Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = peroxonation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2127 KB  
Article
Study on Photocatalytic Peroxone Process for Treating Organic Pollutants in Leachate Based on Modified Carbon Quantum Dots
by Shuo Wu, Nuo Meng, Lin Ma, Xiguo Zhang, Shihu Ding and Wei Wang
Catalysts 2025, 15(9), 903; https://doi.org/10.3390/catal15090903 - 18 Sep 2025
Viewed by 371
Abstract
This study couples a carbon quantum dot photocatalyst with a proton relay installed (EDTA-CQDs) for efficient hydrogen peroxide (H2O2) production with an ozone (O3) system. In situ activation of O3 is achieved by the photogenerated H [...] Read more.
This study couples a carbon quantum dot photocatalyst with a proton relay installed (EDTA-CQDs) for efficient hydrogen peroxide (H2O2) production with an ozone (O3) system. In situ activation of O3 is achieved by the photogenerated H2O2, which integrates the photocatalytic hydrogen peroxide production (PHP) and advanced oxidation processes (AOPs) to form a new photocatalytic peroxone (H2O2/O3) system, achieving highly efficient solar-driven degradation of recalcitrant organic pollutants in landfill leachate without the addition of external H2O2. The composite system exhibits efficient degradation ability for various typical pollutants in landfill leachate, among which the degradation percentage of 100 mg L−1 hydroquinone (HQ) reaches 97% within 30 min. This is due to the synergistic effects of O3 oxidation, photoactivation of O3, activation of O3 by EDTA-CQDs, and activation of O3 by in situ-generated H2O2. In the EDTA-CQD-based H2O2/O3 system, free radicals can be dynamically regenerated after the addition of pollutants, achieving sustained and efficient degradation. Therefore, in the treatment of actual leachate, the removal percentages of COD, TOC, and UV254 are nearly 90%, 70%, and 55%, respectively, demonstrating the significant advantage of this system in treating high-concentration recalcitrant organic pollutants in wastewater of complex quality. Full article
(This article belongs to the Special Issue Environmental Catalysis and Nanomaterials for Water Pollution Control)
Show Figures

Graphical abstract

20 pages, 3059 KB  
Article
Optimization of Organic Content Removal from Aqueous Solutions by Fenton-Ozonation
by Paixan Febrialy Samba, Marius Sebastian Secula, Sebastien Schaefer and Benoît Cagnon
Appl. Sci. 2025, 15(13), 7370; https://doi.org/10.3390/app15137370 - 30 Jun 2025
Viewed by 504
Abstract
This paper presents a study on the optimization of 2,4-Dichlorophenoxyacetic (2,4-D) acid removal from synthetic wastewater by batch Fenton-Ozonation. The aim of this study is to evaluate the potential of the catalytic system Fe-L27 coupled to ozonation in the presence and absence of [...] Read more.
This paper presents a study on the optimization of 2,4-Dichlorophenoxyacetic (2,4-D) acid removal from synthetic wastewater by batch Fenton-Ozonation. The aim of this study is to evaluate the potential of the catalytic system Fe-L27 coupled to ozonation in the presence and absence of H2O2 as an effective and affordable technique for the treatment of organic pollutants in water. Fenton-like catalysts for the removal of 2,4-D in aqueous solutions were elaborated using catalysts synthesized by the wet impregnation method. The ACs and prepared catalysts were characterized by nitrogen adsorption–desorption isotherms at 77 K, TGA, XPS, SEM, and TEM. Their efficiency as Fenton-like catalysts was studied. In a first step, a response surface modeling method was employed in order to find the optimal parameters of the Fenton process, and then the optimal O3/H2O2 ratio was established at laboratory scale. Finally, the investigated advanced oxidation processes were carried out at pilot scale. The results show that Fenton-like catalysts obtained by the direct impregnation method enhance the degradation rate and mineralization of 2,4-D. Full article
(This article belongs to the Special Issue Promising Sustainable Technologies in Wastewater Treatment)
Show Figures

