Processing math: 100%
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,060)

Search Parameters:
Keywords = phase-shift analysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
35 pages, 16319 KiB  
Article
Exploring the Gobi Wall: Archaeology of a Large-Scale Medieval Frontier System in the Mongolian Desert
by Dan Golan, Gideon Shelach-Lavi, Chunag Amartuvshin, Zhidong Zhang, Ido Wachtel, Jingchao Chen, Gantumur Angaragdulguun, Itay Lubel, Dor Heimberg, Mark Cavanagh, Micka Ullman and William Honeychurch
Land 2025, 14(5), 1087; https://doi.org/10.3390/land14051087 - 16 May 2025
Abstract
The Gobi Wall is a 321 km-long structure made of earth, stone, and wood, located in the Gobi highland desert of Mongolia. It is the least understood section of the medieval wall system that extends from China into Mongolia. This study aims to [...] Read more.
The Gobi Wall is a 321 km-long structure made of earth, stone, and wood, located in the Gobi highland desert of Mongolia. It is the least understood section of the medieval wall system that extends from China into Mongolia. This study aims to determine its builders, purpose, and chronology. Additionally, we seek to better understand the ecological implications of constructing such an extensive system of walls, trenches, garrisons, and fortresses in the remote and harsh environment of the Gobi Desert. Our field expedition combined remote sensing, pedestrian surveys, and targeted excavations at key sites. The results indicate that the garrison walls and main long wall were primarily constructed using rammed earth, with wood and stone reinforcements. Excavations of garrisons uncovered evidence of long-term occupation, including artifacts spanning from 2nd c. BCE to 19th c. CE. According to our findings, the main construction and usage phase of the wall and its associated structures occurred throughout the Xi Xia dynasty (1038–1227 CE), a period characterized by advanced frontier defense systems and significant geopolitical shifts. This study challenges the perception of such structures as being purely defensive, revealing the Gobi Wall’s multifunctional role as an imperial tool for demarcating boundaries, managing populations and resources, and consolidating territorial control. Furthermore, our spatial and ecological analysis demonstrates that the distribution of local resources, such as water and wood, was critical in determining the route of the wall and the placement of associated garrisons and forts. Other geographic factors, including the location of mountain passes and the spread of sand dunes, were strategically utilized to enhance the effectiveness of the wall system. The results of this study reshape our understanding of medieval Inner Asian imperial infrastructure and its lasting impact on geopolitical landscapes. By integrating historical and archeological evidence with geographical analysis of the locations of garrisons and fortifications, we underscore the Xi Xia kingdom’s strategic emphasis on regulating trade, securing transportation routes, and monitoring frontier movement. Full article
(This article belongs to the Special Issue Archaeological Landscape and Settlement II)
17 pages, 2218 KiB  
Article
Anthropometric Characteristics and Body Composition Changes in a Five-Time Olympic Champion in Greco-Roman Wrestling: A Longitudinal Case Study Towards the Paris 2024 Olympic Games
by Wiliam Carvajal-Veitía, Carlos Abraham Herrera-Amante, Rodrigo Yáñez-Sepúlveda, Vladimir Gainza-Pérez, Yanell Deturnell-Campos, Carlos Cristi-Montero, Guillermo Cortés-Roco and César Octavio Ramos-García
J. Funct. Morphol. Kinesiol. 2025, 10(2), 176; https://doi.org/10.3390/jfmk10020176 - 15 May 2025
Abstract
Purpose: This case study examines the anthropometric characteristics and body composition changes of a 41-year-old Cuban Greco-Roman 130 kg wrestler, a five-time Olympic gold medalist (2008–2024). To optimize his preparation for the Paris 2024 Olympic Games, another athlete participated in the qualifying [...] Read more.
Purpose: This case study examines the anthropometric characteristics and body composition changes of a 41-year-old Cuban Greco-Roman 130 kg wrestler, a five-time Olympic gold medalist (2008–2024). To optimize his preparation for the Paris 2024 Olympic Games, another athlete participated in the qualifying process, allowing him to train without competition gear. Methods: The study monitored changes in body composition using anthropometry and bioelectrical impedance analysis (BIA) at three key time points in 2024: January, June, and July. The final assessment occurred 25 days before the Olympic event, coinciding with the final phase of his preparation. Results: The analysis revealed a significant reduction in total body mass, from 150 kg in January to 138.5 kg in July, with fat mass decreasing from 37.06 kg (24.11%) to 29.7 kg (21.5%). Muscle mass decreased slightly (77.41 kg to 72.3 kg), while bone mass remained stable. The somatotype classification was endomorphic–mesomorphic at all assessments, with slight shifts in its components (4.6–10.4–0.1 in January to 4.4–10.3–0.1 in July), reflecting an improved muscle–fat ratio. Notably, hydration levels and cellular integrity remained stable, as indicated by BIVA analysis. Conclusions: This study provides insight into the anthropometric characteristics and body composition of an elite Greco-Roman wrestler, as well as the changes observed during his preparation for his final Olympic participation. These data serve as a valuable reference for wrestlers and sports professionals, highlighting the physical profile of one of the most emblematic figures in Olympic history. Full article
Show Figures

