Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (164)

Search Parameters:
Keywords = perylene

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 9200 KB  
Article
Construction of Donor–Acceptor Heterojunctions via Microphase Separation of Discotic Liquid Crystals with Ambipolar Transport
by Heng Liu, Mingsi Xie, Yaohong Liu, Gaojun Jia, Ruijuan Liao, Ao Zhang, Yi Fang, Xiaoli Song, Chunxiu Zhang and Haifeng Yu
Molecules 2025, 30(16), 3441; https://doi.org/10.3390/molecules30163441 - 21 Aug 2025
Viewed by 254
Abstract
A series of novel discotic liquid crystalline donor–acceptor hybrid heterojunctions were prepared by blending the triphenylene derivative (T5E36) as donor and perylene tetracarboxylic esters as acceptor. Mesophases of blends were characterized by using polarized optical microscopy, differential scanning calorimetry, and X-ray diffraction. Results [...] Read more.
A series of novel discotic liquid crystalline donor–acceptor hybrid heterojunctions were prepared by blending the triphenylene derivative (T5E36) as donor and perylene tetracarboxylic esters as acceptor. Mesophases of blends were characterized by using polarized optical microscopy, differential scanning calorimetry, and X-ray diffraction. Results suggest that all the blends formed liquid crystalline phases, where both compounds in the blends self-assembled separately into columns yet cooperatively contributed to the overall hexagonal or tetragonal columnar mesophase structure. The charge carrier mobilities were characterized using a time-of-flight technique. The phase-separated columnar nanostructures of the donor and acceptor components play an important role in the formation of molecular heterojunctions exhibiting highly efficient ambipolar charge transport, with mobilities on the order of 10−3 cm2 V−1 s−1. These blends with ambipolar transport properties have great potential for application in non-fullerene organic solar cells, particularly in bulk heterojunction architectures. Full article
Show Figures

Figure 1

35 pages, 5960 KB  
Review
The Role of Perylene Diimide Dyes as Cellular Imaging Agents and for Enhancing Phototherapy Outcomes
by Panangattukara Prabhakaran Praveen Kumar
Colorants 2025, 4(3), 22; https://doi.org/10.3390/colorants4030022 - 1 Jul 2025
Viewed by 745
Abstract
Recent advancements in phototherapy have underscored the need for effective cellular imaging agents that can enhance therapeutic efficacy and precision. Perylene diimide (PDI) dyes, known for their unique optical properties and biocompatibility, have emerged as promising candidates in this domain. This review paper [...] Read more.
Recent advancements in phototherapy have underscored the need for effective cellular imaging agents that can enhance therapeutic efficacy and precision. Perylene diimide (PDI) dyes, known for their unique optical properties and biocompatibility, have emerged as promising candidates in this domain. This review paper provides a comprehensive analysis of the potential applications of PDI dyes in cellular imaging, specifically within the context of phototherapies. We explore the synthesis of these dyes, their photophysical characteristics, and mechanisms of cellular uptake. Moreover, this review highlights recent studies that demonstrate the effectiveness of PDI dyes in the real-time imaging of cellular processes and their synergistic effects in photodynamic therapy (PDT) and photothermal therapy (PTT). By evaluating various experimental approaches and their outcomes, we aim to elucidate the advantages of employing PDI dyes in clinical settings. The findings of this review suggest that perylene diimide dyes are not only capable of enhancing imaging contrast but also optimizing the therapeutic response in targeted phototherapy applications. Ultimately, this paper advocates for further research into the integration of PDI dyes in clinical practice, emphasizing their potential to significantly improve patient outcomes in cancer and other diseases requiring photoactive treatment modalities. Full article
Show Figures