Figure 1

34 pages, 2757 KB  
Review
Electrochemical-Based Technologies for Removing NSAIDs from Wastewater: Systematic Review with Bibliometric Analysis
by Katarina D. Stojanović, Danka D. Aćimović and Tanja P. Brdarić
Processes 2025, 13(5), 1272; https://doi.org/10.3390/pr13051272 - 22 Apr 2025
Viewed by 821
Abstract
Electrochemical-based processes have shown great promise in removing organic pollutants such as non-steroidal anti-inflammatory drugs (NSAIDs) from wastewater due to their effectiveness in addressing environmental pollution. This study conducts a bibliometric analysis of the most-cited articles in the field to systematically evaluate the [...] Read more.
Electrochemical-based processes have shown great promise in removing organic pollutants such as non-steroidal anti-inflammatory drugs (NSAIDs) from wastewater due to their effectiveness in addressing environmental pollution. This study conducts a bibliometric analysis of the most-cited articles in the field to systematically evaluate the progress and current state of electrochemical methods for NSAID removal from wastewater. Additionally, it highlights the potential of combining electrochemical techniques with other treatment methods to enhance the overall efficiency of NSAID removal. Research in this field has mainly focused on three technologies: electro-peroxone process (E-peroxone), electro-Fenton (EF), and electrochemical oxidation (EO). Early studies prioritized EO-based treatments, but interest has gradually shifted toward EF and E-peroxone. Future research is expected to focus on the development of cost-effective electrode materials, improving energy efficiency, and exploring hybrid systems for more effective treatment of wastewater contaminated with NSAIDs. An integrated bibliometric and systematic review framework presented in this study provides the first comprehensive assessment of electrochemical strategies for NSAIDs removal, highlighting the evolution of research focus and the potential of hybrid approaches. Full article
(This article belongs to the Special Issue Municipal Wastewater Treatment and Removal of Micropollutants)
Show Figures

Figure 1

24 pages, 4696 KB  
Article
Treatment of Pharmaceutical Effluent Using Ultrasound-Based Advanced Oxidation for Intensified Biological Oxidation
by Akshara M. Iyer, Aditya V. Karande and Parag R. Gogate
Processes 2025, 13(4), 1191; https://doi.org/10.3390/pr13041191 - 15 Apr 2025
Cited by 1 | Viewed by 899
Abstract
The current work investigates the intensification process of the biological oxidation (BO) of a pharmaceutical effluent using ultrasound (US)-based pretreatment methods. US, in combination with chemical oxidants, like hydrogen peroxide (H2O2), Fenton, potassium persulphate (KPS), and peroxone, was used [...] Read more.
The current work investigates the intensification process of the biological oxidation (BO) of a pharmaceutical effluent using ultrasound (US)-based pretreatment methods. US, in combination with chemical oxidants, like hydrogen peroxide (H2O2), Fenton, potassium persulphate (KPS), and peroxone, was used as a pretreatment technique to enhance the efficacy of BO, as BO alone could only bring about 16.67% COD reduction. The application of US under the optimized conditions of a 70% duty cycle, 120W of power, pH 2, and at a 30 °C temperature resulted in 12.3% COD reduction after 60 min, whereas its combination with oxidants at optimized loadings resulted in a higher COD reduction of 20% for H2O2 (2000 ppm), 23.08% for Fenton (1:1 Fe:H2O2), and 30.77% for the US + peroxone approach (400 mg/h of ozone with 2000 ppm H2O2). The pretreated samples did not produce any toxic by-products, as confirmed by a toxicity analysis using the agar well diffusion method. A cow-dung-based sludge was acclimatised specifically for use in BO. The treatment time for BO was set to 8 h, and the US + peroxone-pretreated samples showed a maximum overall COD reduction of 60%, which is about three times that observed with only BO. This work clearly demonstrates the enhancement of the biodegradation of a complex recalcitrant pharmaceutical effluent using a US-based pretreatment. Full article
Show Figures

Figure 1

8 pages, 1651 KB  
Case Report
The Use of E-Peroxone to Neutralize Wastewater from Medical Facilities at a Laboratory Scale
by Maciej Gliniak, Piotr Nawara, Arkadiusz Bieszczad, Krzysztof Górka and Janusz Tabor
Sustainability 2023, 15(2), 1449; https://doi.org/10.3390/su15021449 - 12 Jan 2023
Cited by 4 | Viewed by 2747
Abstract
The treatment of medical wastewater by the peroxone (AOP) and electro-peroxone (E-peroxone) processes was analyzed. The E-peroxone process is based on the production of hydrogen peroxide electrochemically from an O2 and O3 gas mixture produced in sparged ozone generator effluent using [...] Read more.
The treatment of medical wastewater by the peroxone (AOP) and electro-peroxone (E-peroxone) processes was analyzed. The E-peroxone process is based on the production of hydrogen peroxide electrochemically from an O2 and O3 gas mixture produced in sparged ozone generator effluent using graphite-polytetrafluorethylene cathodes. The electrogenerated H2O2 reacts with sparged ozone to produce hydroxyl radicals. All advanced oxidation processes presented in this study effectively removed chemical oxygen demand (COD) by up to 87%. The use of E-peroxone showed 15% better results in COD reduction than conventional peroxone. The research suggests that E-peroxone is more sufficient at removing pollutants in wastewater than peroxone. Hence, E-peroxone was found to be more cost-effective than AOP in this case. Full article
Show Figures

