Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (114)

Search Parameters:
Keywords = piezoelectric polymer film

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 7181 KB  
Article
Piezoelectric Effect of k-Carrageenan as a Tool for Force Sensor
by Vytautas Bučinskas, Uldis Žaimis, Dainius Udris, Jūratė Jolanta Petronienė and Andrius Dzedzickis
Sensors 2025, 25(15), 4594; https://doi.org/10.3390/s25154594 - 24 Jul 2025
Viewed by 296
Abstract
Natural polymers, polysaccharides, demonstrate piezoelectric behavior suitable for force sensor manufacturing. Carrageenan hydrogel film with α-iron oxide particles can act as a piezoelectric polysaccharide-based force sensor. The mechanical impact on the hydrogel caused by a falling ball shows the impact response time, which [...] Read more.
Natural polymers, polysaccharides, demonstrate piezoelectric behavior suitable for force sensor manufacturing. Carrageenan hydrogel film with α-iron oxide particles can act as a piezoelectric polysaccharide-based force sensor. The mechanical impact on the hydrogel caused by a falling ball shows the impact response time, which is measured in milliseconds. Repeating several experiments in a row shows the dynamics of fatigue, which does not reduce the speed of response to impact. Through the practical experiments, we sought to demonstrate how theoretical knowledge describes the hydrogel we elaborated, which works as a piezoelectric material. In addition to the theoretical basis, which includes the operation of the metal and metal oxide contact junction, the interaction between the metal oxide and the hydrogel surfaces, the paper presents the practical application of this knowledge to the complex hydrogel film. The simple calculations presented in this paper are intended to predict the hydrogel film’s characteristics and explain the results obtained during practical experiments. Carrageenan, as a low-cost and already widely used polysaccharide in various industries, is suitable for the production of low-cost force sensors in combination with iron oxide. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

50 pages, 18142 KB  
Review
A Comprehensive Review of Piezoelectric PVDF Polymer Fabrications and Characteristics
by Nadia Ahbab, Sidra Naz, Tian-Bing Xu and Shihai Zhang
Micromachines 2025, 16(4), 386; https://doi.org/10.3390/mi16040386 - 28 Mar 2025
Cited by 6 | Viewed by 6442
Abstract
Polyvinylidene fluoride (PVDF) polymer films, renowned for their exceptional piezoelectric, pyroelectric, and ferroelectric properties, offer a versatile platform for the development of cutting-edge micro-scale functional devices, enabling innovative applications ranging from energy harvesting and sensing to medical diagnostics and actuation. This paper presents [...] Read more.
Polyvinylidene fluoride (PVDF) polymer films, renowned for their exceptional piezoelectric, pyroelectric, and ferroelectric properties, offer a versatile platform for the development of cutting-edge micro-scale functional devices, enabling innovative applications ranging from energy harvesting and sensing to medical diagnostics and actuation. This paper presents an in-depth review of the material properties, fabrication methodologies, and characterization of PVDF films. Initially, a comprehensive description of the physical, mechanical, chemical, thermal, electrical, and electromechanical properties is provided. The unique combination of piezoelectric, pyroelectric, and ferroelectric properties, coupled with its excellent chemical resistance and mechanical strength, makes PVDF a highly valuable material for a wide range of applications. Subsequently, the fabrication techniques, phase transitions and their achievement methods, and copolymerization and composites employed to improve and optimize the PVDF properties were elaborated. Enhancing the phase transition in PVDF films, especially promoting the high-performance β-phase, can be achieved through various processing techniques, leading to significantly enhanced piezoelectric and pyroelectric properties, which are essential for diverse applications. This concludes the discussion of PVDF material characterization and its associated techniques for thermal, crystal structure, mechanical, electrical, ferroelectric, piezoelectric, electromechanical, and pyroelectric properties, which provide crucial insights into the material properties of PVDF films, directly impacting their performance in applications. By understanding these aspects, researchers and engineers can gain valuable insights into optimizing PVDF-based devices for various applications, including energy-harvesting, sensing, and biomedical devices, thereby driving advancements in these fields. Full article
Show Figures

