Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = performance-based design (PBD)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
38 pages, 33809 KiB  
Review
Global Research Trends in Performance-Based Structural Design: A Comprehensive Bibliometric Analysis
by Mistreselasie S. Abate, Ana Catarina Jorge Evangelista and Vivian W. Y. Tam
Buildings 2025, 15(3), 363; https://doi.org/10.3390/buildings15030363 - 24 Jan 2025
Viewed by 1073
Abstract
In the context of seismic hazard assessment and engineering design, a comprehensive understanding of local geological and geophysical factors is essential. However, previous studies have lacked crucial components such as local soil condition, ground response analysis, topographic influences, active fault characteristics, slip rates, [...] Read more.
In the context of seismic hazard assessment and engineering design, a comprehensive understanding of local geological and geophysical factors is essential. However, previous studies have lacked crucial components such as local soil condition, ground response analysis, topographic influences, active fault characteristics, slip rates, groundwater behaviour, and slope considerations. To ensure the accuracy of the seismic hazard map of a country for the safe and cost-effective design of engineering structures in urban areas, a detailed analysis of these factors is imperative. Moreover, multidisciplinary investigations, such as logic-tree considerations, are needed to enhance seismic hazard maps. As a result, adopting a performance-based approach in structural design has become an essential priority. A performance-based approach allows engineers to design buildings to specified performance levels (IO, LS, CP) even without a reliable seismic hazard map. This approach is akin to a miracle for countries that do not have a reliable seismic hazard map. This study presents a systematic and comprehensive bibliometric analysis of the academic literature pertaining to performance-based design (PBD). By fostering collaborative efforts and expanding research networks, we aim to facilitate the development of coordinated initiatives within the field. Preferred journals, leading countries, leading organisations, and international institutions were identified utilizing the Scopus database. This study examined 3456 PBD-related publications spanning from 1969 to 2023 using VOSviewer version 1.6.19, a bibliometric mapping and visualization software tool. The analysis of co-citations revealed that performance-based design serves as the primary theoretical foundation for structural design and analysis. Furthermore, through a co-word analysis, we tracked the evolution of research topics within the PBD domain over time. This investigation uncovered noteworthy trends, including the steady growth of research output, the increasing prominence of the term “PBD”, and a focus on various types of performance-based analyses. Full article
Show Figures

Figure 1

20 pages, 8210 KiB  
Article
Seismic Performance Evaluation of a Chilean RC Building Damaged during the Mw8.8 Chile Earthquake
by Betzabeth Suquillo, Fabián Rojas and Leonardo M. Massone
Buildings 2024, 14(4), 1028; https://doi.org/10.3390/buildings14041028 - 7 Apr 2024
Cited by 2 | Viewed by 1674
Abstract
Chile, recognized as one of the world’s most earthquake-prone nations, has gained valuable insights from significant earthquakes, such as those in 1985 and 2010, which have influenced updates to the nation’s design codes. Although Chile’s seismic design approach has been largely effective in [...] Read more.
Chile, recognized as one of the world’s most earthquake-prone nations, has gained valuable insights from significant earthquakes, such as those in 1985 and 2010, which have influenced updates to the nation’s design codes. Although Chile’s seismic design approach has been largely effective in recent earthquakes and demonstrated an “operational” performance level in most structures, performance-based design (PBD) methods have not yet been officially incorporated as valid approaches in the Chilean seismic design codes for buildings. However, in 2017, the Chilean Association on Seismology and Earthquake Engineering (ACHISINA) introduced a PBD approach, primarily for verification purposes, based on the Los Angeles Tall Buildings Structural Design Council (LATBSDC) framework. In this work, firstly, we provide an overview of Chile’s PBD methodology, focusing on the thresholds for various performance levels. These levels are established through experimental and numerical analysis, correlating performance with permissible damage levels. The second part of the paper examines the seismic performance of a residential building, designed before the 2010 Maule earthquake and subsequently damaged, using Chile’s PBD guidelines. This case study highlights the implementation and effectiveness of PBD for assessing seismic resilience in Chilean structures. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