Figure 1

19 pages, 5777 KB  
Article
Fluidized ZnO@BCFPs Particle Electrodes for Efficient Degradation and Detoxification of Metronidazole in 3D Electro-Peroxone Process
by Dan Yuan, Shungang Wan, Rurong Liu, Mengmeng Wang and Lei Sun
Materials 2022, 15(10), 3731; https://doi.org/10.3390/ma15103731 - 23 May 2022
Cited by 10 | Viewed by 2790
Abstract
A novel material of self-shaped ZnO-embedded biomass carbon foam pellets (ZnO@BCFPs) was successfully synthesized and used as fluidized particle electrodes in three-dimensional (3D) electro-peroxone systems for metronidazole degradation. Compared with 3D and 2D + O3 systems, the energy consumption was greatly reduced [...] Read more.
A novel material of self-shaped ZnO-embedded biomass carbon foam pellets (ZnO@BCFPs) was successfully synthesized and used as fluidized particle electrodes in three-dimensional (3D) electro-peroxone systems for metronidazole degradation. Compared with 3D and 2D + O3 systems, the energy consumption was greatly reduced and the removal efficiencies of metronidazole were improved in the 3D + O3 system. The degradation rate constants increased from 0.0369 min−1 and 0.0337 min−1 to 0.0553 min−1, respectively. The removal efficiencies of metronidazole and total organic carbon reached 100% and 50.5% within 60 min under optimal conditions. It indicated that adding ZnO@BCFPs particle electrodes was beneficial to simultaneous adsorption and degradation of metronidazole due to improving mass transfer of metronidazole and forming numerous tiny electrolytic cells. In addition, the process of metronidazole degradation in 3D electro-peroxone systems involved hydroxyethyl cleavage, hydroxylation, nitro-reduction, N-denitrification and ring-opening. The active species of ·OH and ·O2 played an important role. Furthermore, the acute toxicity LD50 and the bioconcentration factor of intermediate products decreased with the increasing reaction time. Full article
(This article belongs to the Special Issue Preparation and Application of Environmental Functional Materials)
Show Figures

Figure 1

12 pages, 1897 KB  
Article
Advanced Oxidation Pretreatment for Biological Treatment of Reclaimer Wastewater Containing High Concentration N-methyldiethanolamine
by Gi-Taek Oh, Chi-Kyu Ahn and Min-Woo Lee
Appl. Sci. 2022, 12(8), 3960; https://doi.org/10.3390/app12083960 - 14 Apr 2022
Cited by 7 | Viewed by 2987
Abstract
A wastewater treatment configuration consisting of advanced oxidation pretreatment and biological wastewater treatment process (BWTP) was investigated to treat a reclaimer wastewater generated in a steel-making industry, which contained high concentration MDEA (N-methyldiethanolamine) of up to 20,548 mg/L and other pollutants [...] Read more.
A wastewater treatment configuration consisting of advanced oxidation pretreatment and biological wastewater treatment process (BWTP) was investigated to treat a reclaimer wastewater generated in a steel-making industry, which contained high concentration MDEA (N-methyldiethanolamine) of up to 20,548 mg/L and other pollutants such as formate, phenol, and thiocyanate. The Fenton, ozone, and peroxone methods were tested as candidates, and the peroxone method was chosen because it could selectively decompose MDEA resulting in the final MDEA and chemical oxygen demand (COD) removal efficiencies of 92.87% and 27.16%, respectively. Through the respirometer tests using the sludge of the BWTP, it was identified that the microbial toxicity of the peroxone-pretreated wastewater was negligible and the short-term biochemical oxygen demand (BOD) to COD ratio, indicating that the biodegradability of wastewater significantly increased from 0.103 to 0.147 by the peroxone pretreatment. Analysis of the oxygen uptake rate profiles also revealed that the microbial degradation rate of the pollutants present in the reclaimer wastewater was in the order of phenol > formate > thiocyanate > MDEA, which could be changed depending on the microbial community structure of the BWTP. Full article
(This article belongs to the Special Issue Wastewater Treatment Technologies)
Show Figures