Figure 1

28 pages, 17094 KB  
Article
Innovative Elaboration of Polyvinylidene Fluoride Thin Films via Dip-Coating: Beta Phase Optimization, Humidity Control, Nanoparticles Addition, and Topographic Analysis
by Marwan Fakhry, Olivier Soppera and Dominique Berling
Micro 2025, 5(1), 12; https://doi.org/10.3390/micro5010012 - 14 Mar 2025
Cited by 1 | Viewed by 1709
Abstract
Polyvinylidene fluoride (PVDF) is a multifunctional polymer renowned for its unique electrical, mechanical, and piezoelectric properties, making it an attractive candidate for various applications. Although the spin-coating method has been the conventional method for fabricating PVDF thin films, this work is the first [...] Read more.
Polyvinylidene fluoride (PVDF) is a multifunctional polymer renowned for its unique electrical, mechanical, and piezoelectric properties, making it an attractive candidate for various applications. Although the spin-coating method has been the conventional method for fabricating PVDF thin films, this work is the first to apply the dip-coating technique with humidity control, which is a largely unexplored method in the literature on PVDF thin films. This novel approach offers great prospects for improved control and performance adjustments, as well as expanding the range of film deposition procedures. Here, we examine the phase composition of PVDF thin films; adjust different parameters to optimize the electroactive phases fraction, especially the Beta phase; and examine how relative humidity affects the properties of the film. Moreover, we test the impact of different nanoparticles’ addition on the phases fraction and characteristics of the film. Furthermore, we analyze the topography of the resultant films using several approaches, providing fresh insights into their structural features. Full article
(This article belongs to the Special Issue Advances in Micro- and Nanomaterials: Synthesis and Applications)
Show Figures

Figure 1

15 pages, 6315 KB  
Article
Effect of Various Nanofillers on Piezoelectric Nanogenerator Performance of P(VDF-TrFE) Nanocomposite Thin Film
by Sangkwon Park and Hafiz Muhammad Abid Yaseen
Nanomaterials 2025, 15(5), 403; https://doi.org/10.3390/nano15050403 - 6 Mar 2025
Viewed by 1059
Abstract
Flexible polymer-based piezoelectric nanogenerators (PENGs) have gained significant interest due to their ability to deliver clean and sustainable energy for self-powered electronics and wearable devices. Recently, the incorporation of fillers into the ferroelectric polymer matrix has been used to improve the relatively low [...] Read more.
Flexible polymer-based piezoelectric nanogenerators (PENGs) have gained significant interest due to their ability to deliver clean and sustainable energy for self-powered electronics and wearable devices. Recently, the incorporation of fillers into the ferroelectric polymer matrix has been used to improve the relatively low piezoelectric properties of polymer-based PENGs. In this study, we investigated the effect of various nanofillers such as titania (TiO2), zinc oxide (ZnO), reduced graphene oxide (rGO), and lead zirconate titanate (PZT) on the PENG performance of the nanocomposite thin films containing the nanofillers in poly(vinylidene fluoride-co-trifluoro ethylene) (P(VDF-TrFE)) matrix. The nanocomposite films were prepared by depositing molecularly thin films of P(VDF-TrFE) and nanofiller nanoparticles (NPs) spread at the air/water interface onto the indium tin oxide-coated polyethylene terephthalate (ITO-PET) substrate, and they were characterized by measuring their microstructures, crystallinity, β-phase contents, and piezoelectric coefficients (d33) using SEM, FT-IR, XRD, and quasi-static meter, respectively. Multiple PENGs incorporating various nanofillers within the polymer matrix were developed by assembling thin film-coated substrates into a sandwich-like structure. Their piezoelectric properties, such as open-circuit output voltage (VOC) and short-circuit current (ISC), were analyzed. As a result, the PENG containing 4 wt% PZT, which was named P-PZT-4, showed the best performance of VOC of 68.5 V with the d33 value of 78.2 pC/N and β-phase content of 97%. The order of the maximum VOC values for the PENGs of nanocomposite thin films containing various nanofillers was PZT (68.5 V) > rGO (64.0 V) > ZnO (50.9 V) > TiO2 (48.1 V). When the best optimum PENG was integrated into a simple circuit comprising rectifiers and a capacitor, it demonstrated an excellent two-dimensional power density of 20.6 μW/cm2 and an energy storage capacity of 531.4 μJ within 3 min. This piezoelectric performance of PENG with the optimized nanofiller type and content was found to be superior when it was compared with those in the literature. This PENG comprising nanocomposite thin film with optimized nanofiller type and content shows a potential application for a power source for low-powered electronics such as wearable devices. Full article
Show Figures

