Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (55)

Search Parameters:
Keywords = pesticide sorption

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 987 KB  
Article
Valorization of Agro-Industrial Wastes as Organic Amendments to Reduce Herbicide Leaching into Soil
by Gabriel Pérez-Lucas, Andrea Martínez-Zapata and Simón Navarro
J. Xenobiot. 2025, 15(4), 100; https://doi.org/10.3390/jox15040100 - 30 Jun 2025
Viewed by 684
Abstract
High levels of pesticide use are associated with intensive crop production. Pesticides are increasingly prevalent in surface and groundwater, which is a major environmental concern. Various methods have been proposed to improve the retention and/or degradation of pesticides in soils. These methods are [...] Read more.
High levels of pesticide use are associated with intensive crop production. Pesticides are increasingly prevalent in surface and groundwater, which is a major environmental concern. Various methods have been proposed to improve the retention and/or degradation of pesticides in soils. These methods are mainly based on soil adaptation with organic wastes to mitigate soil and water pollution. In addition, there has recently been increased interest in assessing the influence of organic waste additions on pesticide movement in soils with low contents of organic matter. Agriculture and related industries generate large amounts of waste each year. Because of their components, they have the great ability to produce high-value products for environmental restoration. This study reports on the influence of four different agro-industrial wastes (orange peel, beer bagasse, grape pomace, and gazpacho waste) used as organic amendments on the leaching of metobromuron and chlorbromuron (phenylurea herbicides) on a silty clay loam soil (gypsic–calcaric regosol) with low organic matter contents from a semiarid area (southeastern Spain). The adsorption, leaching, and dissipation processes of these herbicides were evaluated on a laboratory scale in amended and unamended soils. In addition, the main leaching indices (GUS, LIX, LEACH, M LEACH, LIN, GLI, HI, and ELI) commonly used to assess groundwater protection against pesticide pollution were evaluated. The sorption coefficients (KOC) increased in the amended soils. Metobromuron was found in leachates in all cases, although a marked reduction was observed in amended soils, while chlorbromuron was mainly retained in soils, especially in the top layer. The disappearance time (DT50) for metobromuron and chlorbromuron in soil ranged from 11 to 56 d and 18 to 95 d, respectively. All indices except GLI categorize metobromuron as mobile or very mobile in unamended soil. For chlorbromuron, GUS, LIX, LEACH, MLEACH, and Hornsby classify this compound as a medium-to-high leache, while GLI and ELI classify it as having low mobility. In amended soils, most indices classify metobromuron as transitioning to mobile, while most indices catalog chlorbromuron as immobile/transition. Full article
Show Figures

Graphical abstract

22 pages, 1506 KB  
Article
Potential of Sugarcane Biomass-Derived Biochars for the Controlled Release of Sulfentrazone in Soil Solutions
by Marcos R. F. da Silva, Maria Eliana L. R. Queiroz, Antônio A. Neves, Antônio A. da Silva, André F. de Oliveira, Liany D. L. Miranda, Ricardo A. R. Souza, Alessandra A. Z. Rodrigues and Janilson G. da Rocha
Processes 2025, 13(7), 1965; https://doi.org/10.3390/pr13071965 - 21 Jun 2025
Viewed by 1176
Abstract
Sugarcane bagasse-derived biochars, produced at 350 °C (B350) and 600 °C (B600), were evaluated for their capacity to modify the sorption behavior of the herbicide sulfentrazone (SFZ) in Red–Yellow Latosol (RYL) and to serve as carriers for its controlled release. Batch sorption experiments [...] Read more.
Sugarcane bagasse-derived biochars, produced at 350 °C (B350) and 600 °C (B600), were evaluated for their capacity to modify the sorption behavior of the herbicide sulfentrazone (SFZ) in Red–Yellow Latosol (RYL) and to serve as carriers for its controlled release. Batch sorption experiments indicated that SFZ exhibits low affinity for soil and undergoes sorption–desorption hysteresis. Adding B350 biochar (up to 0.30%) did not significantly affect the herbicide sorption, whereas B600 enhanced its retention. Sequential desorption assays were conducted by incorporating SFZ either directly into the soil or into the biochars, which were subsequently blended into the soil (at 0.15% w/w). The SFZ desorbed more rapidly from the soil than from the biochars, suggesting that the pyrogenic material has potential for modulating herbicide release. Phytotoxicity assessments using Sorghum bicolor confirmed that only SFZ incorporated into B350 (at 0.15% w/w) retained herbicidal efficacy comparable to its direct application in soil. These findings underscore the potential of B350 biochar as a controlled-release carrier for SFZ without compromising its weed control effectiveness. Full article
(This article belongs to the Special Issue Environmental Protection and Remediation Processes)
Show Figures