Figure 1

13 pages, 2338 KB  
Article
Removal of Aqueous Para-Aminobenzoic Acid Using a Compartmental Electro-Peroxone Process
by Donghai Wu, Yuexian Li, Guanghua Lu, Qiuhong Lin, Lei Wei and Pei Zhang
Water 2021, 13(21), 2961; https://doi.org/10.3390/w13212961 - 20 Oct 2021
Cited by 6 | Viewed by 3029
Abstract
The presence of emerging contaminant para-aminobenzoic acid (PABA) in the aquatic environment or drinking water has the potential to harm the aquatic ecosystem and human health. In this work, the removal of aqueous PABA by a compartmental electro-peroxone (E-peroxone) process was systematically investigated [...] Read more.
The presence of emerging contaminant para-aminobenzoic acid (PABA) in the aquatic environment or drinking water has the potential to harm the aquatic ecosystem and human health. In this work, the removal of aqueous PABA by a compartmental electro-peroxone (E-peroxone) process was systematically investigated from the kinetic and mechanism viewpoints. The results suggest that single electrolysis or ozonation was inefficient in PABA elimination, and the combined E-peroxone yielded synergistic target pollutant degradation. Compared to the conventional E-peroxone oxidation, the sequential cathodic reactions, followed by anodic oxidations, improved the PABA removal efficiency from ~63.6% to ~89.5% at a 10-min treatment, and the corresponding pseudo first-order kinetic reaction rate constant increased from ~1.6 × 10−3 to ~3.6 × 10−3 s−1. Moreover, the response surface methodology (RSM) analysis indicated that the appropriate increase of inlet ozone concentration, applied current density, initial solution pH value, and solution temperature could accelerate the PABA degradation, while the excess of these operational parameters would have a negative effect on the treatment efficiency. The comparation tests revealed that the coupling of electrolysis and ozonation could synergistically produce hydroxyl radicals (HO•) and the separation of cathodic reactions and anodic oxidations further promoted the HO• generation, which was responsible for the enhancement of PABA elimination in the compartmental E-peroxone process. These observations imply that the compartmental E-peroxone process has the potential for aqueous micropollutants elimination, and the reaction conditions that favor the reactive oxygen species generation are critical for the treatment efficiency. Full article
(This article belongs to the Special Issue Ecological Risk Assessment of Emerging Pollutants in Drinking Water)
Show Figures

Figure 1

16 pages, 5020 KB  
Article
Improving the Treatment Efficiency and Lowering the Operating Costs of Electrochemical Advanced Oxidation Processes
by Thorben Muddemann, Rieke Neuber, Dennis Haupt, Tobias Graßl, Mohammad Issa, Fabian Bienen, Marius Enstrup, Jonatan Möller, Thorsten Matthée, Michael Sievers and Ulrich Kunz
Processes 2021, 9(9), 1482; https://doi.org/10.3390/pr9091482 - 24 Aug 2021
Cited by 24 | Viewed by 5525
Abstract
Electrochemical advanced oxidation processes (EAOP®) are promising technologies for the decentralized treatment of water and will be important elements in achieving a circular economy. To overcome the drawback of the high operational expenses of EAOP® systems, two novel reactors based [...] Read more.
Electrochemical advanced oxidation processes (EAOP®) are promising technologies for the decentralized treatment of water and will be important elements in achieving a circular economy. To overcome the drawback of the high operational expenses of EAOP® systems, two novel reactors based on a next-generation boron-doped diamond (BDD) anode and a stainless steel cathode or a hydrogen-peroxide-generating gas diffusion electrode (GDE) are presented. This reactor design ensures the long-term stability of BDD anodes. The application potential of the novel reactors is evaluated with artificial wastewater containing phenol (COD of 2000 mg L−1); the reactors are compared to each other and to ozone and peroxone systems. The investigations show that the BDD anode can be optimized for a service life of up to 18 years, reducing the costs for EAOP® significantly. The process comparison shows a degradation efficiency for the BDD–GDE system of up to 135% in comparison to the BDD–stainless steel electrode combination, showing only 75%, 14%, and 8% of the energy consumption of the BDD–stainless steel, ozonation, and peroxonation systems, respectively. Treatment efficiencies of nearly 100% are achieved with both novel electrolysis reactors. Due to the current density adaptation and the GDE integration, which result in energy savings as well as the improvements that significantly extend the lifetime of the BDD electrode, less resources and raw materials are consumed for the power generation and electrode manufacturing processes. Full article
Show Figures

