiB  
Article
Positive Effect of Super-Resolved Structural Magnetic Resonance Imaging for Mild Cognitive Impairment Detection
by Ovidijus Grigas, Robertas Damaševičius and Rytis Maskeliūnas
Brain Sci. 2024, 14(4), 381; https://doi.org/10.3390/brainsci14040381 - 14 Apr 2024
Cited by 3 | Viewed by 1557
Abstract
This paper presents a novel approach to improving the detection of mild cognitive impairment (MCI) through the use of super-resolved structural magnetic resonance imaging (MRI) and optimized deep learning models. The study introduces enhancements to the perceptual quality of super-resolved 2D structural MRI [...] Read more.
This paper presents a novel approach to improving the detection of mild cognitive impairment (MCI) through the use of super-resolved structural magnetic resonance imaging (MRI) and optimized deep learning models. The study introduces enhancements to the perceptual quality of super-resolved 2D structural MRI images using advanced loss functions, modifications to the upscaler part of the generator, and experiments with various discriminators within a generative adversarial training setting. It empirically demonstrates the effectiveness of super-resolution in the MCI detection task, showcasing performance improvements across different state-of-the-art classification models. The paper also addresses the challenge of accurately capturing perceptual image quality, particularly when images contain checkerboard artifacts, and proposes a methodology that incorporates hyperparameter optimization through a Pareto optimal Markov blanket (POMB). This approach systematically explores the hyperparameter space, focusing on reducing overfitting and enhancing model generalizability. The research findings contribute to the field by demonstrating that super-resolution can significantly improve the quality of MRI images for MCI detection, highlighting the importance of choosing an adequate discriminator and the potential of super-resolution as a preprocessing step to boost classification model performance. Full article
(This article belongs to the Special Issue Advances of AI in Neuroimaging)
Show Figures

Figure 1

22 pages, 7535 KiB  
Article
Improving Structural MRI Preprocessing with Hybrid Transformer GANs
by Ovidijus Grigas, Rytis Maskeliūnas and Robertas Damaševičius
Life 2023, 13(9), 1893; https://doi.org/10.3390/life13091893 - 11 Sep 2023
Cited by 15 | Viewed by 1951
Abstract
Magnetic resonance imaging (MRI) is a technique that is widely used in practice to evaluate any pathologies in the human body. One of the areas of interest is the human brain. Naturally, MR images are low-resolution and contain noise due to signal interference, [...] Read more.
Magnetic resonance imaging (MRI) is a technique that is widely used in practice to evaluate any pathologies in the human body. One of the areas of interest is the human brain. Naturally, MR images are low-resolution and contain noise due to signal interference, the patient’s body’s radio-frequency emissions and smaller Tesla coil counts in the machinery. There is a need to solve this problem, as MR tomographs that have the capability of capturing high-resolution images are extremely expensive and the length of the procedure to capture such images increases by the order of magnitude. Vision transformers have lately shown state-of-the-art results in super-resolution tasks; therefore, we decided to evaluate whether we can employ them for structural MRI super-resolution tasks. A literature review showed that similar methods do not focus on perceptual image quality because upscaled images are often blurry and are subjectively of poor quality. Knowing this, we propose a methodology called HR-MRI-GAN, which is a hybrid transformer generative adversarial network capable of increasing resolution and removing noise from 2D T1w MRI slice images. Experiments show that our method quantitatively outperforms other SOTA methods in terms of perceptual image quality and is capable of subjectively generalizing to unseen data. During the experiments, we additionally identified that the visual saliency-induced index metric is not applicable to MRI perceptual quality assessment and that general-purpose denoising networks are effective when removing noise from MR images. Full article
(This article belongs to the Section Biochemistry, Biophysics and Computational Biology)
Show Figures