13 pages, 5061 KiB  
Article
Evaluation of Available Safety Egress Time (ASET) in Performance-Based Design (PBD) Using CFAST
by Hyo-Yeon Jang and Cheol-Hong Hwang
Fire 2024, 7(4), 108; https://doi.org/10.3390/fire7040108 - 25 Mar 2024
Cited by 1 | Viewed by 1892
Abstract
In South Korea, the need to link fire and evacuation simulations to compare the available safety egress time (ASET) and required safety egress time (RSET) in real time when implementing performance-based design in buildings is increasing. Accordingly, the Consolidated Model of Fire Growth [...] Read more.
In South Korea, the need to link fire and evacuation simulations to compare the available safety egress time (ASET) and required safety egress time (RSET) in real time when implementing performance-based design in buildings is increasing. Accordingly, the Consolidated Model of Fire Growth and Smoke Transport (CFAST) has been discussed as an alternative to the fire dynamics simulator, which requires high computational costs, sufficient experience in fire dynamics numerical calculations, and various input parameters and faces limitations in integration with evacuation simulations. A method for establishing a reasonable computational domain to predict the activation times of smoke and heat detectors has been proposed. This study examined the validity of using CFAST to predict factors relevant to the ASET evaluation. The results showed that CFAST, which solved empirical correlations based on heat release rates, predicted high gas temperatures similarly. Moreover, the applicability of the visibility distance calculation method using smoke concentration outputs from CFAST was examined. The results suggest that despite the limitations of the zone model, CFAST can produce reasonable ASET results. These results are expected to enhance the usability of CFAST in terms of understanding general fire engineering technology and simple fire dynamics trends. Full article
(This article belongs to the Special Issue Performance-Based Design in Structural Fire Engineering, Volume II)
Show Figures

Figure 1

45 pages, 15164 KiB  
Review
Towards Performance-Based Design of Masonry Buildings: Literature Review
by Bowen Zeng and Yong Li
Buildings 2023, 13(6), 1534; https://doi.org/10.3390/buildings13061534 - 15 Jun 2023
Cited by 10 | Viewed by 4659
Abstract
Masonry is among the most widely used construction materials around the world. Contemporary masonry buildings are primarily designed to comply with prescriptive building code regulations. In recent decades, performance-based design (PBD) has gained increasing attention and achieved significant success in critical structures or [...] Read more.
Masonry is among the most widely used construction materials around the world. Contemporary masonry buildings are primarily designed to comply with prescriptive building code regulations. In recent decades, performance-based design (PBD) has gained increasing attention and achieved significant success in critical structures or infrastructure systems. Instead of being the first mover, the masonry research and practice community can be a faster follower in response to the design paradigm shift towards PBD for masonry buildings. A reliable performance assessment of masonry buildings is of paramount importance in the PBD framework. To facilitate this, this paper presents an up-to-date comprehensive literature review of experimental and analytical studies with emphasis on their contributions to advancement towards performance assessment of masonry buildings. This review categorized available works into two sub-topics: (1) traditional unreinforced masonry and (2) modern reinforced masonry. In each sub-topic, studies focusing on the structural behaviors of masonry at the component-level (i.e., masonry wall) are discussed first, followed by the building system-level-related studies. Through this literature review, the current state of the art and remaining research gaps are identified to provide guidance for future research needs and to pave the way for implementing PBD in the masonry industry. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