Figure 1

18 pages, 3260 KB  
Article
Organic Degradation Potential of Real Greywater Using TiO2-Based Advanced Oxidation Processes
by Dheaya Alrousan, Arsalan Afkhami, Khalid Bani-Melhem and Patrick Dunlop
Water 2020, 12(10), 2811; https://doi.org/10.3390/w12102811 - 10 Oct 2020
Cited by 18 | Viewed by 4007
Abstract
In keeping with the circular economy approach, reclaiming greywater (GW) is considered a sustainable approach to local reuse of wastewater and a viable option to reduce household demand for freshwater. This study investigated the mineralization of total organic carbon (TOC) in GW using [...] Read more.
In keeping with the circular economy approach, reclaiming greywater (GW) is considered a sustainable approach to local reuse of wastewater and a viable option to reduce household demand for freshwater. This study investigated the mineralization of total organic carbon (TOC) in GW using TiO2-based advanced oxidation processes (AOPs) in a custom-built stirred tank reactor. The combinations of H2O2, O3, and immobilized TiO2 under either dark or UVA irradiation conditions were systematically evaluated—namely TiO2/dark, O3/dark (ozonation), H2O2/dark (peroxidation), TiO2/UVA (photocatalysis), O3/UVA (Ozone photolysis), H2O2/UVA (photo-peroxidation), O3/TiO2/dark (catalytic ozonation), O3/TiO2/UVA (photocatalytic ozonation), H2O2/TiO2/dark, H2O2/TiO2/UVA, H2O2/O3/dark (peroxonation), H2O2/O3/UVA (photo-peroxonation), H2O2/O3/TiO2/dark (catalytic peroxonation), and H2O2/O3/TiO2/UVA (photocatalytic peroxonation). It was found that combining different treatment methods with UVA irradiation dramatically enhanced the organic mineralization efficiency. The optimum TiO2 loading in this study was observed to be 0.96 mg/cm2 with the highest TOC removal (54%) achieved using photocatalytic peroxonation under optimal conditions (0.96 mg TiO2/cm2, 25 mg O3/min, and 0.7 H2O2/O3 molar ratio). In peroxonation and photo-peroxonation, the optimal H2O2/O3 molar ratio was identified to be a critical efficiency parameter maximizing the production of reactive radical species. Increasing ozone flow rate or H2O2 dosage was observed to cause an efficiency inhibition effect. This lab-based study demonstrates the potential for combined TiO2-AOP treatments to significantly reduce the organic fraction of real GW, offering potential for the development of low-cost systems permitting safe GW reuse. Full article
Show Figures

Graphical abstract

8 pages, 437 KB  
Article
No-Touch Automated Room Disinfection after Autopsies of Exhumed Corpses
by Patryk Tarka, Aleksandra Borowska-Solonynko, Małgorzata Brzozowska, Aneta Nitsch-Osuch, Krzysztof Kanecki, Robert Kuthan and Barbara Garczewska
Pathogens 2020, 9(8), 648; https://doi.org/10.3390/pathogens9080648 - 12 Aug 2020
Cited by 5 | Viewed by 3230
Abstract
Autopsies of exhumed bodies pose a risk of infections with environmental bacteria or fungi, which may be life-threatening. Thus, it is important to use effective methods of disinfection in forensic pathology facilities. In this study, we investigated the effectiveness of no-touch automated disinfection [...] Read more.
Autopsies of exhumed bodies pose a risk of infections with environmental bacteria or fungi, which may be life-threatening. Thus, it is important to use effective methods of disinfection in forensic pathology facilities. In this study, we investigated the effectiveness of no-touch automated disinfection (NTD) system after autopsies of exhumed bodies. Directly after 11 autopsies of exhumed bodies, we used an NTD system based on a peroxone vapor to disinfect the air and surfaces. We measured microbial burden in the air and on surfaces before and after NTD. The NTD system reduced the mean bacterial burden in the air from 171 colony forming units (CFU)/m3 to 3CFU/m3. The mean fungal burden in the air decreased from 221 CFU/m3 to 9CFU/m3. The mean all-surface microbial burden was 79 CFU/100 cm2 after all autopsies, and it decreased to 2 CFU/100 cm2 after NTD. In conclusion, the peroxone-based NTD system was effective for decontamination of the air and surfaces in a dissecting room after autopsies of exhumed bodies. Full article
(This article belongs to the Section Human Pathogens)
Show Figures