Graphical abstract

26 pages, 2299 KB  
Review
Nanostructured Aerogels for Water Decontamination: Advances, Challenges, and Future Perspectives
by Alexa-Maria Croitoru, Adelina-Gabriela Niculescu, Alexandra Cătălina Bîrcă, Dan Eduard Mihaiescu, Marius Rădulescu and Alexandru Mihai Grumezescu
Nanomaterials 2025, 15(12), 901; https://doi.org/10.3390/nano15120901 - 11 Jun 2025
Cited by 1 | Viewed by 1551
Abstract
Water contamination with toxic pollutants such as heavy metals, oil spills, organic and inorganic dyes, pesticides, etc., causes severe environmental and human health pollution. Aerogels have gained increasing attention in recent years as promising adsorbents due to their outstanding properties. This paper critically [...] Read more.
Water contamination with toxic pollutants such as heavy metals, oil spills, organic and inorganic dyes, pesticides, etc., causes severe environmental and human health pollution. Aerogels have gained increasing attention in recent years as promising adsorbents due to their outstanding properties. This paper critically evaluates the recent advancements in aerogel-based materials, highlighting their challenges, limitations, and practical applications in large-scale experiments. The influence of key parameters such as adsorbent dosage, solution pH, ionic strength, and temperature is also discussed. Integrating nanotechnology and advanced manufacturing methods, a new generation of high-performance adsorbents with increased sorption capacity and reusability could be developed. Additionally, pilot studies and field trials are highlighted in this review, showing aerogels’ practical and real-world applications. Although various gaps in the production process that limit aerogel implementation in the market still exist, the research progress in the field shows that novel aerogels could be used in real wastewater treatment in the future. This review underscores the need for future research to develop advanced aerogel-based materials using green and sustainable synthesis methods that can lead to full-scale application. Full article
Show Figures

Figure 1

17 pages, 8350 KB  
Article
Differential Molecular Interactions of Imidacloprid with Dissolved Organic Matter in Citrus Soils with Diverse Planting Ages
by Junquan Chen, Yawen Zhang, Yanqi Guo, Kai Jiang, Duo Li and Taihui Zheng
Agriculture 2025, 15(9), 997; https://doi.org/10.3390/agriculture15090997 - 4 May 2025
Cited by 1 | Viewed by 890
Abstract
The interactions between dissolved organic matter (DOM) and agrochemicals (e.g., neonicotinoid insecticides, NIs) govern the distribution, migration, and potential environmental risks of agrochemicals. However, the long-term effects of agricultural management on the DOM components and structure, as well as their further influences on [...] Read more.
The interactions between dissolved organic matter (DOM) and agrochemicals (e.g., neonicotinoid insecticides, NIs) govern the distribution, migration, and potential environmental risks of agrochemicals. However, the long-term effects of agricultural management on the DOM components and structure, as well as their further influences on the interactions between DOM and agrochemicals, remain unclear. Here, spectroscopic techniques, including Fourier transform infrared spectroscopy, two-dimensional correlation spectroscopy, and three-dimensional excitation–emission matrix fluorescence spectroscopy were employed to delve into the interaction mechanism between the DOM from citrus orchards with distinct cultivation ages (10, 30, and 50 years) and imidacloprid, which is a type of pesticide widely used in agricultural production. The findings revealed that the composition and structure of soil DOM significantly change with increasing cultivation age, characterized by an increase in humic substances and the emergence of new organic components, indicating complex biodegradation and chemical transformation processes of soil organic matter. Imidacloprid primarily interacts with fulvic acid-like fractions of DOM, and its binding affinity decreases with increasing cultivation age. Additionally, the interactions of protein-like fractions with imidacloprid occur after humic-like fractions, suggesting differential binding behaviors among DOM fractions. These results demonstrate that cultivation age significantly influences the composition and structural characteristics of soil DOM in citrus orchards, subsequently affecting its sorption capacity to imidacloprid. This study enhances the understanding of imidacloprid’s environmental behavior and provides theoretical support for the environmental risk management of neonicotinoid pesticides. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