Figure 1

22 pages, 4358 KiB  
Article
A Study on the Coupled Coordination Between Tourism Efficiency and Economic Development Level in the Beijing–Tianjin–Hebei City Cluster in the Past 10 Years
by Shengxia Wang, Ruiting Liu and Maolan Li
Sustainability 2025, 17(10), 4388; https://doi.org/10.3390/su17104388 - 12 May 2025
Viewed by 143
Abstract
This longitudinal study applies decade-spanning socioeconomic indicators (2013–2022) from the Beijing–Tianjin–Hebei urban agglomeration. An integrated analytical framework was developed, merging the super-efficiency slack-based measurement (SBM) methodology with entropic weighting techniques to quantify tourism efficiency and economic development. Subsequent phases employed a multi-method analytical [...] Read more.
This longitudinal study applies decade-spanning socioeconomic indicators (2013–2022) from the Beijing–Tianjin–Hebei urban agglomeration. An integrated analytical framework was developed, merging the super-efficiency slack-based measurement (SBM) methodology with entropic weighting techniques to quantify tourism efficiency and economic development. Subsequent phases employed a multi-method analytical cascade: coupling coordination assessment modeling for system interaction analysis, standard deviation ellipses for spatial dispersion characterization, and Markovian transition matrices for temporal pattern identification. The investigation concludes with evolutionary trajectory projections using gray system forecasting GM(1,1) modeling. The analytical findings reveal the following patterns: (1) Within the Beijing–Tianjin–Hebei metropolitan cluster, tourism efficiency demonstrates a consistent upward trajectory, manifesting spatial differentiation characteristics characterized by a dual-core structure centered on Tianjin and Baoding, with higher values observed in northwestern areas compared to southeastern regions. Concurrently, regional disparities exhibit progressive convergence over temporal progression. (2) The level of economic development in the Beijing–Tianjin–Hebei city cluster has been rising steadily, demonstrating a geospatial distribution of ‘central concentration with peripheral attenuation, with the north-east being better than the southwest’, and the gap between the regional differences has become broader over time. (3) The coupling between tourism efficiency and the level of economic development in the Beijing–Tianjin–Hebei city cluster has generally improved, with Beijing and Tianjin predominantly in a coordinated regime, and some cities in Hebei Province about to shift from dysfunctional to coordinated, and, spatially, the coupling and coordination in northern sectors demonstrate superior performance compared to southern counterparts nationally. (4) The coupling coordination degree of the Beijing–Tianjin–Hebei city cluster in the next eight years is predicted by the gray GM(1,1) prediction model and the overall continuation of the growth trend of the Beijing–Tianjin–Hebei city cluster over the past ten years, thus verifying the importance of the regional integrated policy frameworks in the system integration of the Beijing–Tianjin–Hebei metropolitan system. Full article
Show Figures