Figure 1

15 pages, 2648 KB  
Article
Tuning the Inter-Chromophore Electronic Coupling in Perylene Diimide Dimers with Rigid Covalent Linkers
by Guo Yu, Yixuan Gao, Yonghang Li, Yiran Tian, Xiaoyu Zhang, Yandong Han, Jinsheng Song, Wensheng Yang and Xiaonan Ma
Molecules 2025, 30(12), 2513; https://doi.org/10.3390/molecules30122513 - 8 Jun 2025
Viewed by 587
Abstract
The organic multi-chromophore system has been increasingly attractive due to the potential optoelectronic applications. The inter-chromophore electronic coupling (EC), i.e., JCoul and JCT, plays a critical role in determining the relaxation path of the excited state. However, the molecular designing [...] Read more.
The organic multi-chromophore system has been increasingly attractive due to the potential optoelectronic applications. The inter-chromophore electronic coupling (EC), i.e., JCoul and JCT, plays a critical role in determining the relaxation path of the excited state. However, the molecular designing strategy for effective tuning of inter-chromophore EC is still challenging. In this computational work, we designed a series of perylene diimides (PDI) covalent dimers with rigid linking cores containing thiophene (Th) or phenyl (Ph) fragments and performed corresponding theoretical investigation to analyze the inter-PDI electronic coupling. Vibrational analysis indicated that the minimized excited state structural relaxation (ES-SR) can ensure the rigid inter-PDI geometry pre-defined by the topological characteristic of linking cores, leading to comparable |JCoul| on S0 and S1 states. The saddle-shaped linking cores allow collaborative tuning of inter-PDI dihedral (α) and slipping (θ) angles, leading to effective tuning of inter-PDI |JCoul| = 0–1000 cm−1. Our work provides a new molecular designing strategy for effective tuning of inter-chromophore EC for organic chromophores. By using a rigid inter-chromophore structure, the ignorable ES-SR allows simplified molecular designing without considering the plausible geometric difference between S1 and S0 states, which might be useful for future applications in organic optoelectronics. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

31 pages, 5246 KB  
Review
Recent Advances in PDI-Based Heterojunction Photocatalysts for the Degradation of Organic Pollutants and Environmental Remediation
by Xiaofang Song, Jiahui Lou, Yaqiong Huang and Yijiang Chen
Catalysts 2025, 15(6), 565; https://doi.org/10.3390/catal15060565 - 6 Jun 2025
Viewed by 1017
Abstract
With the rapid advancement of industrialization, the adverse impacts of organic pollutants on the water environment of aquatic ecosystems have become increasingly concerning. Consequently, the development of efficient and environmentally friendly photocatalytic degradation technologies has attracted considerable research attention. Perylene diimide (PDI)-based heterojunction [...] Read more.
With the rapid advancement of industrialization, the adverse impacts of organic pollutants on the water environment of aquatic ecosystems have become increasingly concerning. Consequently, the development of efficient and environmentally friendly photocatalytic degradation technologies has attracted considerable research attention. Perylene diimide (PDI)-based heterojunction photocatalysts have demonstrated remarkable potential in degrading organic pollutants, attributed to their broad spectral response, high charge separation efficiency, and exceptional stability. In recent years, substantial progress has been achieved in the field of PDI-based heterojunction photocatalysts. This paper provides an in-depth review of the existing research on PDI-based heterojunction photocatalysts. Specifically, it elucidates the principles and types of heterojunction construction, as well as the design and synthesis strategies for PDI-based heterojunction photocatalysts. Furthermore, this paper provides a comprehensive summary of the latest advancements in performance optimization and catalytic mechanisms. Finally, the existing challenges and future prospects of PDI-based heterojunction photocatalytic materials are discussed, with the aim of offering innovative solutions for the purification of resource-oriented wastewater. Full article
Show Figures