18 pages, 7757 KiB  
Article
A Non-Instrumental Green Analytical Method Based on Surfactant-Assisted Dispersive Liquid–Liquid Microextraction–Thin-Layer Chromatography–Smartphone-Based Digital Image Colorimetry(SA-DLLME-TLC-SDIC) for Determining Favipiravir in Biological Samples
by Bharti Jain, Rajeev Jain, Prashant Kumar Jaiswal, Torki Zughaibi, Tanvi Sharma, Abuzar Kabir, Ritu Singh and Shweta Sharma
Molecules 2023, 28(2), 529; https://doi.org/10.3390/molecules28020529 - 5 Jan 2023
Cited by 23 | Viewed by 3766
Abstract
Favipiravir (FAV) has become a promising antiviral agent for the treatment of COVID-19. Herein, a green, fast, high-sample-throughput, non-instrumental, and affordable analytical method is proposed based on surfactant-assisted dispersive liquid–liquid microextraction (SA-DLLME) combined with thin-layer chromatography–digital image colourimetry (TLC-DIC) for determining favipiravir in [...] Read more.
Favipiravir (FAV) has become a promising antiviral agent for the treatment of COVID-19. Herein, a green, fast, high-sample-throughput, non-instrumental, and affordable analytical method is proposed based on surfactant-assisted dispersive liquid–liquid microextraction (SA-DLLME) combined with thin-layer chromatography–digital image colourimetry (TLC-DIC) for determining favipiravir in biological and pharmaceutical samples. Triton X-100 and dichloromethane (DCM) were used as the disperser and extraction solvents, respectively. The extract obtained after DLLME procedure was spotted on a TLC plate and allowed to develop with a mobile phase of chloroform:methanol (8:2, v/v). The developed plate was photographed using a smartphone under UV irradiation at 254 nm. The quantification of FAV was performed by analysing the digital images’ spots with open-source ImageJ software. Multivariate optimisation using Plackett–Burman design (PBD) and central composite design (CCD) was performed for the screening and optimisation of significant factors. Under the optimised conditions, the method was found to be linear, ranging from 5 to 100 µg/spot, with a correlation coefficient (R2) ranging from 0.991 to 0.994. The limit of detection (LOD) and limit of quantification (LOQ) were in the ranges of 1.2–1.5 µg/spot and 3.96–4.29 µg/spot, respectively. The developed approach was successfully applied for the determination of FAV in biological (i.e., human urine and plasma) and pharmaceutical samples. The results obtained using the proposed methodology were compared to those obtained using HPLC-UV analysis and found to be in close agreement with one another. Additionally, the green character of the developed method with previously reported protocols was evaluated using the ComplexGAPI, AGREE, and Eco-Scale greenness assessment tools. The proposed method is green in nature and does not require any sophisticated high-end analytical instruments, and it can therefore be routinely applied for the analysis of FAV in various resource-limited laboratories during the COVID-19 pandemic. Full article
Show Figures

Figure 1

17 pages, 2776 KiB  
Article
Rapid Determination of Non-Steroidal Anti-Inflammatory Drugs in Urine Samples after In-Matrix Derivatization and Fabric Phase Sorptive Extraction-Gas Chromatography-Mass Spectrometry Analysis
by Bharti Jain, Rajeev Jain, Abuzar Kabir and Shweta Sharma
Molecules 2022, 27(21), 7188; https://doi.org/10.3390/molecules27217188 - 24 Oct 2022
Cited by 29 | Viewed by 3092
Abstract
Fabric phase sorptive extraction (FPSE) has become a popular sorptive-based microextraction technique for the rapid analysis of a wide variety of analytes in complex matrices. The present study describes a simple and green analytical protocol based on in-matrix methyl chloroformate (MCF) derivatization of [...] Read more.
Fabric phase sorptive extraction (FPSE) has become a popular sorptive-based microextraction technique for the rapid analysis of a wide variety of analytes in complex matrices. The present study describes a simple and green analytical protocol based on in-matrix methyl chloroformate (MCF) derivatization of non-steroidal anti-inflammatory (NSAID) drugs in urine samples followed by FPSE and gas chromatography-mass spectrometry (GC-MS) analysis. Use of MCF as derivatizing reagent saves substantial amounts of time, reagent and energy, and can be directly performed in aqueous samples without any sample pre-treatment. The derivatized analytes were extracted using sol–gel Carbowax 20M coated FPSE membrane and eluted in 0.5 mL of MeOH for GC-MS analysis. A chemometric design of experiment-based approach was utilized comprising a Placket–Burman design (PBD) and central composite design (CCD) for screening and optimization of significant variables of derivatization and FPSE protocol, respectively. Under optimized conditions, the proposed FPSE-GC-MS method exhibited good linearity in the range of 0.1–10 µg mL−1 with coefficients of determination (R2) in the range of 0.998–0.999. The intra-day and inter-day precisions for the proposed method were lower than <7% and <10%, respectively. The developed method has been successfully applied to the determination of NSAIDs in urine samples of patients under their medication. Finally, the green character of the proposed method was evaluated using ComplexGAPI tool. The proposed method will pave the way for simper analysis of polar drugs by FPSE-GC-MS. Full article
(This article belongs to the Special Issue Forensic Analysis in Chemistry)
Show Figures