Figure 1

13 pages, 2863 KB  
Article
Expanding the Applicability of Electroactive Polymers for Tissue Engineering Through Surface Biofunctionalization
by Beatriz Leiva, Igor Irastorza, Andrea Moneo, Gaskon Ibarretxe, Unai Silvan and Senentxu Lanceros-Méndez
Biomimetics 2025, 10(2), 126; https://doi.org/10.3390/biomimetics10020126 - 19 Feb 2025
Cited by 1 | Viewed by 1064
Abstract
Polyvinylidene fluoride (PVDF) is a synthetic semicrystalline fluoropolymer with great potential for tissue engineering applications. In addition to its excellent mechanical strength, thermal stability, biocompatibility and simple processability into different morphologies, the relevance of PVDF-based materials for tissue engineering applications comes for its [...] Read more.
Polyvinylidene fluoride (PVDF) is a synthetic semicrystalline fluoropolymer with great potential for tissue engineering applications. In addition to its excellent mechanical strength, thermal stability, biocompatibility and simple processability into different morphologies, the relevance of PVDF-based materials for tissue engineering applications comes for its electroactive properties, which include piezo-, pyro- and ferroelectricity. Nevertheless, its synthetic nature and inherent hydrophobicity strongly limit the applicability of this polymer for certain purposes, particularly those involving cell attachment. In addition, the variable adhesion of cells and proteins to PVDF surfaces with different net surface charge makes it difficult to accurately compare the biological response in each case. In this work, we describe a method for the surface functionalization of PVDF films with biological molecules. After an initial chemical modification, and, independently of its polarization state, the PVDF films covalently bind equivalent amounts of cell-binding proteins. In addition, the materials retain their properties, including piezoelectric activity, representing a very promising method for the functionalization of PVDF-based tissue engineering approaches. Full article
Show Figures

Graphical abstract

12 pages, 7575 KB  
Article
Polymer Composite Films with P(VDF-TrFE) and Molecular Ferroelectric Tris(hydroxymethyl) Nitromethane: Improvement of Their Ferroelectric Properties
by Marianela Escobar-Castillo, Samet Duman and Doru C. Lupascu
Polymers 2025, 17(3), 354; https://doi.org/10.3390/polym17030354 - 28 Jan 2025
Viewed by 1350
Abstract
Polymer composites of P(VDF-TrFE) and Tris(hydroxymethyl) nitromethane as filler material with different concentrations have been prepared. Tris(hydroxymethyl) nitromethane is an organic ferroelectric material with low preparation cost and easy processing, and it is also lightweight. Its properties enable it to be a potential [...] Read more.
Polymer composites of P(VDF-TrFE) and Tris(hydroxymethyl) nitromethane as filler material with different concentrations have been prepared. Tris(hydroxymethyl) nitromethane is an organic ferroelectric material with low preparation cost and easy processing, and it is also lightweight. Its properties enable it to be a potential candidate for use as filler material in polymers to improve their ferroelectric, dielectric, and piezoelectric properties. We investigated the effect of filler content on the ferroelectric and dielectric properties of the polymer. Our results show that Tris(hydroxymethyl) nitromethane retains its crystallinity after embedding it in the polymer matrix. It does not alter the crystalline ferroelectric β-phase of the polymer. All composites possess higher polarization compared to pure P(VDF-TrFE). Up to 11.4 µC/cm2 remnant polarization and a dielectric constant of 14 at 1000 Hz have been obtained with the free-standing 10 wt% composite film. Full article
Show Figures

Figure 1

13 pages, 5680 KB  
Article
Characterization of Mechanical and Electromechanical Properties of Aluminum-Coated Poled Orthotropic PVDF Film
by Daniel Schlitz, Owen Schneider, Mriganka Shekhar Chaki, Anna Lutz, David Guinovart, Chiu Tai Law and Rani Elhajjar
J. Compos. Sci. 2025, 9(1), 14; https://doi.org/10.3390/jcs9010014 - 2 Jan 2025
Viewed by 1233
Abstract
Poled PVDF film is a piezoelectric polymer currently utilized in sensing and actuation applications. We investigate the stress–strain behavior of the material as a function of the angle to the stretch direction. These properties were measured using mechanical testing and full-field strain imaging [...] Read more.
Poled PVDF film is a piezoelectric polymer currently utilized in sensing and actuation applications. We investigate the stress–strain behavior of the material as a function of the angle to the stretch direction. These properties were measured using mechanical testing and full-field strain imaging and compared with off-axis analytical formulations. Orthotropic material models are proposed for the elastic strain and charge relationships coupled with Hill’s orthotropic yield function to capture the directional dependence of yield strength in the poled PVDF under high strains. Additionally, the in-plane piezoelectric strain coefficients d31, d32, and d36 were measured to aid in the design of PVDF metamaterials. Full article
Show Figures