Figure 1

21 pages, 5508 KiB  
Article
Research on the Adsorption Characteristics of Shale Gas in Different Types of Kerogen
by Ao Yin, Zhixiang Liu, Yongli Zhang and Yulin Ma
Processes 2025, 13(5), 1362; https://doi.org/10.3390/pr13051362 - 29 Apr 2025
Viewed by 243
Abstract
To investigate the methane adsorption characteristics in different types of kerogen, microscopic models for three kerogen types—sapropelic (Type I), mixed (Type II), and humic (Type III)—were developed in this paper based on the paradigm diagram. Using Materials Studio 2020 software, a combination of [...] Read more.
To investigate the methane adsorption characteristics in different types of kerogen, microscopic models for three kerogen types—sapropelic (Type I), mixed (Type II), and humic (Type III)—were developed in this paper based on the paradigm diagram. Using Materials Studio 2020 software, a combination of molecular dynamics and Monte Carlo adsorption simulations was employed to examine the kerogen from the molecular structure to the cellular structure, with an analysis rooted in thermodynamic theory. The results indicated that the elemental composition of kerogen significantly influenced both the heat of adsorption and the adsorption position, with sulfur (S) having the greatest effect. Specifically, the C-S bond shifted the methane adsorption position horizontally by 0.861 Å and increased the adsorption energy by 1.418 kJ. Among the three types of kerogen crystals, a relationship was observed among the adsorption amount, limiting adsorption energy, and specific adsorption energy, with Type I < Type II < Type III. Additionally, the limiting adsorption energy was greater than the specific adsorption energy. The limiting adsorption energy of Type Ⅲ was only 28.436 kJ/mol, which indicates that methane is physically adsorbed in the kerogen. Regarding the diffusion coefficient, the value of 0.0464 Å2/Ps in the micropores of Type I kerogen was significantly higher than that in Types II and III, though it was much smaller than the diffusion coefficient observed in the macropores. Additionally, adsorption causes volumetric and effective pore volume expansion in kerogen crystals, which occurs in two phases: slow expansion and rapid expansion. Higher types of kerogen require a larger adsorption volume to reach the rapid expansion phase and expand more quickly. However, during the early stage of adsorption, the expansion rate is extremely low, and even a slight shrinkage may occur. Therefore, in shale gas extraction, it is crucial to design the extraction strategy based on the content and adsorption characteristics of the three kerogen types in order to enhance shale gas production and improve extraction efficiency. Full article
Show Figures

Figure 1

11 pages, 3775 KiB  
Article
Deformation Behavior of S32750 Duplex Stainless Steel Based on In Situ EBSD Technology
by Shun Bao, Han Feng, Zhigang Song, Jianguo He, Xiaohan Wu and Yang Gu
Materials 2025, 18(9), 2030; https://doi.org/10.3390/ma18092030 - 29 Apr 2025
Viewed by 213
Abstract
In this study, we investigated the two-phase hardening behavior and microstructural evolution of S32750 duplex stainless steel during the tensile deformation process. The analysis was conducted using in situ electron backscatter diffraction (EBSD), scanning electron microscopy (SEM), and microhardness testing. It was observed [...] Read more.
In this study, we investigated the two-phase hardening behavior and microstructural evolution of S32750 duplex stainless steel during the tensile deformation process. The analysis was conducted using in situ electron backscatter diffraction (EBSD), scanning electron microscopy (SEM), and microhardness testing. It was observed that strain transfer occurred between the two phases in the position away from the fracture. The ferrite phase exhibited softening, while the austenite phase underwent hardening. In the region less than 1 mm from the fracture site, both phases experienced a rapid hardening, with the maximum hardness difference between the two phases near the fracture reaching approximately 45 HV. In situ EBSD results indicate that the kernel average misorientation (KAM) value for the ferrite phase consistently exceeds that of the austenite phase during the initial stages of deformation. Conversely, in the final stages of deformation, the KAM value for austenite surpasses that of ferrite. In the initial stage of deformation, the type of grain boundaries in both phases remains largely unaltered. However, in the later stages of deformation, there is a marked increase in the number of small-angle grain boundaries within ferrite, which become approximately three times that of the large-angle grain boundaries. As deformation progresses, the maximum orientation distribution density of the ferrite phase is reduced by approximately 50%, with the preferred orientation shifting from the {100} plane to the {111} plane. In contrast, the orientation distribution of the austenite remains relatively uniform, with no significant change in the maximum orientation distribution density observed. This indicates that after substantial deformation, the rotation of ferrite grains significantly increases the deformation resistance, whereas the austenite phase continues to harden. This differential behavior leads to the continuous accumulation of strain at the phase boundaries, ultimately causing cracks to form at these boundaries and resulting in the sample’s fracture. Full article
(This article belongs to the Special Issue From Materials to Applications: High-Performance Steel Structures)
Show Figures