Graphical abstract

29 pages, 16013 KB  
Review
Supramolecular Perylene Diimides for Photocatalytic Hydrogen Production
by Long Tian, Qing Meng, Wenjie Zhou, Bang Hu, Zichun Jiang, Yulong Cai, Xiaoguang Liu and Yingzhi Chen
Catalysts 2025, 15(5), 463; https://doi.org/10.3390/catal15050463 - 8 May 2025
Viewed by 929
Abstract
Energy depletion and environmental pollution have emerged as pressing global concerns, demanding the urgent promotion of green and clean energy sources. As such, the efficient utilization of solar energy for hydrogen production has gained significant research attention, with semiconductor photocatalysis emerging as an [...] Read more.
Energy depletion and environmental pollution have emerged as pressing global concerns, demanding the urgent promotion of green and clean energy sources. As such, the efficient utilization of solar energy for hydrogen production has gained significant research attention, with semiconductor photocatalysis emerging as an effective strategy. However, harnessing the full potential of semiconductor photocatalysis still poses great challenges. Notably, the limited utilization of visible light and the substantial recombination of photogenerated electron–hole pairs adversely affect photocatalytic performance, ultimately impeding the further development and practical application of semiconductor photocatalysis. Perylene diimide (PDI), an n-type semiconductor distinguished by its conjugated π-π bonds, exhibits remarkable photoelectric properties. Its energy band gap falls within the absorption range of visible light, ensuring remarkable light absorption efficiency. Furthermore, the photogenerated charge can be efficiently conducted along the π-π stacking in its structural unit, significantly reducing electron–hole recombination. Consequently, PDI holds immense potential for achieving visible-light-driven photocatalytic hydrogen production. Yet, despite these attributes, the photocatalytic efficiency of pure PDI is still far from practical use, necessitating innovative modifications to elevate its catalytic performance. In this review, we begin with an in-depth exploration of the principles underlying photocatalytic hydrogen production and discuss various strategies aimed at enhancing photocatalytic performance. We also engage in a comprehensive discussion and summation of the challenges encountered and the future prospects of PDI-based materials. Our endeavor is to pave the way for groundbreaking advancements in the field of photocatalysis, ultimately contributing to a cleaner and more sustainable future. Full article
Show Figures

Graphical abstract

26 pages, 14079 KB  
Article
Neutrophil-Camouflaged Stealth Liposomes for Photothermal-Induced Tumor Immunotherapy Through Intratumoral Bacterial Activation
by Xinxin Chen, Jiang Sun, Tingxian Ye and Fanzhu Li
Pharmaceutics 2025, 17(5), 614; https://doi.org/10.3390/pharmaceutics17050614 - 5 May 2025
Viewed by 759
Abstract
ObjectiveF. nucleatum, a tumor-resident bacterium colonizing breast cancer (BC), results in an immunosuppressive microenvironment and facilitates tumor growth and metastasis. This study aimed to develop a neutrophil-based liposome delivery system designed for dual-targeted elimination of tumor cells and F. nucleatum [...] Read more.
ObjectiveF. nucleatum, a tumor-resident bacterium colonizing breast cancer (BC), results in an immunosuppressive microenvironment and facilitates tumor growth and metastasis. This study aimed to develop a neutrophil-based liposome delivery system designed for dual-targeted elimination of tumor cells and F. nucleatum, while simultaneously upregulating pathogen-associated molecular patterns and damage-associated molecular patterns to potentiate tumor immunotherapy. Methods: The liposomes (PD/GA-LPs) loaded with the perylene diimide complex (PD) and gambogic acid (GA) were fabricated via the extrusion method. Subsequently, comprehensive evaluations including physicochemical characteristics, antibacterial activity, antitumor effect, and immunomodulatory effect evaluation were systematically conducted to validate the feasibility of this delivery system. Results: The resulting PD/GA-LPs exhibited a dynamic size (121.3 nm, zeta potential −44.1 mV) and a high encapsulation efficiency of approximately 78.1% (PD) and 91.8% (GA). In addition, the optimized PD/GA-LPs exhibited excellent photothermal performance and antibacterial efficacy. In vitro cellular experiments revealed that PD/GA-LPs exhibited enhanced internalization by neutrophils, followed by extracellular trap-mediated release, ultimately significantly inhibiting tumor cell proliferation and inducing immunogenic cell death. During in vivo treatment, PD/GA-LPs exhibited targeted tumor accumulation, where F. nucleatum-driven PD reduction activated near-infrared-responsive photothermal ablation. When combined with GA, this delivery system effectively eliminated tumor cells and F. nucleatum, while facilitating the subsequent T-cell infiltration. Conclusions: This strategy amplified the antitumor immune response, thus leading to effective treatment of BC and prevention of metastasis. In summary, this approach, grounded in the distinct microecology of tumor and normal tissues, offers novel insights into the development of precise and potent immunotherapies for BC. Full article
Show Figures