Figure 1

17 pages, 3830 KB  
Article
Corona Poling Enabling Gravure Printing of Electroactive Flexible PVDF-TrFE Devices
by Giuliano Sico, Maria Montanino, Fausta Loffredo, Carmela Borriello and Riccardo Miscioscia
Materials 2025, 18(1), 22; https://doi.org/10.3390/ma18010022 - 25 Dec 2024
Viewed by 1222
Abstract
Polyvinylidene fluoride (PVDF)-based materials are the most researched polymers in the field of energy harvesting. Their production in thin-film form through printing technologies can potentially offer several manufacturing and performance advantages, such as low-cost, low-temperature processing, use of flexible substrates, custom design, low [...] Read more.
Polyvinylidene fluoride (PVDF)-based materials are the most researched polymers in the field of energy harvesting. Their production in thin-film form through printing technologies can potentially offer several manufacturing and performance advantages, such as low-cost, low-temperature processing, use of flexible substrates, custom design, low thermal inertia and surface-scaling performance. However, solution-based processes, like printing, miss fine control of the microstructure during film-forming, making it difficult to achieve a high level of polarization, necessary for PVDF to exhibit electroactive characteristics. Here, corona treatment is investigated for the poling of gravure-printed polyvinylidene fluoride–trifluoroethylene (PVDF-TrFE) films, as a particularly suitable poling method for printing since it is rapid, contactless and scalable, and no metal electrodes are required. Effects of corona conditioning on the functional properties of the printed films were examined and discussed. Electroactive properties of corona-poled printed films improved manyfold when they were treated at 9 kV, near room temperature (30 °C) and using very short treatment time (30 s). In particular, piezoelectric and pyroelectric coefficients improved tenfold and by two orders of magnitude, respectively. Considering the upscaling potential of roll-to-roll gravure printing and corona poling, combined with the area-scaling performance of thin-film-based generators, our results can enable the corona-printing process for mass production of future electroactive flexible PVDF-based devices. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Figure 1

12 pages, 4508 KB  
Article
Fabrication of PVTF Films with High Piezoelectric Properties Through Directional Heat Treatment
by Xin Xin, Aotian Yee, Zhiyuan Zhou, Xuzhao He, Wenjian Weng, Chengwei Wu and Kui Cheng
J. Compos. Sci. 2024, 8(12), 512; https://doi.org/10.3390/jcs8120512 - 6 Dec 2024
Cited by 1 | Viewed by 1220
Abstract
Piezoelectric materials can realize the mutual conversion of mechanical energy and electric energy, so they have excellent application prospects in the fields of sensors, energy collectors and biological materials. The poly(vinylidene fluoride) (PVDF)-based polymers have the best piezoelectric properties in the piezoelectric polymer, [...] Read more.
Piezoelectric materials can realize the mutual conversion of mechanical energy and electric energy, so they have excellent application prospects in the fields of sensors, energy collectors and biological materials. The poly(vinylidene fluoride) (PVDF)-based polymers have the best piezoelectric properties in the piezoelectric polymer, but they still have a large room for improvement compared with the piezoelectric ceramics. Improving their content of the polar β phase has become a consensus to polish up the piezoelectric performance. Most available studies construct hydrogen bonds or coulomb interactions between the surface of the dopant and molecular chains by doping, which promotes the molecular chains arrangement and thus facilitates the formation of the polar β phase. Recent studies show that the ordered arrangement of molecular chains is also important for piezoelectric properties. At present, the main way to improve the piezoelectric performance of PVDF is through doping or complex heat treatment process. Here, the poly(vinylidene fluoride-co-trifluoroethylene) (P(VDF-TrFE)) film was treated by directional heat treatment which used a heating table. Compared with uniform heat treatment like muffle furnace heat treatment, this simple vertical temperature gradient has many advantages for the content of the β phase and the crystallinity of P(VDF-TrFE). The results of the experiment showed that the content of the β phase of films remained at about 88%. When the film thickness was limited to 100 μm and the heat treatment temperature was limited to 200 °C, its crystallinity could reach 75% and the highest piezoelectric coefficient could reach 33.5 ± 0.7 pC/N. P(VDF-TrFE) films based on the experimental methods described above that show great potential for future applications in electronic devices and biomedical applications. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Composites Science in 2024)
Show Figures