Figure 1

25 pages, 36928 KiB  
Article
Exploring Entanglement Spectra and Phase Diagrams in Multi-Electron Quantum Dot Chains
by Guanjie He and Xin Wang
Entropy 2025, 27(5), 479; https://doi.org/10.3390/e27050479 - 29 Apr 2025
Viewed by 216
Abstract
We investigate the entanglement properties in semiconductor quantum dot systems modeled by the extended Hubbard model, focusing on the impacts of potential energy variations and electron interactions within a four-site quantum dot spin chain. Our study explores local and pairwise entanglement across configurations [...] Read more.
We investigate the entanglement properties in semiconductor quantum dot systems modeled by the extended Hubbard model, focusing on the impacts of potential energy variations and electron interactions within a four-site quantum dot spin chain. Our study explores local and pairwise entanglement across configurations with electron counts N=4 and N=6, under different potential energy settings. By adjusting the potential energy in specific dots and examining the entanglement across various interaction regimes, we identify significant variations in the ground states of quantum dots. We extend this analysis to larger systems with L=6 and L=8, comparing electron counts N=L and N=L+2, revealing sharper entanglement transitions and reduced finite-size effects as the system size increases. Our results show that local potential shifts and the Coulomb interaction strength lead to notable redistributions of the electron configurations in the quantum dot spin chain, significantly affecting the entanglement properties. These changes are depicted in phase diagrams that highlight entanglements’ dependencies on the interaction strengths and potential energy adjustments, illustrating complex entanglement dynamics shifts triggered by interdot interactions. Full article
(This article belongs to the Section Quantum Information)
Show Figures

Figure 1

15 pages, 3226 KiB  
Article
Effects of Adding Bacillus coagulans BCH0 to the Diet on Growth Performance, Tissue Structures, and Gut Microbiota in Broilers
by Zhili Niu, Linbao Ji, Yucheng Zhang, Zeyi Chen, Jiakun Shen, Zhaoyue Men, Chenlong Zhou, Peng Tan and Xi Ma
Animals 2025, 15(9), 1243; https://doi.org/10.3390/ani15091243 - 28 Apr 2025
Viewed by 307
Abstract
Studies demonstrated that Bacillus coagulans (B. coagulans) as a dietary additive enhanced broiler growth performance, yet its mechanisms of action modulation remained unclear. Therefore, this study investigated effects of dietary B. coagulans BCH0 (1 × 109 CFU/kg) on growth performance, [...] Read more.
Studies demonstrated that Bacillus coagulans (B. coagulans) as a dietary additive enhanced broiler growth performance, yet its mechanisms of action modulation remained unclear. Therefore, this study investigated effects of dietary B. coagulans BCH0 (1 × 109 CFU/kg) on growth performance, intestinal morphology, gut microbiota, and ileal transcriptomics in Arbor Acres broilers using a completely randomized design. A total of 200 one-day-old broilers were allocated to control (Con, basal diet) and experimental (BCH0, basal diet + 1 × 109 CFU/kg B. coagulans BCH0) groups (10 replicates/group, 10 birds/replicate) over a 42-day trial. The results revealed that BCH0 significantly increased body weights (BW) at 21 and 42 days (p < 0.05), improved the average daily gain (ADG) during the starter (1–21 days) and overall phases (1–42 days), and reduced the ratio of feed intake to body weight gain (F/G) across all phases (p < 0.05). Duodenal morphology analysis indicated a BCH0 elevated villus height (+16.9%, p < 0.01) and villus height/crypt depth (V/C) (p < 0.01) and no significant differences in crypt depth (p = 0.46). In the ileum, the BCH0 group exhibited a significantly greater villus height (p < 0.01), crypt depth (p < 0.05), and V/C (p < 0.05) than the Con group. Microbiota analysis revealed no significant differences in α-diversity or β-diversity, but phylum-level shifts involved an increase in Firmicutes and a reduction in Actinobacteriota in the BCH0 group. At the genus level, dominance shifted from Romboutsia (Control group) to Lactobacillus (BCH0 group), accompanied by marked reductions in Turicibacter, Ldatus_arthromitus, and Rothia. Ileal transcriptomics identified 605 differentially expressed genes, with KEGG enrichment highlighting activated nutrient assimilation pathways (p < 0.05), including carbohydrate, mineral, fat, and protein digestion/absorption. These findings collectively demonstrated that B. coagulans BCH0 enhanced broiler growth through the synergistic modulation of beneficial microbiota, the upregulation of nutrient metabolism genes, and intestinal architectural optimization, supporting its role as a sustainable microbial additive for enhancing poultry productivity and gut health. Full article
(This article belongs to the Special Issue Feed Additives in Animal Nutrition)
Show Figures