Figure 1

15 pages, 4473 KB  
Article
Composite Films Based on Poly(3-hexylthiophene):Perylene Diimide Derivative:Copper Sulfide Nanoparticles Deposited by Matrix Assisted Pulsed Laser Evaporation on Flexible Substrates for Photovoltaic Applications
by Marcela Socol, Nicoleta Preda, Andreea Costas, Gabriela Petre, Andrei Stochioiu, Gianina Popescu-Pelin, Sorina Iftimie, Ana Maria Catargiu, Gabriel Socol and Anca Stanculescu
J. Compos. Sci. 2025, 9(4), 172; https://doi.org/10.3390/jcs9040172 - 1 Apr 2025
Viewed by 668
Abstract
Today, flexible and lightweight electronics are regarded as a viable alternative to conventional rigid and heavy devices in various application fields. In the optoelectronic area, organic semiconductors offer advantages such as high absorption coefficients, low processing temperatures, mechanical flexibility and compatibility with plastic [...] Read more.
Today, flexible and lightweight electronics are regarded as a viable alternative to conventional rigid and heavy devices in various application fields. In the optoelectronic area, organic semiconductors offer advantages such as high absorption coefficients, low processing temperatures, mechanical flexibility and compatibility with plastic substrates, while inorganic nanostructures provide good electronic properties and high thermal stability. Thus, composite films with enhanced properties can be achieved by inserting inorganic nanostructures within organic layers. In this research work, CuS nanoparticles were prepared by wet chemical precipitation and then added to an organic mixture containing poly(3-hexylthiophene) (P3HT) and N,N-bis-(1-dodecyl)perylene-3,4,9,10 tetracarboxylic diimide (AMC14), a chemically synthesized semiconductor, for fabricating hybrid composite films by matrix assisted pulsed laser evaporation (MAPLE) on indium tin oxide/poly(ethylene terephthalate) (ITO/PET) flexible substrates. A comparative assessment of the morphological, compositional, optical and electrical properties of the composite (P3HT:AMC14:CuS) and organic (P3HT:AMC14) layers was performed to evaluate their applicability in the photovoltaic cells. The transmission and emission spectra of the composite films are dominated by the optical features of AMC14, a perylene diimide derivative compound used as acceptor. In the case of devices based on MAPLE deposited composite layer fabricated on ITO/PET substrates, the electrical measurements carried under illumination revealed an improvement in the open circuit voltage parameter emphasizing their potential applications in the flexible device area. Full article
(This article belongs to the Section Polymer Composites)
Show Figures

Figure 1

18 pages, 8547 KB  
Article
PDINN as an Efficient and Environmentally Friendly Corrosion Inhibitor for Mild Steel in HCl: A Comprehensive Investigation
by Jiakai Kuang, Shaopeng Fu, Jiaqi Song, Lanlan Ma, Xueqi Liu, Zezhou Liang, Jianfeng Li and Jinpeng Dai
Coatings 2025, 15(3), 352; https://doi.org/10.3390/coatings15030352 - 19 Mar 2025
Viewed by 514
Abstract
The screening of environmentally friendly, efficient and high-temperature-resistant organic corrosion inhibitors represents a significant means of reducing metal losses in industrial production. In this study, we investigated using aliphatic amine-functionalized perylene-diimide (PDINN) to inhibit Q235 steel in 1 M HCl media. The results [...] Read more.
The screening of environmentally friendly, efficient and high-temperature-resistant organic corrosion inhibitors represents a significant means of reducing metal losses in industrial production. In this study, we investigated using aliphatic amine-functionalized perylene-diimide (PDINN) to inhibit Q235 steel in 1 M HCl media. The results show that PDINN significantly inhibits corrosion of Q235 steel in 1 M HCl. It is of greater significance that PDINN’s inhibition is unresponsive to temperature fluctuations in the corrosive environment, maintaining an efficiency of 86.5% at an ambient temperature of 328 K. DFT and MD analyses indicate that the exceptional inhibitory capacity of PDINN is closely associated with the extensive conjugated structure within the molecule, where it is firmly adsorbed on the Fe (110) via π-electrons. Full article
Show Figures