18 pages, 1355 KB  
Article
The Significance of Herbicide–Humin Interactions in Sustainable Agroecosystems
by Maria Jerzykiewicz, Irmina Ćwieląg-Piasecka, Jerzy Weber, Aleksandra Ukalska-Jaruga, Elżbieta Jamroz, Andrzej Kocowicz, Magdalena Debicka, Jakub Bekier, Lilla Mielnik, Romualda Bejger, Magdalena Banach-Szott and Agnieszka Grabusiewicz
Sustainability 2025, 17(8), 3449; https://doi.org/10.3390/su17083449 - 12 Apr 2025
Viewed by 599
Abstract
Humin, as the most stable fraction in soil organic matter, determines possibility of sustainable environmental development by influencing, among other things, the binding and migration of different chemicals in soil. The aim of this paper was to determine changes in the properties of [...] Read more.
Humin, as the most stable fraction in soil organic matter, determines possibility of sustainable environmental development by influencing, among other things, the binding and migration of different chemicals in soil. The aim of this paper was to determine changes in the properties of humins after interaction with three selected active substances of herbicides differing in structure and chemical properties (pendimethalin, metazachlor, and flufenacet) and two different commercial products. In accordance with OECD 106 guidelines, humins isolated from eight different soils were saturated with herbicide compounds under study. As humin is a non-hydrolyzable organic carbon fraction, solid state research techniques (elemental analysis, NMR, FTIR, EPR, and UV-Vis) were applied. The results clearly showed that the interaction between humin and herbicides increases the concentration of oxygen-containing groups and the internal oxidation (ω) in humin. For all investigated humins, a reduction in radical concentration was observed. Radicals in humins were not completely quenched; a certain concentration of radicals with unchanged structure always remained in the samples. Other spectroscopic analyses showed no significant changes in the structure of pesticide-saturated and non-saturated humins. This suggests that sorption of the studied compounds occurs on the humins only as a result of the interaction of physical forces on the surface of the studied organic matter fraction. Thus, interaction with the studied herbicides occurs as a surface phenomenon, and the inner core remains protected by the condensed structure and/or strong binding to the clay minerals. Full article
Show Figures

Figure 1

32 pages, 1965 KB  
Article
The Hidden Legacy of Dimethoate: Clay Binding Effects on Decreasing Long-Term Retention and Reducing Environmental Stability in Croatian Soils
by Romano Karleuša, Jelena Marinić, Dijana Tomić Linšak, Igor Dubrović, Domagoj Antunović and Dalibor Broznić
Toxics 2025, 13(3), 219; https://doi.org/10.3390/toxics13030219 - 17 Mar 2025
Cited by 1 | Viewed by 1338
Abstract
Understanding the dynamics of sorption and desorption is essential for assessing the persistence and mobility of pesticides. These processes continue to influence ecological outcomes even after pesticide use has ended, as demonstrated by our study on dimethoate behavior in distinct soil samples from [...] Read more.
Understanding the dynamics of sorption and desorption is essential for assessing the persistence and mobility of pesticides. These processes continue to influence ecological outcomes even after pesticide use has ended, as demonstrated by our study on dimethoate behavior in distinct soil samples from Croatia, including coastal, lowland, and mountainous regions. This study focuses on the sorption/desorption behavior of dimethoate in soil, explores the relationship between its molecular structure and the properties of soil organic and inorganic matter, and evaluates the mechanisms of the sorption/desorption process. The behavior of dimethoate was analyzed using a batch method, and the results were modeled using nonlinear equilibrium models: Freundlich, Langmuir, and Temkin models. Soils with a higher organic matter content, especially total organic carbon (TOC), showed a better sorption capacity compared to soils with a lower TOC. This is probably due to the less flexible structures in the glassy phase, which, unlike the rubbery phase in high TOC soils, do not allow dynamic and flexible binding of dimethoate within the organic matter. The differences between the H/C and O/C ratios indicate that in high TOC soils, flexible aliphatic compounds, typical of a rubbery phase, retain dimethoate more effectively, whereas a higher content of oxygen-containing functional groups in low TOC soils provides strong association. The lettered soils showed stronger retention of dimethoate through interactions with clay minerals and metal cations such as Mg2+, suggesting that clay plays a significantly more important role in enhancing dimethoate sorption than organic matter. These results highlight the importance of organic matter, clay, and metal ions in the retention of dimethoate in soil, indicating the need for remediation methods for those pesticides that, although banned, have had a long history of use. Full article
Show Figures