Figure 1

23 pages, 5825 KiB  
Article
Microbial Degradation, Spectral analysis and Toxicological Assessment of Malachite Green Dye by Streptomyces exfoliatus
by Samah H. Abu-Hussien, Bahaa A. Hemdan, Othman M. Alzahrani, Amal S. Alswat, Fuad A. Alatawi, Muneefah Abdullah Alenezi, Doaa Bahaa Eldin Darwish, Hanouf S. Bafhaid, Samy F. Mahmoud, Mohamed F. M. Ibrahim and Salwa M. El-Sayed
Molecules 2022, 27(19), 6456; https://doi.org/10.3390/molecules27196456 - 30 Sep 2022
Cited by 25 | Viewed by 4034
Abstract
Malachite green (MG) dye is a common environmental pollutant that threatens human health and the integrity of the Earth’s ecosystem. The aim of this study was to investigate the potential biodegradation of MG dye by actinomycetes species isolated from planted soil near an [...] Read more.
Malachite green (MG) dye is a common environmental pollutant that threatens human health and the integrity of the Earth’s ecosystem. The aim of this study was to investigate the potential biodegradation of MG dye by actinomycetes species isolated from planted soil near an industrial water effluent in Cairo, Egypt. The Streptomyces isolate St 45 was selected according to its high efficiency for laccase production. It was identified as S. exfoliatus based on phenotype and 16S rRNA molecular analysis and was deposited in the NCBI GenBank with the gene accession number OL720220. Its growth kinetics were studied during an incubation time of 144 h, during which the growth rate was 0.4232 (µ/h), the duplication time (td) was 1.64 d, and multiplication rate (MR) was 0.61 h, with an MG decolorization value of 96% after 120 h of incubation at 25 °C. Eleven physical and nutritional factors (mannitol, frying oil waste, MgSO4, NH4NO3, NH4Cl, dye concentration, pH, agitation, temperature, inoculum size, and incubation time) were screened for significance in the biodegradation of MG by S. exfoliatus using PBD. Out of the eleven factors screened in PBD, five (dye concentration, frying oil waste, MgSO4, inoculum size, and pH) were shown to be significant in the decolorization process. Central composite design (CCD) was applied to optimize the biodegradation of MG. Maximum decolorization was attained using the following optimal conditions: food oil waste, 7.5 mL/L; MgSO4, 0.35 g/L; dye concentration, 0.04 g/L; pH, 4.0; and inoculum size, 12.5%. The products from the degradation of MG by S. exfoliatus were characterized using high-performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GC-MS). The results revealed the presence of several compounds, including leuco-malachite green, di(tert-butyl)(2-phenylethoxy) silane, 1,3-benzenedicarboxylic acid, bis(2-ethylhexyl) ester, 1,4-benzenedicarboxylic acid, bis(2-ethylhexyl) ester, 1,2-benzenedicarboxylic acid, di-n-octyl phthalate, and 1,2-benzenedicarboxylic acid, dioctyl ester. Moreover, the phytotoxicity, microbial toxicity, and cytotoxicity tests confirmed that the byproducts of MG degradation were not toxic to plants, microbes, or human cells. The results of this work implicate S. exfoliatus as a novel strain for MG biodegradation in different environments. Full article
(This article belongs to the Special Issue Power of Microbes in Pollutant Degradation)
Show Figures