Figure 1

13 pages, 1824 KiB  
Article
Functional Changes of White Matter Are Related to Human Pain Sensitivity during Sustained Nociception
by Hui He, Lan Hu, Saiying Tan, Yingjie Tang, Mingjun Duan, Dezhong Yao, Guocheng Zhao and Cheng Luo
Bioengineering 2023, 10(8), 988; https://doi.org/10.3390/bioengineering10080988 - 21 Aug 2023
Cited by 2 | Viewed by 1519
Abstract
Pain is considered an unpleasant perceptual experience associated with actual or potential somatic and visceral harm. Human subjects have different sensitivity to painful stimulation, which may be related to different painful response pattern. Excellent studies using functional magnetic resonance imaging (fMRI) have found [...] Read more.
Pain is considered an unpleasant perceptual experience associated with actual or potential somatic and visceral harm. Human subjects have different sensitivity to painful stimulation, which may be related to different painful response pattern. Excellent studies using functional magnetic resonance imaging (fMRI) have found the effect of the functional organization of white matter (WM) on the descending pain modulatory system, which suggests that WM function is feasible during pain modulation. In this study, 26 pain sensitive (PS) subjects and 27 pain insensitive (PIS) subjects were recruited based on cold pressor test. Then, all subjects underwent the cold bottle test (CBT) in normal (26 degrees temperature stimulating) and cold (8 degrees temperature stimulating) conditions during fMRI scan, respectively. WM functional networks were obtained using K-means clustering, and the functional connectivity (FC) was assessed among WM networks, as well as gray matter (GM)–WM networks. Through repeated measures ANOVA, decreased FC was observed between the GM–cerebellum network and the WM–superior temporal network, as well as the WM–sensorimotor network in the PS group under the cold condition, while this difference was not found in PIS group. Importantly, the changed FC was positively correlated with the state and trait anxiety scores, respectively. This study highlighted that the WM functional network might play an integral part in pain processing, and an altered FC may be related to the descending pain modulatory system. Full article
(This article belongs to the Special Issue Recent Technologies in Neuroimaging and Brain Intervention of PDs)
Show Figures

Graphical abstract

23 pages, 4386 KiB  
Article
Simultaneous fMRI and tDCS for Enhancing Training of Flight Tasks
by Jesse A. Mark, Hasan Ayaz and Daniel E. Callan
Brain Sci. 2023, 13(7), 1024; https://doi.org/10.3390/brainsci13071024 - 3 Jul 2023
Cited by 6 | Viewed by 2854
Abstract
There is a gap in our understanding of how best to apply transcranial direct-current stimulation (tDCS) to enhance learning in complex, realistic, and multifocus tasks such as aviation. Our goal is to assess the effects of tDCS and feedback training on task performance, [...] Read more.
There is a gap in our understanding of how best to apply transcranial direct-current stimulation (tDCS) to enhance learning in complex, realistic, and multifocus tasks such as aviation. Our goal is to assess the effects of tDCS and feedback training on task performance, brain activity, and connectivity using functional magnetic resonance imaging (fMRI). Experienced glider pilots were recruited to perform a one-day, three-run flight-simulator task involving varying difficulty conditions and a secondary auditory task, mimicking real flight requirements. The stimulation group (versus sham) received 1.5 mA high-definition HD-tDCS to the right dorsolateral prefrontal cortex (DLPFC) for 30 min during the training. Whole-brain fMRI was collected before, during, and after stimulation. Active stimulation improved piloting performance both during and post-training, particularly in novice pilots. The fMRI revealed a number of tDCS-induced effects on brain activation, including an increase in the left cerebellum and bilateral basal ganglia for the most difficult conditions, an increase in DLPFC activation and connectivity to the cerebellum during stimulation, and an inhibition in the secondary task-related auditory cortex and Broca’s area. Here, we show that stimulation increases activity and connectivity in flight-related brain areas, particularly in novices, and increases the brain’s ability to focus on flying and ignore distractors. These findings can guide applied neurostimulation in real pilot training to enhance skill acquisition and can be applied widely in other complex perceptual-motor real-world tasks. Full article
(This article belongs to the Section Neural Engineering, Neuroergonomics and Neurorobotics)
Show Figures