Graphical abstract

18 pages, 3018 KB  
Article
Application of a Strong Base Anion Exchange Resin for the Removal of Thiophenol from Aqueous Solution
by Katarzyna Chruszcz-Lipska, Bogumiła Winid and Urszula Solecka
Molecules 2025, 30(3), 525; https://doi.org/10.3390/molecules30030525 - 24 Jan 2025
Cited by 3 | Viewed by 1830
Abstract
Thiophenol (synonyms: phenyl mercaptan, benzenethiol) may appear in the aquatic environment as a result of human activity. It is used as a raw material in organic synthesis in various industries for the production of dyes, pesticides, pharmaceuticals and polymers, such as polyphenylene sulfide [...] Read more.
Thiophenol (synonyms: phenyl mercaptan, benzenethiol) may appear in the aquatic environment as a result of human activity. It is used as a raw material in organic synthesis in various industries for the production of dyes, pesticides, pharmaceuticals and polymers, such as polyphenylene sulfide (PPS). It may also enter water through contamination with petroleum substances (thiophenol may be present in crude oil). Due to the fact that thiophenol is toxic to living organisms, its removal from water can be a very important task. For the first time, this paper presents experimental studies of the sorption and desorption process of thiophenol on an ion exchange resin. Thiophenol sorption experiments on AmbeLite®IRA402 (Cl form) were tested at different pH levels (4, 7, and 9) and different ionic strengths of the aqueous solution. Its detection in water was carried out using UV spectroscopy. At pH 4, the thiophenol sorption process is basically independent of the ionic strength of the solution, but also the least effective. The sorption capacity of a thiophenol solution in distilled water is about 0.37–0.46 mg/g, for a solution with an ionic strength of 0.1 M 0.42 mg/g. At pH 7 and 9, the sorption of thiophenol from an aqueous solution is similar and definitely more effective. The sorption capacity of the thiophenol solution in distilled water is about 13.83–14.67 mg/g, and for a solution with an ionic strength of 0.1 M, it is 2.83–2.10 mg/g. The desorption efficiency of thiophenol from AmbeLite®IRA402 resin (washing with 4% HCl) at pH 7 is 90%, which is promising for the resin reuse process. Kinetic studies were performed and a pseudo-first-order and second-order kinetic model was fitted to the obtained experimental sorption data. In most cases, the simulation showed that the pseudo-second-order model gives a better fit, especially for the sorption of thiophenol from the solution with an ionic strength of 0.1 M. The fit of the Freundlich and Langmuir isotherm models to the experimental results indicates that the latter model provides better agreement. Analysis of the infrared spectra supported by quantum chemical calculations (DFT/PCM/B3LYP/6-31g**) confirms the experimental results observed during the sorption process. At pH 7 and 9, the thiophenol is sorbed in anionic form and—together with the ion exchange processes that occur between the dissociated thiol group and the quaternary ammonium group—an interaction between the aromatic structures of thiophenolate anions and IRA402 also takes place. Full article
(This article belongs to the Section Applied Chemistry)
Show Figures