Figure 1

20 pages, 2259 KiB  
Article
Temperature-Controlled Defective Phononic Crystals with Shape Memory Alloys for Tunable Ultrasonic Sensors
by Soo-Ho Jo
Crystals 2025, 15(5), 412; https://doi.org/10.3390/cryst15050412 - 28 Apr 2025
Viewed by 254
Abstract
Phononic crystals (PnCs) have garnered significant interest owing to their ability to manipulate wave propagation, particularly through phononic band gaps and defect modes. However, conventional defective PnCs are limited by their fixed defect-band frequencies, which restricts their adaptability to dynamic environments. This study [...] Read more.
Phononic crystals (PnCs) have garnered significant interest owing to their ability to manipulate wave propagation, particularly through phononic band gaps and defect modes. However, conventional defective PnCs are limited by their fixed defect-band frequencies, which restricts their adaptability to dynamic environments. This study introduces a novel approach for temperature-controlled tunability of defective PnCs by integrating shape memory alloys (SMAs) into defect regions. The reversible phase transformations of SMAs, driven by temperature variations, induce significant changes in their mechanical properties, enabling real-time adjustment of defect-band frequencies. An analytical model is developed to predict the relationship between the temperature-modulated material properties and defect-band shifts, which is validated through numerical simulations. The results demonstrate that defect-band frequencies can be dynamically controlled within a specified range, thereby enhancing the operational bandwidth of the ultrasonic sensors. Additionally, sensing-performance analysis confirms that while defect-band frequencies shift with temperature, the output voltage of the sensors remains stable, ensuring reliable sensitivity across varying conditions. This study represents a significant advancement in tunable PnC technology, paving the way for next-generation ultrasonic sensors with enhanced adaptability and reliability in complex environments. Full article
(This article belongs to the Special Issue Research and Applications of Acoustic Metamaterials)
Show Figures

Figure 1

26 pages, 28238 KiB  
Article
Analysis of Kallikrein 6, Acetyl-α-Tubulin, and Aquaporin 1 and 2 Expression Patterns During Normal Human Nephrogenesis and in Congenital Anomalies of the Kidney and Urinary Tract (CAKUT)
by Nela Kelam, Marin Ogorevc, Ivona Gotovac, Ivana Kuzmić Prusac, Katarina Vukojević, Mirna Saraga-Babić and Snježana Mardešić
Genes 2025, 16(5), 499; https://doi.org/10.3390/genes16050499 - 27 Apr 2025
Viewed by 189
Abstract
Background/Objectives: The human kallikrein-related peptidase 6 (KLK6), a serine protease with trypsin-like properties, belongs to the 15-member kallikrein (KLK) gene family and is predominantly recognized for its role in oncogenesis, neurodegenerative disorders, and skin conditions. Aquaporins (AQPs) are integral membrane [...] Read more.
Background/Objectives: The human kallikrein-related peptidase 6 (KLK6), a serine protease with trypsin-like properties, belongs to the 15-member kallikrein (KLK) gene family and is predominantly recognized for its role in oncogenesis, neurodegenerative disorders, and skin conditions. Aquaporins (AQPs) are integral membrane proteins that facilitate water transport across cell membranes. AQP1 is constitutively active in the kidneys and plays a crucial role in reabsorbing filtered water, while AQP2 is regulated by vasopressin and is essential for maintaining body fluid homeostasis. The primary objective of the present study is to investigate the spatio-temporal expression patterns of KLK6, AQP1, and AQP2 throughout normal human nephrogenesis and congenital kidney and urinary tract (CAKUT) abnormalities: duplex kidneys, horseshoe kidneys, and dysplastic kidneys. Methods: An immunofluorescence analysis of KLK6, AQP1, and AQP2 was performed on 37 paraffin-embedded fetal kidney samples. The area percentage of KLK6 in the kidney cortex was calculated in normal developing samples during developmental phases 2, 3, and 4 and compared with CAKUT samples. Results: KLK6 exhibits distinct spatiotemporal expression patterns during human kidney development, with consistent localization in proximal tubules. Its subcellular positioning shifts from the basolateral cytoplasm in early phases to the apical cytoplasm in later stages, which may be strategically positioned to act on its substrate in either the peritubular space or the tubular fluid. KLK6 expression followed a quadratic trajectory, peaking at Ph4. This marked increase in the final developmental phase aligns with its strong expression in mature kidneys, suggesting a potential role in proximal tubule differentiation and functional maturation through facilitating extracellular matrix remodeling and activating proteinase-activated receptors, modulating the signaling pathways that are essential for tubular development. In duplex kidneys, structural abnormalities such as ureteral obstruction and hydronephrosis may upregulate KLK6 as part of a reparative response, while its downregulation could impair epithelial remodeling and cytoskeletal integrity, exacerbating dysplastic phenotypes. Conclusions: These findings highlight the potential of KLK6 involvement in normal kidney development and the pathology of CAKUT. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