Figure 1

10 pages, 906 KB  
Article
No-Touch Automated Disinfection System for Decontamination of Surfaces in Hospitals
by Patryk Tarka and Aneta Nitsch-Osuch
Int. J. Environ. Res. Public Health 2020, 17(14), 5131; https://doi.org/10.3390/ijerph17145131 - 16 Jul 2020
Cited by 7 | Viewed by 6303
Abstract
Background: Hospital-acquired infections (HAIs) remain a common problem, which suggests that standard decontamination procedures are insufficient. Thus, new methods of decontamination are needed in hospitals. Methods: We assessed the effectiveness of a no-touch automated disinfection (NTD) system in the decontamination of 50 surfaces [...] Read more.
Background: Hospital-acquired infections (HAIs) remain a common problem, which suggests that standard decontamination procedures are insufficient. Thus, new methods of decontamination are needed in hospitals. Methods: We assessed the effectiveness of a no-touch automated disinfection (NTD) system in the decontamination of 50 surfaces in 10 hospital rooms. Contamination of surfaces was assessed with a microbiological assay and an ATP bioluminescence assay. Unacceptable contamination was defined as > 100 colony forming units/100 cm2 in the microbiological assay, and as ≥ 250 relative light units in the ATP assay. Results: When measured with the microbiological assay, 11 of 50 surfaces had unacceptable contamination before NTD, and none of the surfaces had unacceptable contamination after NTD (p < 0.001). On the ATP bioluminescence assay, NTD decreased the number of surfaces with unacceptable contamination from 28 to 13, but this effect was non-significant (p = 0.176). On the microbiological assay taken before NTD, the greatest contamination exceeded the acceptable level by more than 11-fold (lamp holder, 1150 CFU/100 cm2). On the ATP bioluminescence assay taken before NTD, the greatest contamination exceeded the acceptable level by more than 43-fold (Ambu bag, 10,874 RLU). Conclusion: NTD effectively reduced microbiological contamination in all hospital rooms. However, when measured with the ATP bioluminescence assay, the reduction of contamination was not significant. Full article
(This article belongs to the Special Issue Hospital Outdoor and Indoor Environmental Impact: Control Measures)
Show Figures

Figure 1

13 pages, 4009 KB  
Article
Treatment of Diethyl Phthalate Leached from Plastic Products in Municipal Solid Waste Using an Ozone-Based Advanced Oxidation Process
by Sankaralingam Mohan, Hadas Mamane, Dror Avisar, Igal Gozlan, Aviv Kaplan and Gokul Dayalan
Materials 2019, 12(24), 4119; https://doi.org/10.3390/ma12244119 - 9 Dec 2019
Cited by 23 | Viewed by 4147
Abstract
Plastic products in municipal solid waste result in the extraction of phthalates in leachate that also contains large amounts of organic matter, such as humic substances, ammonia, metals, chlorinated organics, phenolic compounds, and pesticide residues. Phthalate esters are endocrine disruptors, categorized as a [...] Read more.
Plastic products in municipal solid waste result in the extraction of phthalates in leachate that also contains large amounts of organic matter, such as humic substances, ammonia, metals, chlorinated organics, phenolic compounds, and pesticide residues. Phthalate esters are endocrine disruptors, categorized as a priority pollutant by the US Environmental Protection Agency (USEPA). Biological processes are inefficient at degrading phthalates due to their stability and toxic characteristics. In this study, the peroxone (ozone/hydrogen peroxide) process (O3/H2O2), an O3-based advanced oxidation process (AOP), was demonstrated for the removal of diethyl phthalate (DEP) in synthetic leachate simulating solid-waste leachate from an open dump. The impact of the O3 dose during DEP degradation; the formation of ozonation intermediate by-products; and the effects of H2O2 dose, pH, and ultraviolet absorbance at 254 nm (UVC) were determined during ozonation. Removal of 99.9% of an initial 20 mg/L DEP was obtained via 120 min of ozonation (transferred O3 dose = 4971 mg/L) with 40 mg/L H2O2 in a semi-batch O3 system. Degradation mechanisms of DEP along with its intermediate products were also determined for the AOP treatment. Indirect OH radical exposure was determined by using a radical probe compound (pCBA) in the O3 treatment. Full article
Show Figures