Figure 1

12 pages, 4580 KB  
Article
A Polyimide Composite-Based Electromagnetic Cantilever Structure for Smart Grid Current Sensing
by Zeynel Guler and Nathan Jackson
Micromachines 2024, 15(10), 1189; https://doi.org/10.3390/mi15101189 - 26 Sep 2024
Cited by 1 | Viewed by 4231
Abstract
Polyimides (PIs) have been extensively used in thin film and micro-electromechanical system (MEMS) processes based on their excellent thermal and mechanical stability and high glass transition temperature. This research explores the development of a novel multilayer and multifunctional polymer composite electro-piezomagnetic device that [...] Read more.
Polyimides (PIs) have been extensively used in thin film and micro-electromechanical system (MEMS) processes based on their excellent thermal and mechanical stability and high glass transition temperature. This research explores the development of a novel multilayer and multifunctional polymer composite electro-piezomagnetic device that can function as an energy harvester or sensor for current-carrying wires or magnetic field sensing. The devices consist of four layers of composite materials with a polyimide matrix. The composites have various nanoparticles to alter the functionality of each layer. Nanoparticles of Ag were used to increase the electrical conductivity of polyimide and act as electrodes; lead zirconate titanate was used to make the piezoelectric composite layer; and either neodymium iron boron (NdFeB) or Terfenol-D was used to make the magnetic and magnetostrictive composite layer, which was used as the proof mass. A novel all-polymer multifunctional polyimide composite cantilever was developed to operate at low frequencies. This paper compares the performance of the different magnetic masses, shapes, and concentrations, as well as the development of an all-magnetostrictive device to detect voltage or current changes when coupled to the magnetic field from a current-carrying wire. The PI/PZT cantilever with the PI/NdFeB proof mass demonstrated higher voltage output compared to the PI/Terfenol-D proof mass device. However, the magnetostrictive composite film could be operated without a piezoelectric film based on the Villari effect, which consisted of a single PI-Terfenol-D film. The paper illustrates the potential to develop an all-polymer composite MEMS device capable of acting as a magnetic field or current sensor. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

12 pages, 3638 KB  
Article
Hybridization of Polymer-Encapsulated MoS2-ZnO Nanostructures as Organic–Inorganic Polymer Films for Sonocatalytic-Induced Dye Degradation
by Gowthami Palanisamy, Mrunal Bhosale, Sahil S. Magdum, Sadhasivam Thangarasu and Tae-Hwan Oh
Polymers 2024, 16(15), 2213; https://doi.org/10.3390/polym16152213 - 2 Aug 2024
Cited by 2 | Viewed by 1415
Abstract
The development of environmentally friendly technology is vital to effectively address the issues related to environmental deterioration. This work integrates ZnO-decorated MoS2 (MZ) to create a high-performing PVDF-based PVDF/MoS2-ZnO (PMZ) hybrid polymer composite film for sonocatalytic organic pollutant degradation. An [...] Read more.
The development of environmentally friendly technology is vital to effectively address the issues related to environmental deterioration. This work integrates ZnO-decorated MoS2 (MZ) to create a high-performing PVDF-based PVDF/MoS2-ZnO (PMZ) hybrid polymer composite film for sonocatalytic organic pollutant degradation. An efficient synergistic combination of MZ was identified by altering the ratio, and its influence on PVDF was assessed using diverse structural, morphological, and sonocatalytic performances. The PMZ film demonstrated very effective sonocatalytic characteristics by degrading rhodamine B (RhB) dye with a degradation efficiency of 97.23%, whereas PVDF only degraded 17.7%. Combining MoS2 and ZnO reduces electron–hole recombination and increases the sonocatalytic degradation performance. Moreover, an ideal piezoelectric PVDF polymer with MZ enhances polarization to improve redox processes and dye degradation, ultimately increasing the degradation efficiency. The degradation efficiency of RhB was seen to decrease while employing isopropanol (IPA) and p-benzoquinone (BQ) due to the presence of reactive oxygen species. This suggests that the active species •O2 and •OH are primarily responsible for the degradation of RhB utilizing PMZ2 film. The PMZ film exhibited improved reusability without substantially decreasing its catalytic activity. The superior embellishment of ZnO onto MoS2 and effective integration of MZ into the PVDF polymer film results in improved degrading performance. Full article
Show Figures