20 pages, 5380 KiB  
Article
Machine Learning-Enabled Prediction and Mechanistic Analysis of Compressive Yield Strength–Hardness Correlation in High-Entropy Alloys
by Haiyu Wan, Baobin Xie, Hui Feng and Jia Li
Metals 2025, 15(5), 487; https://doi.org/10.3390/met15050487 - 25 Apr 2025
Viewed by 243
Abstract
High-entropy alloys (HEAs) represent a paradigm-shifting material system offering vast compositional space for tailoring mechanical properties. The yield strength and hardness are critical performance metrics, yet their interrelationships in diverse HEAs remain incompletely understood, partly due to data limitations. This work employs an [...] Read more.
High-entropy alloys (HEAs) represent a paradigm-shifting material system offering vast compositional space for tailoring mechanical properties. The yield strength and hardness are critical performance metrics, yet their interrelationships in diverse HEAs remain incompletely understood, partly due to data limitations. This work employs an integrated machine learning framework to investigate the compressive yield strength (σy) and hardness (HV) correlation across a dataset of cast HEAs. Random forest models are successfully developed for phase structure classification (accuracy = 92%), hardness prediction (test R2 = 0.90), and yield strength prediction (test R2 = 0.91), enabling data imputation to expand the analysis dataset. Correlation analysis on the expanded dataset reveals a general positive trend between σy and HV (overall Pearson r = 0.75) but highlights a strong dependence on the predicted phase structure. The single-phase BCC alloys exhibit the strongest linear correlation between σy and HV (r = 0.88), whereas the single-phase FCC alloys show a weaker linear dependence (r = 0.59), and multiphase alloy systems display varied behavior. The specific ranges of compositional parameters (highly negative mixing enthalpy ΔH, low atomic size difference δ, high mixing entropy ΔS, and intermediate-to-high valence electron concentration VEC) are associated with a stronger σy-HV correlation, potentially linked to the formation of stable solid solutions. Furthermore, artificial neural network modeling confirms the varying complexity of the σy-HV relationship across different phases, outperforming simple models for some multiphase systems. This work provides robust predictive models for HEA properties and advances the fundamental understanding of the composition- and phase-dependent coupling between yield strength and hardness, aiding rational HEA design. Full article
Show Figures

Figure 1

15 pages, 2584 KiB  
Article
Measurement of Coherence Time in Cold Atom-Generated Tunable Photon Wave Packets Using an Unbalanced Fiber Interferometer
by Ya Li, Wanru Wang, Qizhou Wu, Youxing Chen, Can Sun, Hai Wang and Weizhe Qiao
Photonics 2025, 12(5), 415; https://doi.org/10.3390/photonics12050415 - 25 Apr 2025
Viewed by 216
Abstract
In the realm of quantum communication and photonic technologies, the extension of coherence time for photon wave packets is essential for improving system efficacy. This research introduces a methodology for measuring coherence time utilizing an unbalanced fiber interferometer, specifically designed for tunable pulse-width [...] Read more.
In the realm of quantum communication and photonic technologies, the extension of coherence time for photon wave packets is essential for improving system efficacy. This research introduces a methodology for measuring coherence time utilizing an unbalanced fiber interferometer, specifically designed for tunable pulse-width photon wave packets produced by cold atoms. By synchronously generating write pulses, signal light, and frequency-locking light from a single laser source, the study effectively mitigated frequency discrepancies that typically arise from the use of multiple light sources. The implementation of frequency-resolved photon counting under phase-locked conditions was accomplished through the application of polarization filtering and cascaded filtering techniques. The experimental results indicated that the periodicity of frequency shifts in interference fringe patterns diminishes as the differences in delay arm lengths increase, while fluctuations in fiber length and high-frequency laser jitter adversely affect interference visibility. Through an analysis of the correlation between delay and photon counts, the coherence time of the write laser was determined to be 2.56 µs, whereas the Stokes photons produced through interactions with cold atoms exhibited a reduced coherence time of 1.23 µs. The findings suggest that enhancements in laser bandwidth compression and fiber phase stability could further prolong the coherence time of photon wave packets generated by cold atoms, thereby providing valuable technical support for high-fidelity quantum information processing. Full article
Show Figures