Figure 1

18 pages, 3039 KB  
Article
Nanoscale “Chessboard” Pattern Lamellae in a Supramolecular Perylene-Diimide Polydiacetylene System
by Ian J. Martin, Francis Kiranka Masese, Kuo-Chih Shih, Mu-Ping Nieh and Rajeswari M. Kasi
Molecules 2025, 30(6), 1207; https://doi.org/10.3390/molecules30061207 - 7 Mar 2025
Cited by 1 | Viewed by 762
Abstract
The rational design of ordered chromogenic supramolecular polymeric systems is critical for the advancement of next-generation stimuli-responsive, optical, and semiconducting materials. Previously, we reported the design of a stimuli-responsive, lamellar self-assembled platform composed of an imidazole-appended perylene diimide of varying methylene spacer length [...] Read more.
The rational design of ordered chromogenic supramolecular polymeric systems is critical for the advancement of next-generation stimuli-responsive, optical, and semiconducting materials. Previously, we reported the design of a stimuli-responsive, lamellar self-assembled platform composed of an imidazole-appended perylene diimide of varying methylene spacer length (n = 3, 4, and 6) and a commercially available diacid-functionalized diacetylene monomer, 10, 12 docosadiynedioic acid, in a 1:1 molar ratio. Herein, we expound on the importance of the composition of the imidazole-appended perylene diimide of varying methylene spacer length (n = 3, 4, and 6) and 10, 12 docosadiynedioic acid in the ratio of 2:1 to the supramolecular self-assembly, final morphology, and properties. Topochemical polymerization of the drop-cast films by UV radiation yielded blue-phase polydiacetylene formation, and subsequent thermal treatment of the films produced a thermoresponsive blue-to-red phase transformation. Differential scanning calorimetry (DSC) studies revealed a dual dependence of the methylene spacer length and stimuli treatment (UV and/or heat) on the thermal transitions of the films. Furthermore, small-angle X-ray scattering (SAXS) and wide-angle X-ray scattering (WAXS) showed well-defined hierarchical semiconducting nanostructures with interconnected “chessboard”-patterned lamellar stacking. Upon doping with an ionic liquid, the 2:1 platform showed higher ionic conductivity than the previous 1:1 one. The results presented here illustrate the importance of the composition and architecture to the ionic domain connectivity and ionic conductivity, which will have far-reaching implications for the rational design of semiconducting polymers for energy applications including fuel cells, batteries, ion-exchange membranes, and mixed ionic conductors. Full article
Show Figures