Figure 1

23 pages, 12190 KB  
Article
Effect of PVDF, HA, and AgNO3 Annealing on β-Phase, Optical, and Mechanical Properties
by Ieva Markuniene, Arvydas Palevicius, Joris Vezys, Jakub Augustyniak, Dariusz Perkowski, Sigita Urbaite and Giedrius Janusas
J. Compos. Sci. 2024, 8(7), 240; https://doi.org/10.3390/jcs8070240 - 25 Jun 2024
Cited by 1 | Viewed by 2057
Abstract
Typically, polymer composites and ceramics are used to create biosensors. Materials with properties that are ideal for biosensors and chemical sensors include AgNO3 (silver nitrate), PVDF (polyvinylidene fluoride), and HA (hydroxyapatite). Polyvinylidene fluoride (PVDF) polymer has been widely used in several applications [...] Read more.
Typically, polymer composites and ceramics are used to create biosensors. Materials with properties that are ideal for biosensors and chemical sensors include AgNO3 (silver nitrate), PVDF (polyvinylidene fluoride), and HA (hydroxyapatite). Polyvinylidene fluoride (PVDF) polymer has been widely used in several applications because of its well-known superior ferroelectric characteristics and biocompatibility. The brittleness and low bending strength of hydroxyapatite limit its applicability. Several HA and polymer composite formulations have been developed to compensate for HA’s mechanical weakness. The final product contains a significant amount of HA, making HA/polymer composites highly biocompatible. When the right amount of silver is deposited, the maximum piezoelectric activity is generated, and silver nitrate has antimicrobial properties. The non-toxic solvent DMSO (dimethyl sulfoxide) and the solvent casting method were chosen for the preparation of the film. Surface roughness was chosen to measure the Str and Sdr properties of the thin film. For liquid preparation, the multifractal spectra analysis was chosen for each sample. SEM was used to examine the samples morphologically. EDX and mapping analyses were presented for chemistry distribution in the samples. Full article
(This article belongs to the Special Issue Progress in Polymer Composites, Volume III)
Show Figures

Figure 1

12 pages, 3559 KB  
Article
SAW Humidity Sensing with rr-P3HT Polymer Films
by Wiesław Jakubik, Jarosław Wrotniak, Cinzia Caliendo, Massimiliano Benetti, Domenico Cannata, Andrea Notargiacomo, Agnieszka Stolarczyk and Anna Kaźmierczak-Bałata
Sensors 2024, 24(11), 3651; https://doi.org/10.3390/s24113651 - 5 Jun 2024
Cited by 4 | Viewed by 1571
Abstract
In the present paper the humidity sensing properties of regioregular rr-P3HT (poly-3-hexylthiophene) polymer films is investigated by means of surface acoustic wave (SAW) based sensors implemented on LiNbO3 (1280 Y-X) and ST-quartz piezoelectric substrates. The polymeric layers were deposited along the [...] Read more.
In the present paper the humidity sensing properties of regioregular rr-P3HT (poly-3-hexylthiophene) polymer films is investigated by means of surface acoustic wave (SAW) based sensors implemented on LiNbO3 (1280 Y-X) and ST-quartz piezoelectric substrates. The polymeric layers were deposited along the SAW propagation path by spray coating method and the layers thickness was measured by atomic force microscopy (AFM) technique. The response of the SAW devices to relative humidity (rh) changes in the range ~5–60% has been investigated by measuring the SAW phase and frequency changes induced by the (rh) absorption in the rr-P3HT layer. The SAW sensor implemented onto LiNbO3 showed improved performance as the thickness of the membrane increases (from 40 to 240 nm): for 240 nm thick polymeric membrane a phase shift of about −1.2 deg and −8.2 deg was measured for the fundamental (~78 MHz operating frequency) and 3rd (~234 MHz) harmonic wave at (rh) = 60%. A thick rr-P3HT film (~600 nm) was deposited onto the quartz-based SAW sensor: the sensor showed a linear frequency shift of ~−20.5 Hz per unit (rh) changes in the ~5–~50% rh range, and a quite fast response (~5 s) even at low humidity level (~5% rh). The LiNbO3 and quartz-based sensors response was assessed by using a dual delay line system to reduce unwanted common mode signals. The simple and cheap spray coating technology for the rr-P3HT polymer films deposition, complemented with fast low level humidity detection of the tested SAW sensors (much faster than the commercially available Michell SF-52 device), highlight their potential in a low-medium range humidity sensing application. Full article
(This article belongs to the Special Issue Gas Sensors: Progress, Perspectives and Challenges)
Show Figures