Figure 1

18 pages, 13961 KiB  
Article
Dibromo-Edaravone Induces Anti-Erythroleukemia Effects via the JAK2-STAT3 Signaling Pathway
by Qiqing Chen, Sheng Liu, Xuenai Wei, Peng Zhao, Fen Tian, Kang Yang, Jingrui Song, Yubing Huang, Min Wen, Jialei Song, Yong Jian and Yanmei Li
Int. J. Mol. Sci. 2025, 26(9), 4000; https://doi.org/10.3390/ijms26094000 - 23 Apr 2025
Viewed by 251
Abstract
Acute erythroid leukemia (AEL) is a rare and aggressive hematological malignancy managed with chemotherapy, targeted therapies, and stem cell transplantation. However, these treatments often suffer from limitations such as refractoriness, high toxicity, recurrence, and drug resistance, underscoring the urgent need for novel therapeutic [...] Read more.
Acute erythroid leukemia (AEL) is a rare and aggressive hematological malignancy managed with chemotherapy, targeted therapies, and stem cell transplantation. However, these treatments often suffer from limitations such as refractoriness, high toxicity, recurrence, and drug resistance, underscoring the urgent need for novel therapeutic approaches. Dibromo-edaravone (D-EDA) is a synthetic derivative of edaravone (EDA) with unreported anti-leukemic properties. In this study, D-EDA demonstrated potent cytotoxicity against HEL cells with an IC50 value of 8.17 ± 0.43 μM using an MTT assay. Morphological analysis via inverted microscopy revealed reductions in cell number and signs of cellular crumpling and fragmentation. Flow cytometry analysis, Hoechst 33258 staining, Giemsa staining, a JC-1 assay, and a reactive oxygen species (ROS) assay showed that D-EDA induced apoptosis in HEL cells. Furthermore, D-EDA induced S-phase cell cycle arrest. Western blot analysis showed significant upregulation of key apoptosis-related proteins, including cleaved caspase-9, cleaved caspase-3, and cleaved poly ADP-ribose polymerase (PARP), alongside a reduction in Bcl-2 expression. Additionally, oncogenic markers such as c-Myc, CyclinA2, and CDK2 were downregulated, while the cell cycle inhibitor p21 was upregulated. Mechanistic studies involving molecular docking, a cellular thermal shift assay (CETSA), the caspase inhibitor Z-VAD-FMK, JAK2 inhibitor Ruxolitinib, and STAT3 inhibitor Stattic revealed that D-EDA activates the caspase cascade and inhibits the JAK2-STAT3 signaling pathway in HEL cells. In vivo, D-EDA improved spleen structure, increased the hemolysis ratio, and extended survival in a mouse model of acute erythroleukemia. In conclusion, D-EDA induces apoptosis via the caspase cascade and JAK2-STAT3 signaling pathway, demonstrating significant anti-leukemia effects in vitro and in vivo. Thus, D-EDA may be developed as a potential therapeutic agent for acute erythroleukemia. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

16 pages, 2320 KiB  
Article
Transposon-Associated Small RNAs Involved in Plant Defense in Poplar
by Cui Long, Yuxin Du, Yumeng Guan, Sijia Liu and Jianbo Xie
Plants 2025, 14(8), 1265; https://doi.org/10.3390/plants14081265 - 21 Apr 2025
Viewed by 344
Abstract
Utilizing high-throughput Illumina sequencing, we examined how small RNA (sRNA) profiles vary in Chinese white poplar (Populus tomentosa) across two pivotal infection stages by the rust fungus Melampsora larici-populina: the biotrophic growth phase (T02; 48 h post infection) and the [...] Read more.
Utilizing high-throughput Illumina sequencing, we examined how small RNA (sRNA) profiles vary in Chinese white poplar (Populus tomentosa) across two pivotal infection stages by the rust fungus Melampsora larici-populina: the biotrophic growth phase (T02; 48 h post infection) and the urediniospore development and dispersal phase (T03; 168 h), both essential for plant colonization and prolonged biotrophic engagement. Far exceeding random expectations, siRNA clusters predominantly arose from transposon regions, with pseudogenes also contributing significantly, and infection-stage-specific variations were notably tied to these transposon-derived siRNAs. As the infection advanced, clusters of 24 nt siRNAs in transposon and intergenic regions exhibited pronounced abundance shifts. An analysis of targets indicated that Populus sRNAs potentially regulate 95% of Melampsora larici-populina genes, with pathogen effector genes showing heightened targeting by sRNAs during the biotrophic and urediniospore phases compared to controls, pointing to selective sRNA-target interactions. In contrast to conserved miRNAs across plant species, Populus-specific miRNAs displayed a markedly greater tendency to target NB-LRR genes. These observations collectively highlight the innovative roles of sRNAs in plant defense, their evolutionary roots, and their dynamic interplay with pathogen coevolution. Full article
(This article belongs to the Special Issue Genetic Breeding of Trees)
Show Figures