Figure 1

17 pages, 5167 KiB  
Article
Response Surface Methodology (RSM) Mediated Optimization of Medium Components for Mycelial Growth and Metabolites Production of Streptomyces alfalfae XN-04
by Jing Chen, Xingjie Lan, Ruimin Jia, Lifang Hu and Yang Wang
Microorganisms 2022, 10(9), 1854; https://doi.org/10.3390/microorganisms10091854 - 16 Sep 2022
Cited by 24 | Viewed by 3716
Abstract
Streptomyces alfalfae XN-04 has been reported for the production of antifungal metabolites effectively to control Fusarium wilt of cotton, caused by Fusarium oxysporum f. sp. vasinfectum (Fov). In this study, we used integrated statistical experimental design methods to investigate the optimized [...] Read more.
Streptomyces alfalfae XN-04 has been reported for the production of antifungal metabolites effectively to control Fusarium wilt of cotton, caused by Fusarium oxysporum f. sp. vasinfectum (Fov). In this study, we used integrated statistical experimental design methods to investigate the optimized liquid fermentation medium components of XN-04, which can significantly increase the antifungal activity and biomass of XN-04. Seven variables, including soluble starch, KNO3, soybean cake powder, K2HPO4, MgSO4·7H2O, CaCO3 and FeSO4·7H2O, were identified as the best ingredients based on one-factor-at-a-time (OFAT) method. The results of Plackett–Burman Design (PBD) showed that soluble starch, soybean cake powder and K2HPO4 were the most significant variables among the seven variables. The steepest climbing experiment and response surface methodology (RSM) were performed to determine the interactions among these three variables and fine-tune the concentrations. The optimal compositions of medium were as follows: soluble starch (26.26 g/L), KNO3 (1.00 g/L), soybean cake powder (23.54 g/L), K2HPO4 (0.27 g/L), MgSO4·7H2O (0.50 g/L), CaCO3 (1.00 g/L) and FeSO4·7H2O (0.10 g/L). A verification experiment was then carried out under the optimized conditions, and the results revealed the mycelial dry weight of S. alfalfae XN-04 reaching 6.61 g/L. Compared with the initial medium, a 7.47-fold increase in the biomass was achieved using the optimized medium. Moreover, the active ingredient was purified from the methanol extract of S. alfalfae XN-04 mycelium and then identified as roflamycoin (a polyene macrolide antibiotic). The results may provide new insights into the development of S. alfalfae XN-04 fermentation process and the control of the Fusarium wilt of cotton and other plant diseases. Full article
Show Figures

Figure 1

27 pages, 6622 KiB  
Article
Innovative Computational Techniques for Multi Criteria Decision Making, in the Context of Cultural Heritage Structures’ Fire Protection: Case Studies
by Iordanis A. Naziris, Chara Ch. Mitropoulou and Nikos D. Lagaros
Heritage 2022, 5(3), 1883-1909; https://doi.org/10.3390/heritage5030098 - 28 Jul 2022
Cited by 5 | Viewed by 2204
Abstract
Fire protection for cultural heritage structures is a challenging engineering task that could benefit from the use of specialized computational tools relying on a performance-based design (PBD) concept rather than on prescriptive-based fire protection codes. In the first part of the present study, [...] Read more.
Fire protection for cultural heritage structures is a challenging engineering task that could benefit from the use of specialized computational tools relying on a performance-based design (PBD) concept rather than on prescriptive-based fire protection codes. In the first part of the present study, the theoretical basis of the proposed computational selection and resource (S and R) allocation model is discussed, related to the assessment of the fire safety index (FSI) and the authenticity preservation index (API). Furthermore, two different multi criteria optimization approaches are proposed to generate optimized fire protection upgrading designs, incorporating the nondominated sorting evolution strategies II (NSES-II) algorithm and the analytic target cascading (ATC) method. In this second part of the present work, the proposed S and R allocation model is implemented in two test cases; Villa Bianca, a famous mansion in Thessaloniki, Greece, and the Monastery of Simonos Petra located in Mount Athos, Greece. Several cases are examined regarding the targeted FSI or API values, taking also into account budget restrictions. In cases where the preservation of the authenticity is considered as an objective within the design process, the need to implement more sophisticated and customized fire protection measures can lead to a significant increase up to almost 200% regarding the total cost, subject to the pursued safety level. Detailed results obtained for each case study are presented and discussed comparatively, demonstrating the efficiency of the proposed S and R allocation model in a wide range of scenarios, as well as its possible utility in multiple applications, facilitating the fire protection design process. Finally, a comparison between the two multi criteria optimization approaches incorporated in the study is also presented and discussed. Full article
(This article belongs to the Section Cultural Heritage)
Show Figures