Figure 1

15 pages, 1140 KiB  
Review
A Narrative Review of Auditory Categorisation and Its Potential Role in Tinnitus Perception
by Dunja Vajsakovic, Michael R. D. Maslin and Grant D. Searchfield
J. Otorhinolaryngol. Hear. Balance Med. 2022, 3(3), 6; https://doi.org/10.3390/ohbm3030006 - 29 Jul 2022
Viewed by 2845
Abstract
Auditory categorisation is a phenomenon reflecting the non-linear nature of human perceptual spaces which govern sound perception. Categorisation training paradigms may reduce sensitivity toward training stimuli, decreasing the representation of these stimuli in auditory perceptual maps. Reduced cortical representation may have clinical implications [...] Read more.
Auditory categorisation is a phenomenon reflecting the non-linear nature of human perceptual spaces which govern sound perception. Categorisation training paradigms may reduce sensitivity toward training stimuli, decreasing the representation of these stimuli in auditory perceptual maps. Reduced cortical representation may have clinical implications for conditions that arise from disturbances in cortical activation, such as tinnitus. This review explores the categorisation of sound, with a particular focus on tinnitus. The potential of categorisation training as a sound-based tinnitus therapy is discussed. A narrative review methodological framework was followed. Four databases (PubMed, Google Scholar, Scopus, and ScienceDirect) were extensively searched for the following key words: categorisation, categorical perception, perceptual magnet effect, generalisation, and categorisation OR categorical perception OR perceptual magnet effect OR generalisation AND sound. Given the exploratory nature of the review and the fact that early works on categorisation are crucial to the understanding and development of auditory categorisation, all study types were selected for the period 1950–2022. Reference lists of articles were reviewed to identify any further relevant studies. The results of the review were catalogued and organised into themes. In total, 112 articles were reviewed in full, from which 59 were found to contain relevant information and were included in the review. Key themes identified included categorical perception of speech stimuli, warping of the auditory perceptual space, categorisation versus discrimination, the presence of categorisation across several modalities, and categorisation as an innate versus learned feature. Although a substantial amount of work focused on evaluating the effects of categorisation training on sound perception, only two studies investigated the effects of categorisation training on tinnitus. Implementation of a categorisation-based perceptual training paradigm could serve as a promising means of tinnitus management by reversing the changes in cortical plasticity that are seen in tinnitus, in turn altering the representation of sound within the auditory cortex itself. In the instance that the categorisation training is successful, this would likely mean a decrease in the level of activity within the auditory cortex (and other associated cortical areas found to be hyperactive in tinnitus) as well as a reduction in tinnitus salience. Full article
Show Figures

Figure 1

26 pages, 11733 KiB  
Article
Morphological Fabrication of Rubber Cutaneous Receptors Embedded in a Stretchable Skin-Mimicking Human Tissue by the Utilization of Hybrid Fluid
by Kunio Shimada, Ryo Ikeda, Hiroshige Kikura and Hideharu Takahashi
Sensors 2021, 21(20), 6834; https://doi.org/10.3390/s21206834 - 14 Oct 2021
Cited by 6 | Viewed by 3184
Abstract
Sensors are essential in the haptic technology of soft robotics, which includes the technology of humanoids. Haptic sensors can be simulated by the mimetic organ of perceptual cells in the human body. However, there has been little research on the morphological fabrication of [...] Read more.
Sensors are essential in the haptic technology of soft robotics, which includes the technology of humanoids. Haptic sensors can be simulated by the mimetic organ of perceptual cells in the human body. However, there has been little research on the morphological fabrication of cutaneous receptors embedded in a human skin tissue utilizing artificial materials. In the present study, we fabricated artificial, cell-like cutaneous receptors embedded in skin tissue mimicking human skin structure by utilizing rubber. We addressed the fabrication of five cutaneous receptors (free nerve endings, Krause and bulbs, Meissner corpuscles, Pacinian corpuscles and Ruffini endings). In addition, we investigated the effectiveness of the fabricated tissue for mechanical and thermal sensing. At first, in the production of integrated artificial skin tissue, we proposed a novel magnetic, responsive, intelligent, hybrid fluid (HF), which is suitable for developing the hybrid rubber skin. Secondly, we presented the fabrication by utilizing not only the HF rubber but our previously proposed rubber vulcanization and adhesion techniques with electrolytic polymerization. Thirdly, we conducted a mechanical and thermal sensing touch experiment with the finger. As a result, it demonstrated that intelligence as a mechanoreceptor or thermoreceptor depends on its fabric: the HF rubber sensor mimicked Krause and bulbs has the thermal and pressing sensibility, and the one mimicked Ruffini endings the shearing sensibility. Full article
Show Figures