Graphical abstract

28 pages, 8236 KB  
Review
Synthesis and Optoelectronic Properties of Perylene Diimide-Based Liquid Crystals
by Shiyi Qiao, Ruijuan Liao, Mingsi Xie, Xiaoli Song, Ao Zhang, Yi Fang, Chunxiu Zhang and Haifeng Yu
Molecules 2025, 30(4), 799; https://doi.org/10.3390/molecules30040799 - 9 Feb 2025
Cited by 3 | Viewed by 2324
Abstract
Perylene diimide (PDI), initially synthesized and explored as an organic dye, has since gained significant recognition for its outstanding optical and electronic properties. Early research primarily focused on its vibrant coloration; however, the resolution of solubility challenges has revealed its broader potential. PDIs [...] Read more.
Perylene diimide (PDI), initially synthesized and explored as an organic dye, has since gained significant recognition for its outstanding optical and electronic properties. Early research primarily focused on its vibrant coloration; however, the resolution of solubility challenges has revealed its broader potential. PDIs exhibit exceptional optical characteristics, including strong absorption and high fluorescence quantum yield, along with remarkable electronic properties, such as high electron affinity and superior charge carrier mobility. Furthermore, the robust π-π stacking interactions and liquid crystalline behavior of PDIs facilitate precise their self-assembly into highly ordered structures, positioning them as valuable materials for advanced applications in optoelectronics, photonics, and nanotechnology. This article provides a comprehensive review of the progress made in the design, synthesis, and optoelectronic performance of PDI-based liquid crystals. It explores how various substituents and their placement on the PDI core impact the properties of these liquid crystal molecules and discusses the challenges and opportunities that shape this rapidly evolving class of optical materials. This review is strictly focused on PDIs and does not cover their elongated or laterally extended derivatives, nor does it include monoimide or ester compounds. Full article
(This article belongs to the Section Molecular Structure)
Show Figures

Figure 1

14 pages, 3247 KB  
Article
Validating Structural Predictions of Conjugated Macromolecules in Espaloma-Enabled Reproducible Workflows
by Madilyn E. Paul, Chris D. Jones and Eric Jankowski
Int. J. Mol. Sci. 2025, 26(2), 478; https://doi.org/10.3390/ijms26020478 - 8 Jan 2025
Viewed by 744
Abstract
We incorporated Espaloma forcefield parameterization into MoSDeF tools for performing molecular dynamics simulations of organic molecules with HOOMD-Blue. We compared equilibrium morphologies predicted for perylene and poly-3-hexylthiophene (P3HT) with the ESP-UA forcefield in the present work against prior work using the OPLS-UA forcefield. [...] Read more.
We incorporated Espaloma forcefield parameterization into MoSDeF tools for performing molecular dynamics simulations of organic molecules with HOOMD-Blue. We compared equilibrium morphologies predicted for perylene and poly-3-hexylthiophene (P3HT) with the ESP-UA forcefield in the present work against prior work using the OPLS-UA forcefield. We found that, after resolving the chemical ambiguities in molecular topologies, ESP-UA is similar to GAFF. We observed the clustering/melting phase behavior to be similar between ESP-UA and OPLS-UA, but the base energy unit of OPLS-UA was found to better connect to experimentally measured transition temperatures. Short-range ordering measured by radial distribution functions was found to be essentially identical between the two forcefields, and the long-range ordering measured by grazing incidence X-ray scattering was qualitatively similar, with ESP-UA matching experiments better than OPLS-UA. We concluded that Espaloma offers promise in the automated screening of molecules that are from more complex chemical spaces. Full article
(This article belongs to the Special Issue Molecular Modelling in Material Science)
Show Figures

Figure 1

14 pages, 4482 KB  
Article
Novel Electrochemiluminescence Sensor for Dopamine Detection Based on Perylene Diimide/CuO Nanomaterials
by Qirong Tian, Xinyang Sun, Chuan Li, Lei Shang, Rongna Ma, Xiaojian Li, Liping Jia, Shuijian He, Qian Zhang, Wei Zhang and Huaisheng Wang
Molecules 2025, 30(1), 184; https://doi.org/10.3390/molecules30010184 - 5 Jan 2025
Viewed by 1450
Abstract
Dopamine (DA) is an important catecholamine neurotransmitter and its abnormal concentration is closely related to diseases such as hypertension, Parkinson’s disease and schizophrenia. Due to the advantages of high sensitivity and fast response for electrochemiluminescence (ECL), developing ECL sensors for detecting DA was [...] Read more.
Dopamine (DA) is an important catecholamine neurotransmitter and its abnormal concentration is closely related to diseases such as hypertension, Parkinson’s disease and schizophrenia. Due to the advantages of high sensitivity and fast response for electrochemiluminescence (ECL), developing ECL sensors for detecting DA was very critical in clinical diagnosis. ECL resonance energy transfer (ECL-RET) was an effective signaling mechanism. However, the shortage of highly efficient ECL-RET pairs impeded the development of DA sensors. Herein, methyl-modified perylene diimide derivative (PDI-CH3) self-assembly nanorod materials as luminophores and CuO nanomaterials as acceptors were integrated into nanocomposites. An obvious ECL-RET was found in PDI-CH3/CuO nanocomposites. After PDI-CH3/CuO nanocomposites were treated with DA, a large increase in ECL intensity was observed. Then, PDI-CH3/CuO nanocomposites were taken as an ECL platform to detect DA. This ECL sensor exhibited a linear response to DA from 10−12 M to 10−8 M with a limit of detection of 0.20 pM. Compared with other sensors for DA detection, the constructed ECL sensor exhibited higher sensitivity. In addition, the novel ECL sensor in this work showed good practicability in a human serum sample. Full article
Show Figures