Figure 1

19 pages, 467 KiB  
Review
The CAED Framework for the Development of Performance-Based Design at the Wildland–Urban Interface
by Greg Penney, Greg Baker, Andres Valencia and Daniel Gorham
Fire 2022, 5(2), 54; https://doi.org/10.3390/fire5020054 - 13 Apr 2022
Cited by 3 | Viewed by 4369
Abstract
The hazard posed by wildland–urban-interface (WUI) fires is recognized by the international fire research community and features as one of nine research need priority threads in the Society of Fire Protection Engineers (SFPE) Research Roadmap. We posit that the first step in the [...] Read more.
The hazard posed by wildland–urban-interface (WUI) fires is recognized by the international fire research community and features as one of nine research need priority threads in the Society of Fire Protection Engineers (SFPE) Research Roadmap. We posit that the first step in the journey to enhancing fire safety engineering at the WUI is to develop a common understanding between developers, engineers, planners, and regulators of the development scope, wildfire problem, technical design solutions, and verification methods to be used. In order to define a fire safety engineering consultation process appropriate for the wildfire context, this paper aims to translate well-established and evidence-based performance-based design (PBD) consultation frameworks and approaches from traditional fire safety engineering to the wildfire context. First, we review international English-language fire safety engineering frameworks that have been developed for the urban context. Next, we distil the results into a streamlined framework, which we call the “CAED Framework”. Finally, we apply and discuss the contextualization of the CAED Framework to the WUI context through a comparative case study of urban and WUI development. In doing so we seek to provide a structure for the development of standardized PBD within the WUI context across jurisdictions internationally, as well as to embed best practices into the emerging field of performance-based wildfire engineering. Full article
Show Figures

Figure 1

27 pages, 35345 KiB  
Article
Analytical Fragility Curves for Seismic Design of Glass Systems Based on Cloud Analysis
by Silvana Mattei and Chiara Bedon
Symmetry 2021, 13(8), 1541; https://doi.org/10.3390/sym13081541 - 23 Aug 2021
Cited by 8 | Viewed by 2947
Abstract
Given the growing spread of glass as a construction material, the knowledge of structural response must be ensured, especially under dynamic accidental loads. In this regard, an increasingly popular method to probabilistically characterize the seismic response of a given structure is based on [...] Read more.
Given the growing spread of glass as a construction material, the knowledge of structural response must be ensured, especially under dynamic accidental loads. In this regard, an increasingly popular method to probabilistically characterize the seismic response of a given structure is based on the use of “fragility” or “seismic vulnerability” curves. Most existing applications, however, typically refer to construction and structural members composed of traditional building materials. The present study extends and adapts such a calculation method to innovative structural glass systems, which are characterized by specific material properties and expected damage mechanisms, restraint details, and dynamic features. Suitable Engineering Demand Parameters (EDPs) for seismic design are thus required. In this paper, a major advantage is represented by the use of Cloud Analysis in the Cornell’s reliability method, for the seismic assessment of two different case-study glass systems. Cloud Analysis is known to represent a simple and immediate tool to analytically investigate a given (glass) structure by taking into account variations in seismic motions and uncertainties of structural parameters. Such a method is exploited by means of detailed three-dimensional (3D) Finite Element (FE) numerical models and non-linear dynamic analyses (ABAQUS/Standard). Critical issues and typical failure mechanisms for in-plane seismically loaded glass systems are discussed. The validity of reference EDPs are addressed for the examined solutions. Based on a broad seismic investigation (60 records in total), fragility curves are developed from parametric results, so as to support a multi-hazard performance-based design (PBD) procedure. Full article
(This article belongs to the Special Issue Symmetry Applied in Special Engineering)
Show Figures