Graphical abstract

13 pages, 1052 KB  
Article
Efficacy of the Fumigant Ethanedinitrile to Control the Ham Mite, Tyrophagus putrescentiae (Schrank) (Sarcoptiformes: Acaridae), and Its Sorption on Dry-Cured Ham
by Jacqueline M. Maille, Wes Schilling and Thomas W. Phillips
Insects 2025, 16(1), 7; https://doi.org/10.3390/insects16010007 - 27 Dec 2024
Viewed by 1003
Abstract
Management of stored-product pests has historically relied on fumigation when pest populations become large. However, the ban of the fumigant methyl bromide and the ineffectiveness of other pesticides stress the need for alternative fumigants. Therefore, laboratory studies were conducted to evaluate the efficacy [...] Read more.
Management of stored-product pests has historically relied on fumigation when pest populations become large. However, the ban of the fumigant methyl bromide and the ineffectiveness of other pesticides stress the need for alternative fumigants. Therefore, laboratory studies were conducted to evaluate the efficacy of ethanedinitrile (EDN) against different life stages of the mite Tyrophagus putrescentiae and to determine the sorption and desorption of EDN by dry-cured ham meat. The results showed that eggs were the most tolerant life stage to EDN fumigation, with an estimated LC50 of 0.6 mg/L. Tyrophagus putrescentiae mixed life-stage colonies were controlled at 1.3 mg/L, and less than 0.05% of the population survived following treatment with 0.6 mg/L within 24 h at 25 °C. The free-headspace concentrations of EDN in fumigation chambers containing ham decreased by 97% of the initial concentrations applied (2.6 and 4.8 mg/L) after the 24 h fumigation period. The EDN sorption in ham followed the first-order kinetics, with half-life values of 5.0 and 4.9 h for 2.6 and 4.8 mg/L, respectively. The percentage losses of EDN per hour were calculated to be 12.8 and 13.2% at 2.6 and 4.8 mg/L, respectively. Our study indicates that EDN controls T. putrescentiae in the laboratory. Full article
(This article belongs to the Collection Integrated Management and Impact of Stored-Product Pests)
Show Figures

Figure 1

15 pages, 3772 KB  
Article
Crop-Derived Biochar for Removal of Alachlor from Water
by Iwona Zawierucha, Jakub Lagiewka, Aleksandra Gajda, Jolanta Kwiatkowska-Malina, Damian Kulawik, Wojciech Ciesielski, Sandra Zarska, Tomasz Girek, Joanna Konczyk and Grzegorz Malina
Materials 2024, 17(23), 5788; https://doi.org/10.3390/ma17235788 - 26 Nov 2024
Cited by 1 | Viewed by 998
Abstract
The presence of various pesticides in natural streams and wastewater is a significant environmental issue due to their high toxicity, which causes harmful consequences even at low quantities. One cost-effective method to remove these pollutants from water could be through adsorption using an [...] Read more.
The presence of various pesticides in natural streams and wastewater is a significant environmental issue due to their high toxicity, which causes harmful consequences even at low quantities. One cost-effective method to remove these pollutants from water could be through adsorption using an inexpensive, easily obtained adsorbent—biochar. The presented research demonstrates the efficacy of applying biochar obtained from wheat grains to eliminate alachlor from water. The sorption properties of the biochar and the likely removal mechanisms are defined. The study found that the biochar removed 76–94% of alachlor, depending on the initial concentration of the pesticide in water. The maximum removal of alachlor (94%) using biochar occurred at an initial pesticide content of 1 mg/L. Both the pseudo-second-order kinetic (R2 = 0.999) and the Langmuir isotherm models (R2 = 0.996) effectively characterized the elimination of alachlor by wheat grain biochar. The biochar’s maximum adsorption capacity for alachlor was 1.94 mg/g. The analyzed biochar, with its micropores and various surface functional groups, was able to effectively adsorb alachlor and trap it within its structure. Full article
(This article belongs to the Section Carbon Materials)
Show Figures