Figure 1

14 pages, 3516 KB  
Article
Optimization of the Electro-Peroxone Process for Micropollutant Abatement Using Chemical Kinetic Approaches
by Huijiao Wang, Lu Su, Shuai Zhu, Wei Zhu, Xia Han, Yi Cheng, Gang Yu and Yujue Wang
Molecules 2019, 24(14), 2638; https://doi.org/10.3390/molecules24142638 - 20 Jul 2019
Cited by 14 | Viewed by 4741
Abstract
The electro-peroxone (E-peroxone) process is an emerging electrocatalytic ozonation process that is enabled by in situ producing hydrogen peroxide (H2O2) from cathodic oxygen reduction during ozonation. The in situ-generated H2O2 can then promote ozone (O3 [...] Read more.
The electro-peroxone (E-peroxone) process is an emerging electrocatalytic ozonation process that is enabled by in situ producing hydrogen peroxide (H2O2) from cathodic oxygen reduction during ozonation. The in situ-generated H2O2 can then promote ozone (O3) transformation to hydroxyl radicals (•OH), and thus enhance the abatement of ozone-refractory pollutants compared to conventional ozonation. In this study, a chemical kinetic model was employed to simulate micropollutant abatement during the E-peroxone treatment of various water matrices (surface water, secondary wastewater effluent, and groundwater). Results show that by following the O3 and •OH exposures during the E-peroxone process, the abatement kinetics of a variety of model micropollutants could be well predicted using the model. In addition, the effect of specific ozone doses on micropollutant abatement efficiencies could be quantitatively evaluated using the model. Therefore, the chemical kinetic model can be used to reveal important information for the design and optimization of the treatment time and ozone doses of the E-peroxone process for cost-effective micropollutant abatement in water and wastewater treatment. Full article
(This article belongs to the Special Issue Environmental Applications of Catalytic Ozonation)
Show Figures

Figure 1

14 pages, 2387 KB  
Article
A Single Tube Contactor for Testing Membrane Ozonation
by Garyfalia A. Zoumpouli, Robert Baker, Caitlin M. Taylor, Matthew J. Chippendale, Chloë Smithers, Sean S. X. Ho, Davide Mattia, Y. M. John Chew and Jannis Wenk
Water 2018, 10(10), 1416; https://doi.org/10.3390/w10101416 - 10 Oct 2018
Cited by 22 | Viewed by 6184
Abstract
A membrane ozonation contactor was built to investigate ozonation using tubular membranes and inform computational fluid dynamics (CFD) studies. Non-porous tubular polydimethylsiloxane (PDMS) membranes of 1.0–3.2 mm inner diameter were tested at ozone gas concentrations of 110–200 g/m3 and liquid side velocities [...] Read more.
A membrane ozonation contactor was built to investigate ozonation using tubular membranes and inform computational fluid dynamics (CFD) studies. Non-porous tubular polydimethylsiloxane (PDMS) membranes of 1.0–3.2 mm inner diameter were tested at ozone gas concentrations of 110–200 g/m3 and liquid side velocities of 0.002–0.226 m/s. The dissolved ozone concentration could be adjusted to up to 14 mg O3/L and increased with decreasing membrane diameter and liquid side velocity. Experimental mass transfer coefficients and molar fluxes of ozone were 2.4 × 10−6 m/s and 1.1 × 10−5 mol/(m2 s), respectively, for the smallest membrane. CFD modelling could predict the final ozone concentrations but slightly overestimated mass transfer coefficients and molar fluxes of ozone. Model contaminant degradation experiments and UV light absorption measurements of ozonated water samples in both ozone (O3) and peroxone (H2O2/O3) reaction systems in pure water, river water, wastewater effluent, and solutions containing humic acid show that the contactor system can be used to generate information on the reactivity of ozone with different water matrices. Combining simple membrane contactors with CFD allows for prediction of ozonation performance under a variety of conditions, leading to improved bubble-less ozone systems for water treatment. Full article
Show Figures

Figure 1

Back to TopTop