Figure 1

25 pages, 2527 KiB  
Article
Statistical Approach to Potentially Enhance the Postbiotication of Gluten-Free Sourdough
by Bogdan Păcularu-Burada, Mihaela Turturică, João Miguel Rocha and Gabriela-Elena Bahrim
Appl. Sci. 2021, 11(11), 5306; https://doi.org/10.3390/app11115306 - 7 Jun 2021
Cited by 25 | Viewed by 3619
Abstract
Fermented products are permanently under the attention of scientists and consumers, both due to nutritional importance and health promoting effects. The fermented functional foods contribute to a more balanced diet and increase the immune responses (among many other health effects) with positive implications [...] Read more.
Fermented products are permanently under the attention of scientists and consumers, both due to nutritional importance and health promoting effects. The fermented functional foods contribute to a more balanced diet and increase the immune responses (among many other health effects) with positive implications for quality of life. In this sense, improving the sourdough’s fermentation to boost the biotic (postbiotic and paraprobiotic) properties of the sourdough-based products has positive impacts on the nutritional and functional properties of the final baked products. These enhanced sourdoughs can be obtained in controlled fermentation conditions and used as sourdough bread improvers or novel bioingredients. In this context, our work aimed to optimize, using statistical tools, a gluten-free sourdough based on chickpea, quinoa, and buckwheat fermentation with selected lactic acid bacteria (LAB) to enhance its postbiotic properties. The most important biotechnological parameters were selected by Plackett–Burman Design (PBD) and then Response Surface Methodology (RSM) was applied to evaluate the interactions between the selected factors to maximize the gluten-free sourdough’s properties. As a result, the optimized fermented sourdough had antimicrobial activity with inhibition ratios between 71 and 100% against the Aspergillus niger, Aspergillus flavus, Penicillium spp. molds and against the Bacillus spp endospore-forming Gram-positive rods. The optimized variant showed a total titratable acidity (TTA) of 40.2 mL NaOH 0.1N. Finally, the high-performance liquid chromatography (HPLC) analysis highlighted a heterofermentative profile for the organic acids from the optimized sourdough. Among flavonoids and polyphenols, the level of caffeic and vanillic acids increased after lactic acid fermentation. The comparison between the optimized sourdough and the control evidenced significant differences in the metabolite profiles, thus highlighting its potential postbiotication effect. Full article
(This article belongs to the Special Issue Advances of Lactic Fermentation for Functional Food Production)
Show Figures

Figure 1

18 pages, 6587 KiB  
Article
Quantitative Set-Based Design to Inform Design Teams
by Eric Specking, Nicholas Shallcross, Gregory S. Parnell and Edward Pohl
Appl. Sci. 2021, 11(3), 1239; https://doi.org/10.3390/app11031239 - 29 Jan 2021
Cited by 4 | Viewed by 2575
Abstract
System designers, analysts, and engineers use various techniques to develop complex systems. A traditional design approach, point-based design (PBD), uses system decomposition and modeling, simulation, optimization, and analysis to find and compare discrete design alternatives. Set-based design (SBD) is a concurrent engineering technique [...] Read more.
System designers, analysts, and engineers use various techniques to develop complex systems. A traditional design approach, point-based design (PBD), uses system decomposition and modeling, simulation, optimization, and analysis to find and compare discrete design alternatives. Set-based design (SBD) is a concurrent engineering technique that compares a large number of design alternatives grouped into sets. The existing SBD literature discusses the qualitative team-based characteristics of SBD, but lacks insights into how to quantitatively perform SBD in a team environment. This paper proposes a qualitative SBD conceptual framework for system design, proposes a team-based, quantitative SBD approach for early system design and analysis, and uses an unmanned aerial vehicle case study with an integrated model-based engineering framework to demonstrate the potential benefits of SBD. We found that quantitative SBD tradespace exploration can identify potential designs, assess design feasibility, inform system requirement analysis, and evaluate feasible designs. Additionally, SBD helps designers and analysts assess design decisions by providing an understanding of how each design decision affects the feasible design space. We conclude that SBD provides a more holistic tradespace exploration process since it provides an integrated examination of system requirements and design decisions. Full article
Show Figures