Graphical abstract

25 pages, 6233 KB  
Article
Tailoring Natural and Fly Ash-Based Zeolites Surfaces for Efficient 2,4-D Herbicide Adsorption: The Role of Hexadecyltrimethylammonium Bromide Modification
by Agata Jankowska, Rafał Panek, Wojciech Franus and Joanna Goscianska
Molecules 2024, 29(22), 5244; https://doi.org/10.3390/molecules29225244 - 6 Nov 2024
Cited by 1 | Viewed by 2303
Abstract
Global development has led to the generation of substantial levels of hazardous contaminants, including pesticides, which pose significant environmental risks. Effective elimination of these pollutants is essential, and innovative materials and techniques offer promising solutions. This study examines the modification of natural zeolite [...] Read more.
Global development has led to the generation of substantial levels of hazardous contaminants, including pesticides, which pose significant environmental risks. Effective elimination of these pollutants is essential, and innovative materials and techniques offer promising solutions. This study examines the modification of natural zeolite (clinoptilolite) and fly ash-based NaA and NaX zeolites with hexadecyltrimethylammonium bromide (CTAB) to create inexpensive adsorbents for removing 2,4-dichlorophenoxyacetic acid (2,4-D) herbicide from water. Detailed characterization of these materials was performed, along with an evaluation of the effects of pH, contact time, temperature, and initial 2,4-D concentration on their sorption capacities. The modified samples exhibited significant changes in elemental composition (e.g., reduced SiO2 and Al2O3 content, presence of Br) and textural properties. The adsorption of the pesticide was found to be an exothermic, spontaneous process of pseudo-second-order kinetics and was consistent with the Langmuir model. The highest sorption capacities were observed for samples modified with 0.05 mol L−1 CTAB, particularly for CliCTAB-0.05. Full article
Show Figures

Graphical abstract

15 pages, 1890 KB  
Article
Studies of the Sorption-Desorption of Pesticides from Cellulose-Based Derivative Nanocomposite Hydrogels
by Fabrício C. Tanaka, Uilian G. Yonezawa, Marcia R. de Moura and Fauze A. Aouada
Molecules 2024, 29(20), 4932; https://doi.org/10.3390/molecules29204932 - 18 Oct 2024
Cited by 1 | Viewed by 1207
Abstract
This study analyzed the effect of cellulose derivatives, namely methylcellulose (MC) and carboxymethylcellulose (CMC), on the stability of zeolite in a polymeric solution that would synthesize a three-dimensional network of poly(methacrylic acid)-co-polyacrylamide (PMAA-co-PAAm). Additionally, it investigated the effect of pH on the release [...] Read more.
This study analyzed the effect of cellulose derivatives, namely methylcellulose (MC) and carboxymethylcellulose (CMC), on the stability of zeolite in a polymeric solution that would synthesize a three-dimensional network of poly(methacrylic acid)-co-polyacrylamide (PMAA-co-PAAm). Additionally, it investigated the effect of pH on the release of paraquat (PQ) and difenzoquat (DFZ) herbicides. Similar to previous studies with hydrogels containing CMC, the presence of bi and trivalent salts, such as Ca+2 and Al+3, also drastically reduced their swelling degree from 6.7 g/g in NaCl (0.15 mol·L−1) to 2.1 g/g in an AlCl3 solution (0.15 mol·L−1) for the MC nanocomposite. The viscosity results may suggest that the formation of a polysaccharide-zeolite complex contributed to the zeolite stabilization. As for the adsorption results, all samples adsorbed practically the entire concentration of both herbicides in an aqueous solution. Finally, it was also observed that the valence of the salts and molecular weight of the herbicide affect the release process, where DFZ was the herbicide with the highest concentration released. Both nanostructured hydrogels with CMC and MC exhibited lower release at pH = 7.0. These results demonstrated that a more in-depth evaluation of the phenomena involved in the application of these materials in controlled-release systems could help mitigate the impact caused by pesticides. Full article
(This article belongs to the Special Issue Hydrogels: Preparation, Characterization, and Applications)
Show Figures