Figure 1

18 pages, 2202 KiB  
Review
A Citation Analysis and Bibliometric Graph of Human Evacuation Research
by Yixuan Huang, Rui Li, Yunhe Tong and Wei Xie
Fire 2025, 8(4), 161; https://doi.org/10.3390/fire8040161 - 21 Apr 2025
Viewed by 251
Abstract
Effective evacuation is vital for minimizing casualties during disasters. This study employed the Web of Science (WOS) database to perform a bibliometric analysis of the evacuation literature. VOSViewer (v1.6.20) and CiteSpace (v6.3.R1) software were used to visualize publication trends, international collaboration networks, keyword [...] Read more.
Effective evacuation is vital for minimizing casualties during disasters. This study employed the Web of Science (WOS) database to perform a bibliometric analysis of the evacuation literature. VOSViewer (v1.6.20) and CiteSpace (v6.3.R1) software were used to visualize publication trends, international collaboration networks, keyword co-occurrence, clustering, and keyword bursts. The findings indicate that three research focuses are foundational to advancing the field of evacuation research, with shifts in these areas reflecting the dynamic nature of the field’s transition. Four key research themes outline the core content of the field’s investigation. Furthermore, this study identifies three key research phases in evacuation: the theoretical model development and foundational research phase, the behavioral dynamics and advanced simulation phase, and the data-driven intelligence and practical application phase. Future directions of evacuation research are discussed. This study provides a comprehensive analytical framework that deepens the understanding of the evacuation field. Full article
Show Figures

Figure 1

32 pages, 8687 KiB  
Article
Hybrid Deep Learning Methods for Human Activity Recognition and Localization in Outdoor Environments
by Yirga Yayeh Munaye, Metadel Addis, Yenework Belayneh, Atinkut Molla and Wasyihun Admass
Algorithms 2025, 18(4), 235; https://doi.org/10.3390/a18040235 - 18 Apr 2025
Viewed by 347
Abstract
Activity recognition and localization in outdoor environments involve identifying and tracking human movements using sensor data, computer vision, or deep learning techniques. This process is crucial for applications such as smart surveillance, autonomous systems, healthcare monitoring, and human–computer interaction. However, several challenges arise [...] Read more.
Activity recognition and localization in outdoor environments involve identifying and tracking human movements using sensor data, computer vision, or deep learning techniques. This process is crucial for applications such as smart surveillance, autonomous systems, healthcare monitoring, and human–computer interaction. However, several challenges arise in outdoor settings, including varying lighting conditions, occlusions caused by obstacles, environmental noise, and the complexity of differentiating between similar activities. This study presents a hybrid deep learning approach that integrates human activity recognition and localization in outdoor environments using Wi-Fi signal data. The study focuses on applying the hybrid long short-term memory–bi-gated recurrent unit (LSTM-BIGRU) architecture, designed to enhance the accuracy of activity recognition and location estimation. Moreover, experiments were conducted using a real-world dataset collected with the PicoScene Wi-Fi sensing device, which captures both magnitude and phase information. The results demonstrated a significant improvement in accuracy for both activity recognition and localization tasks. To mitigate data scarcity, this study utilized the conditional tabular generative adversarial network (CTGAN) to generate synthetic channel state information (CSI) data. Additionally, carrier frequency offset (CFO) and cyclic shift delay (CSD) preprocessing techniques were implemented to mitigate phase fluctuations. The experiments were conducted in a line-of-sight (LoS) outdoor environment, where CSI data were collected using the PicoScene Wi-Fi sensor platform across four different activities at outdoor locations. Finally, a comparative analysis of the experimental results highlights the superior performance of the proposed hybrid LSTM-BIGRU model, achieving 99.81% and 98.93% accuracy for activity recognition and location prediction, respectively. Full article
(This article belongs to the Section Algorithms for Multidisciplinary Applications)
Show Figures

Figure 1

Back to TopTop