Figure 1

14 pages, 4929 KiB  
Article
Obscuration Threshold Database Construction of Smoke Detectors for Various Combustibles
by Hyo-Yeon Jang and Cheol-Hong Hwang
Sensors 2020, 20(21), 6272; https://doi.org/10.3390/s20216272 - 4 Nov 2020
Cited by 11 | Viewed by 6737
Abstract
The obscuration thresholds for various smoke detectors and combustibles, required as an input parameter in fire simulation, were measured to predict the accurate activation time of detectors. One ionization detector and nine photoelectric detectors were selected. A fire detector evaluator, which can uniformly [...] Read more.
The obscuration thresholds for various smoke detectors and combustibles, required as an input parameter in fire simulation, were measured to predict the accurate activation time of detectors. One ionization detector and nine photoelectric detectors were selected. A fire detector evaluator, which can uniformly control the velocity and smoke concentration, was utilized. Filter paper, liquid fuels, and polymer pellets were employed as smoke-generation combustibles. The nominal obscuration thresholds of the considered detectors were 15 %/m, but the ionization detectors activated at approximately 40 %/m and 16 %/m, respectively, on applying filter paper and kerosene. In contrast, the reverse obscuration thresholds were found quantitatively according to the combustibles in the photoelectric detector. This phenomenon was caused by differences in the color of the smoke particles according to the combustibles, which is explained by single-scattering albedo (ratio of light scattering to light extinction). The obscuration thresholds for liquid fuels (kerosene, heptane and toluene) as well as fire types of polymer plastic pellets were also measured for several photoelectric detectors. A database of obscuration thresholds was thereby established according to the detector and combustible types, and it is expected to provide useful information for predicting more accurate detector activation time and required safe egress time (REST). Full article
(This article belongs to the Special Issue Sensors for Fire and Smoke Monitoring)
Show Figures

Figure 1

33 pages, 9632 KiB  
Review
Acoustic Performance-Based Design: A Brief Overview of the Opportunities and Limits in Current Practice
by Elena Badino, Louena Shtrepi and Arianna Astolfi
Acoustics 2020, 2(2), 246-278; https://doi.org/10.3390/acoustics2020016 - 1 May 2020
Cited by 26 | Viewed by 11900
Abstract
Current development in digital design, combined with the growing awareness of the importance of building performance, had drawn attention to performance-based design (PBD) in architecture. PBD benefits both design workflow and outcome, allowing one to control the performance of the design proposal since [...] Read more.
Current development in digital design, combined with the growing awareness of the importance of building performance, had drawn attention to performance-based design (PBD) in architecture. PBD benefits both design workflow and outcome, allowing one to control the performance of the design proposal since early design phases. The paper aims to explore its current application in the acoustic field, where its potential is still little exploited in architectural practice. A set of built case studies is collected and briefly analyzed with the aim to shed some light on the state of the art of the application of acoustic performance-based design (APBD) in practice. The analysis suggests that in order to encourage the application of APBD it is needed on one side to enhance the integration and interoperability among modeling and simulation tools, and on the other side to improve the acoustic knowledge and programming skills of the architectural practitioners. Full article
Show Figures

Figure 1

Back to TopTop