Figure 1

13 pages, 1404 KB  
Article
Effect of Common Ions in Agricultural Additives on the Retention of Cd, Cu, and Cr in Farmland Soils
by Xu Zhou and Hongbin Cao
Sustainability 2024, 16(11), 4870; https://doi.org/10.3390/su16114870 - 6 Jun 2024
Cited by 4 | Viewed by 1727
Abstract
The anions and cations in agricultural additives have crucial impacts on the retention of toxic heavy metals (HMs) in soil. However, the influence of these ions on the adsorption and desorption of Cd, Cr, and Cu in soil has not been clarified in [...] Read more.
The anions and cations in agricultural additives have crucial impacts on the retention of toxic heavy metals (HMs) in soil. However, the influence of these ions on the adsorption and desorption of Cd, Cr, and Cu in soil has not been clarified in previous studies. This study investigated the adsorption behavior of HMs, common anions, and dissolved organic matter (DOM) in alkaline soil from farmland under different experimental conditions. Nitrates, sulfates, and chlorides were used as HM sources to investigate the effects of different experimental anion environments on batch adsorption experiments and fluorescence quenching titration experiments. Batch sorption experiments showed that the sorption of Cd2+ was inhibited by the concomitant presence of Cr3+ and Cu2+, and the presence of Cl and SO42− inhibited the binding of HMs to the soil matrix compared to NO3. The fluorescence quenching titration with HMs suggested that SO42− significantly enhances the binding ability of Cr3+ to DOM in solution, which may be the reason SO42− inhibited Cr3+ retention in soil. These results provide detailed insights into the interactions of HMs with DOM and anions, which is of great significance for the targeted application of pesticides and HMs’ transport and removal in farmland soils. Full article
(This article belongs to the Special Issue Agricultural Soil Pollution by Heavy Metals)
Show Figures

Figure 1

31 pages, 2824 KB  
Article
Those That Remain Caught in the “Organic Matter Trap”: Sorption/Desorption Study for Levelling the Fate of Selected Neonicotinoids
by Gordana Sinčić Modrić, Jelena Marinić, Romano Karleuša, Igor Dubrović, Przemysław Kosobucki and Dalibor Broznić
Int. J. Mol. Sci. 2024, 25(11), 5700; https://doi.org/10.3390/ijms25115700 - 23 May 2024
Cited by 2 | Viewed by 1564
Abstract
With projections suggesting an increase in the global use of neonicotinoids, contemporary farmers can get caught on the “pesticide treadmill”, thus creating ecosystem side effects. The aim of this study was to investigate the sorption/desorption behavior of acetamiprid, imidacloprid, and thiacloprid that controls [...] Read more.
With projections suggesting an increase in the global use of neonicotinoids, contemporary farmers can get caught on the “pesticide treadmill”, thus creating ecosystem side effects. The aim of this study was to investigate the sorption/desorption behavior of acetamiprid, imidacloprid, and thiacloprid that controls their availability to other fate-determining processes and thus could be useful in leveling the risk these insecticides or their structural analogues pose to the environment, animals, and human health. Sorption/desorption isotherms in four soils with different organic matter (OC) content were modelled by nonlinear equilibrium models: Freundlich’s, Langmuir’s, and Temkin’s. Sorption/desorption parameters obtained by Freundlich’s model were correlated to soil physico-chemical characteristics. Even though the OC content had the dominant role in the sorption of the three insecticides, the role of its nature as well as the chemical structure of neonicotinoids cannot be discarded. Insecticides sorbed in the glassy OC phase will be poorly available unlike those in the rubbery regions. Imidacloprid will fill the sorption sites equally in the rubbery and glassy phases irrespective of its concentration. The sorption of thiacloprid at low concentrations and acetamiprid at high concentrations is controlled by hydrophilic aromatic structures, “trapping” the insecticides in the pores of the glassy phase of OC. Full article
(This article belongs to the Section Physical Chemistry and Chemical Physics)
Show Figures