Graphical abstract

16 pages, 3144 KB  
Article
Photoconductive Dynamics of Photorefractive Poly((4-Diphenylamino)benzyl Acrylate)-Based Composites Sensitized by Perylene Bisimide
by Naoto Tsutsumi, Takafumi Sassa, Tam Van Nguyen, Ha Ngoc Giang, Sho Tsujimura, Boaz Jessie Jackin, Kenji Kinashi and Wataru Sakai
Polymers 2025, 17(1), 96; https://doi.org/10.3390/polym17010096 - 1 Jan 2025
Cited by 1 | Viewed by 1089
Abstract
The transient dynamics of photocurrents for poly((4-diphenylamino)benzyl acrylate) (PDAA)-based photorefractive (PR) polymers sensitized with perylene bisimide derivative N,N′-diisopropylphenyl-1,6,7,12-tetrachloroperylene-3,4,9,10-tetracarboxyl bisimide (PBI) at various composition ratios were studied. The PR polymer included (4-(diphenylamino)phenyl)methanol (TPAOH) photoconductive plasticizer and (4-(azepan-1-yl)-benzylidene) malononitrile nonlinear optical dye as well, which [...] Read more.
The transient dynamics of photocurrents for poly((4-diphenylamino)benzyl acrylate) (PDAA)-based photorefractive (PR) polymers sensitized with perylene bisimide derivative N,N′-diisopropylphenyl-1,6,7,12-tetrachloroperylene-3,4,9,10-tetracarboxyl bisimide (PBI) at various composition ratios were studied. The PR polymer included (4-(diphenylamino)phenyl)methanol (TPAOH) photoconductive plasticizer and (4-(azepan-1-yl)-benzylidene) malononitrile nonlinear optical dye as well, which are needed for inducing PR effects. All the photocurrents measured at 640 nm were well simulated by a two-trapping site model considering photocarrier generation and recombination processes of the charge transfer (CT) complex between PBI and PDAA. The process of photocurrent simulation allowed for analyses of the dependences of hole mobility, quantum efficiency (QE) of photocarrier generation, trapping parameters, and recombination coefficient on the PDAA/TPAOH content. Finally, the PDAA content dependences of the trapping and recombination properties were compared with those of the PR parameters of the optical diffraction efficiency, optical gain, and response time. Full article
Show Figures