Figure 1

31 pages, 15443 KB  
Review
A Review of Plasma-Synthesized and Plasma Surface-Modified Piezoelectric Polymer Films for Nanogenerators and Sensors
by Eun-Young Jung, Habeeb Olaitan Suleiman, Heung-Sik Tae and Choon-Sang Park
Polymers 2024, 16(11), 1548; https://doi.org/10.3390/polym16111548 - 30 May 2024
Cited by 7 | Viewed by 2004
Abstract
In this review, we introduce recently developed plasma-based approaches for depositing and treating piezoelectric nanoparticles (NPs) and piezoelectric polymer films for nanogenerator (NG) and sensor applications. We also present the properties and an overview of recently synthesized or modified piezoelectric materials on piezoelectric [...] Read more.
In this review, we introduce recently developed plasma-based approaches for depositing and treating piezoelectric nanoparticles (NPs) and piezoelectric polymer films for nanogenerator (NG) and sensor applications. We also present the properties and an overview of recently synthesized or modified piezoelectric materials on piezoelectric polymers to highlight the existing challenges and future directions of plasma methods under vacuum, low pressure, and ambient air conditions. The various plasma processes involved in piezoelectric NGs and sensors, including plasma-based vapor deposition, dielectric barrier discharge, and surface modification, are introduced and summarized for controlling various surface properties (etching, roughening, crosslinking, functionalization, and crystallinity). Full article
(This article belongs to the Special Issue Advances in Plasma Processes for Polymers, 3rd Edition)
Show Figures

Figure 1

14 pages, 6283 KB  
Article
Structural, Mechanical, and Barrier Properties of the Polyvinylidene Fluoride-Bacterial Nanocellulose-Based Hybrid Composite
by Aleksandra Janićijević, Suzana Filipović, Aleksandra Sknepnek, Ana Salević-Jelić, Radmila Jančić-Heinemann, Miloš Petrović, Ivan Petronijević, Marina Stamenović, Predrag Živković, Nebojša Potkonjak and Vladimir B. Pavlović
Polymers 2024, 16(8), 1033; https://doi.org/10.3390/polym16081033 - 10 Apr 2024
Cited by 6 | Viewed by 1947
Abstract
This study presents an analysis of films which consist of two layers; one layer is PVDF as the matrix, along with fillers BaTiO3 (BT), and the second is one bacterial nanocellulose (BNC) filled with Fe3O4. The mass fraction [...] Read more.
This study presents an analysis of films which consist of two layers; one layer is PVDF as the matrix, along with fillers BaTiO3 (BT), and the second is one bacterial nanocellulose (BNC) filled with Fe3O4. The mass fraction of BT in PVDF was 5%, and the samples were differentiated based on the duration of the mechanical activation of BT. This innovative PVDF laminate polymer with environmentally friendly fillers aligns with the concept of circular usage, resulting in a reduction in plastic content and potential improvement of the piezoelectric properties of the entire composite. This work presents new, multifunctional “green” packaging materials that potentially could be a good alternative to specific popular materials used for this purpose. The synthesis of the films was carried out using the hot press method. Tensile tests, water vapor permeability examination, and structural analyses using SEM-EDS and FTIR have been conducted. The sample PVDF/BT20/BNC/Fe3O4 exhibited the best barrier properties (impermeability to water vapor), while the highest tensile strength and toughness were exhibited by the PVDF/BT5/BNC/Fe3O4 sample. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Graphical abstract

Back to TopTop