Figure 1

16 pages, 3434 KB  
Article
The Interaction of Pesticides with Humin Fractions and Their Potential Impact on Non-Extractable Residue Formation
by Aleksandra Ukalska-Jaruga, Romualda Bejger, Bożena Smreczak, Jerzy Weber, Lilla Mielnik, Maria Jerzykiewicz, Irmina Ćwieląg-Piasecka, Elżbieta Jamroz, Magdalena Debicka, Andrzej Kocowicz and Jakub Bekier
Molecules 2023, 28(20), 7146; https://doi.org/10.3390/molecules28207146 - 18 Oct 2023
Cited by 8 | Viewed by 1973
Abstract
The constant influx of pesticides into soils is a key environmental issue in terms of their potential retention in the soil, thus reducing their negative impact on the environment. Soil organic matter (SOM) is an important factor influencing the environmental fate of these [...] Read more.
The constant influx of pesticides into soils is a key environmental issue in terms of their potential retention in the soil, thus reducing their negative impact on the environment. Soil organic matter (SOM) is an important factor influencing the environmental fate of these substances. Therefore, the aim of this research was to assess the chemical behavior of pesticides (flufenacet, pendimethalin, α-cypermethrin, metazachlor, acetamiprid) toward stable soil humin fractions (HNs) as a main factor affecting the formation of non-extractable residues of agrochemicals in soil. This research was conducted as a batch experiment according to OECD Guideline 106. For this purpose, HNs were isolated from eight soils with different physicochemical properties (clay content = 16–47%, pHKCl = 5.6–7.7, TOC = 13.3–49.7 g·kg−1, TN = 1.06–2.90 g·kg−1, TOC/TN = 11.4–13.7) to reflect the various processes of their formation. The extraction was carried out through the sequential separation of humic acids with 0.1 M NaOH, and then the digestion of the remaining mineral fraction with 10% HF/HCl. The pesticide concentrations were detected using GC-MS/MS. The pesticides were characterized based on the different sorption rates to HNs, according to the overall trend: metazachlor (95% of absorbed compound) > acetamiprid (94% of absorbed compound) > cypermethrin (63% of partitioning compound) > flufenacet (39% of partitioning compound) > pendimethalin (28% of partitioning compound). Cypermethrin and metazachlor exhibited the highest saturation dynamic, while the other agrochemicals were much more slowly attracted by the HNs. The obtained sorption kinetic data were congruous to the pseudo-first-order and pseudo-second-order models related to the surface adsorption and interparticle diffusion isotherm. The conducted research showed that the processes of pesticide sorption, apart from physicochemical phenomena, are also affected by the properties of the pollutants themselves (polarity, KOC) and the soil properties (SOM content, clay content, and pHKCl). Full article
Show Figures

Figure 1

17 pages, 7699 KB  
Article
The Importance of Humic Substances in Transporting “Chemicals of Emerging Concern” in Water and Sewage Environments
by Anna Maria Anielak, Katarzyna Styszko and Justyna Kwaśny
Molecules 2023, 28(18), 6483; https://doi.org/10.3390/molecules28186483 - 7 Sep 2023
Cited by 6 | Viewed by 1395
Abstract
In this study, we examined the sorption of selected “chemicals of emerging concern” (CEC) on humic substances commonly found in water and municipal wastewater. These were ibuprofen, diclofenac, caffeine, carbamazepine, estrone, triclosan, bisphenol A, and isoproturon. The humic substances (HSs) were synthetic and [...] Read more.
In this study, we examined the sorption of selected “chemicals of emerging concern” (CEC) on humic substances commonly found in water and municipal wastewater. These were ibuprofen, diclofenac, caffeine, carbamazepine, estrone, triclosan, bisphenol A, and isoproturon. The humic substances (HSs) were synthetic and not contaminated by the tested organic substances. The elemental composition and content of mineral micropollutants, gravimetric curves, and the IR spectrum of HSs were determined. We determined a relationship between the process efficiency and the characteristics of a sorbent and sorbate using the properties of organic substances sorbed on HSs. This relationship was confirmed by sorption tests on the HS complex, i.e., the HS-organic micropollutant. It has been shown that the given complexes have a greater affinity for hydrophobic surfaces than hydrophilic surfaces. To confirm the nature of the sorbent surfaces, we determined their zeta potential dependence on the pH of the solution. Studies have shown that HSs are carriers of both mineral substances and CEC in water and sewage environments. Full article
Show Figures

Graphical abstract

Back to TopTop