Figure 1

11 pages, 1831 KB  
Article
Self-Powered Photoelectrochemistry Biosensor for Ascorbic Acid Determination in Beverage Samples Based on Perylene Material
by Wei Zhang, Xinyang Sun, Hong Liu, Lei Shang, Rongna Ma, Xiaojian Li, Liping Jia, Shuijian He, Chuan Li and Huaisheng Wang
Molecules 2024, 29(22), 5254; https://doi.org/10.3390/molecules29225254 - 6 Nov 2024
Cited by 1 | Viewed by 1118
Abstract
Ascorbic acid plays an important role in the synthesis and metabolism of the human body. However, it cannot be synthesized by the human body and needs to be supplemented from exogenous food intake. Ascorbic acid is easily degraded during storage and heating, often [...] Read more.
Ascorbic acid plays an important role in the synthesis and metabolism of the human body. However, it cannot be synthesized by the human body and needs to be supplemented from exogenous food intake. Ascorbic acid is easily degraded during storage and heating, often causing its content in food to change. It is important to develop a sensitive and accurate photoelectrochemistry (PEC) biosensor for detecting ascorbic acid. The shortage of PEC materials with long illumination wavelengths and low bias voltages impedes the development of ascorbic acid biosensors. Herein, a 3,4,9,10-perylenetetracarboxylic dianhydride (PDA) self-assembly rod material was firstly reported to show significant photocurrent increases to ascorbic acid at 630 nm illumination and 0 V vs. Ag/AgCl. Moreover, the PDA self-assembly rod material was used as a PEC platform to detect ascorbic acid. This self-powered PEC biosensor exhibited a linear response for ascorbic acid from 5 μM·L−1 to 400 μM·L−1; the limit of detection was calculated to be 4.1 μM·L−1. Compared with other ascorbic acid biosensors, the proposed self-powered PEC biosensor shows a relatively wide linear range. In addition, the proposed self-powered PEC biosensor exhibits good practicability in beverage samples. Full article
Show Figures

Graphical abstract

14 pages, 2536 KB  
Article
Polycyclic Aromatic Hydrocarbons (PAHs) in Wheat Straw Pyrolysis Products Produced for Energy Purposes
by Andrzej Półtorak, Anna Onopiuk, Jan Kielar, Jerzy Chojnacki, Tomáš Najser, Leon Kukiełka, Jan Najser, Marcel Mikeska, Błażej Gaze, Bernard Knutel and Bogusława Berner
Sustainability 2024, 16(22), 9639; https://doi.org/10.3390/su16229639 - 5 Nov 2024
Cited by 2 | Viewed by 1687
Abstract
Using agricultural waste biomass pyrolysis to produce energy sources and biochar may support local economies in rural areas and enhance sustainability in the agricultural sector, reducing dependence on traditional energy sources and fertilisers. To obtain liquid and gaseous forms of biomass fuel, wheat [...] Read more.
Using agricultural waste biomass pyrolysis to produce energy sources and biochar may support local economies in rural areas and enhance sustainability in the agricultural sector, reducing dependence on traditional energy sources and fertilisers. To obtain liquid and gaseous forms of biomass fuel, wheat straw pellets were pyrolysed in a screw reactor at temperatures of 300, 400, 500, 600, and 700 °C. An analysis was conducted to assess the influence of process temperature on the physicochemical composition of the raw material and the resulting biochar, pyrolysis liquid, and synthesis gas. The presence of potentially harmful substances in the biochar, whose addition to soil can improve soil properties, was assessed by quantitatively determining polycyclic aromatic hydrocarbons (PAHs). Similar tests were carried out for pyrolysis fluid. The assessments were based on the standards for the most dangerous PAHs: fluorene, anthracene, fluoranthene, benzo[b]fluorine, benz[a]anthracene, chrysene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, dibenz[a,h]anthracene, benzo[g,h,i]perylene, and indeno[1,2,3-cd]pyrene. The results indicated that the total content of polycyclic aromatic hydrocarbons in the biochar ranged from 346.81 µg·kg−1 at 300 °C to 1660.87 µg·kg−1 (700 °C). In the pyrolytic fluid, the PAH content ranged from 58,240.7 µg·kg−1 (300 °C) to 101,889.0 µg·kg−1 (600 °C). It was found that the increase in PAH content in both the biochar and the liquid progressed with increasing pyrolysis temperature. After finding a correlation between the increase in the PAH content in biochar and the increase in the content of high-energy gases in the synthesis gas, it was concluded that it is difficult to reconcile the production of PAH-free biochar in the pyrolysis of biomass with obtaining high-energy gas and pyrolysis oil. Full article
(This article belongs to the Section Sustainable Materials)
Show Figures

Figure 1

Back to TopTop