Figure 1

12 pages, 1196 KiB  
Article
Rostral Anterior Cingulate Thickness Predicts the Emotional Psilocybin Experience
by Candace R. Lewis, Katrin H. Preller, B. Blair Braden, Cory Riecken and Franz X. Vollenweider
Biomedicines 2020, 8(2), 34; https://doi.org/10.3390/biomedicines8020034 - 18 Feb 2020
Cited by 15 | Viewed by 11200
Abstract
Psilocybin is the psychoactive compound of mushrooms in the psilocybe species. Psilocybin directly affects a number of serotonin receptors, with highest affinity for the serotonin 2A receptor (5HT-2Ar). Generally, the effects of psilocybin, and its active metabolite psilocin, are well established and include [...] Read more.
Psilocybin is the psychoactive compound of mushrooms in the psilocybe species. Psilocybin directly affects a number of serotonin receptors, with highest affinity for the serotonin 2A receptor (5HT-2Ar). Generally, the effects of psilocybin, and its active metabolite psilocin, are well established and include a range of cognitive, emotional, and perceptual perturbations. Despite the generality of these effects, there is a high degree of inter-individual variability in subjective psilocybin experiences that are not well understood. Others have shown brain morphology metrics derived from magnetic resonance imaging (MRI) can predict individual drug response. Due to high expression of serotonin 2A receptors (5HT-2Ar) in the cingulate cortex, and its prior associations with psilocybin, we investigate if cortical thickness of this structure predicts the psilocybin experience in healthy adults. We hypothesized that greater cingulate thickness would predict higher subjective ratings in sub-scales of the Five-Dimensional Altered State of Consciousness (5D-ASC) with high emotionality in healthy participants (n = 55) who received oral psilocybin (either low dose: 0.160 mg/kg or high dose: 0.215 mg/kg). After controlling for sex, age, and using false discovery rate (FDR) correction, we found the rostral anterior cingulate predicted all four emotional sub-scales, whereas the caudal and posterior cingulate did not. How classic psychedelic compounds induce such large inter-individual variability in subjective states has been a long-standing question in serotonergic research. These results extend the traditional set and setting hypothesis of the psychedelic experience to include brain structure metrics. Full article
(This article belongs to the Section Neurobiology and Clinical Neuroscience)
Show Figures

Graphical abstract

19 pages, 1097 KiB  
Article
Category Structure and Categorical Perception Jointly Explained by Similarity-Based Information Theory
by Romain Brasselet and Angelo Arleo
Entropy 2018, 20(7), 527; https://doi.org/10.3390/e20070527 - 14 Jul 2018
Cited by 4 | Viewed by 5177
Abstract
Categorization is a fundamental information processing phenomenon in the brain. It is critical for animals to compress an abundance of stimulations into groups to react quickly and efficiently. In addition to labels, categories possess an internal structure: the goodness measures how well any [...] Read more.
Categorization is a fundamental information processing phenomenon in the brain. It is critical for animals to compress an abundance of stimulations into groups to react quickly and efficiently. In addition to labels, categories possess an internal structure: the goodness measures how well any element belongs to a category. Interestingly, this categorization leads to an altered perception referred to as categorical perception: for a given physical distance, items within a category are perceived closer than items in two different categories. A subtler effect is the perceptual magnet: discriminability is reduced close to the prototypes of a category and increased near its boundaries. Here, starting from predefined abstract categories, we naturally derive the internal structure of categories and the phenomenon of categorical perception, using an information theoretical framework that involves both probabilities and pairwise similarities between items. Essentially, we suggest that pairwise similarities between items are to be tuned to render some predefined categories as well as possible. However, constraints on these pairwise similarities only produce an approximate matching, which explains concurrently the notion of goodness and the warping of perception. Overall, we demonstrate that similarity-based information theory may offer a global and unified principled understanding of categorization and categorical perception simultaneously. Full article
(This article belongs to the Special Issue Information Theory in Neuroscience)
Show Figures

Figure 1

Back to TopTop