Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (124)

Search Parameters:
Keywords = plantar loads

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1858 KB  
Article
Effect of Foot Type on Plantar Pressure Distribution in Healthy Mexicans: Static and Dynamic Pressure Analysis
by Jorge Armando Ramos-Frutos, Diego Oliva, Israel Miguel-Andres, Didier Samayoa-Ochoa, Jesús Salvador Jaime-Ferrer, Luis Angel Ortiz-Lango and Agustín Vidal Lesso
Physiologia 2025, 5(3), 29; https://doi.org/10.3390/physiologia5030029 - 4 Sep 2025
Viewed by 897
Abstract
Background: Plantar pressure distribution is a valuable tool for studying how the ground reaction forces are transmitted from the feet to the body and for detecting abnormalities in foot biomechanics. Objectives: The objective of this study was to determine the effect [...] Read more.
Background: Plantar pressure distribution is a valuable tool for studying how the ground reaction forces are transmitted from the feet to the body and for detecting abnormalities in foot biomechanics. Objectives: The objective of this study was to determine the effect of the foot type (normal foot, flatfoot, and cavus foot) on plantar pressure distribution in healthy Mexican men and women aged from 3 to 74 years. Methods: A database of the plantar pressure distribution under dynamic and static conditions for both feet was studied using descriptive statistics, regression analysis, and statistical factorial design. The database contained images of the soles of the feet and pressure distribution of 996 persons between 3 and 74 years old (53.9% females and 46.1% males). Two different conditions were evaluated; the first was in a static condition, and the second was during walking. The Chippaux–Smirak Index (CSI) was used to classify the type of feet. Results: In the left foot, a linear regression analysis of the soles of the feet shows that the prevalence of flatfoot (p-value = 3.45 × E−5) decreased with age, while the normal foot (p-value = 7.39 × E−5) increased. When people are standing (static), the hindfoot (55.64 ± 18.80%) presents more pressure than the forefoot (45.18 ± 19.50%), while in dynamic, the forefoot (55.95 ± 13.36%) supports more pressure than the hindfoot (44.05 ± 13.36%). Similar behavior occurs in the right foot. A statistical factorial design ANOVA shows that the plantar pressure in the forefoot and hindfoot regions is significantly different (p < 0.05). Conclusions: The prevalence of flatfoot decreased with age, while the proportion of normal foot type increased. Under static conditions, the hindfoot bore more load than the forefoot, whereas under dynamic conditions, the forefoot bore more load than the hindfoot. This research contributes to generating a comprehensive database of reference values of the plantar pressure of different foot types in a Mexican population; this will be useful to podiatrists, clinicians, and physiotherapists for the analysis or treatment of abnormal foot postures. Full article
Show Figures

Figure 1

22 pages, 6408 KB  
Article
Design and Characterization of Negative-Stiffness Lattice Structures for Diabetic Midsoles
by Gianpaolo Savio and Francesca Uccheddu
Appl. Sci. 2025, 15(17), 9544; https://doi.org/10.3390/app15179544 - 30 Aug 2025
Viewed by 470
Abstract
Diabetes mellitus often leads to peripheral neuropathy that compromises protective sensation in the feet and raises ulcer risk through mechanical overload. While prior research has introduced cellular-metamaterial-based shoe midsoles for dynamic plantar pressure redistribution, this study advances the field by delivering a complete, [...] Read more.
Diabetes mellitus often leads to peripheral neuropathy that compromises protective sensation in the feet and raises ulcer risk through mechanical overload. While prior research has introduced cellular-metamaterial-based shoe midsoles for dynamic plantar pressure redistribution, this study advances the field by delivering a complete, application-oriented workflow for physical prototyping and mechanical validation of such structures. Our pipeline integrates analytical synthesis of curved-beam unit cells, process calibration, and fabrication via thermoplastic polyurethane (TPU) fused-filament fabrication, producing customized, test-ready lattices suitable for future gait-simulation studies and in vivo assessment. Printed TPU tests showed a Young’s modulus of 44.5 MPa, ultimate tensile strength of 4.9 MPa, and strain at break ≈ 20% (Shore 84.5 A/37.2 D). The cellular unit’s compressive response was quantified by theoretical force-threshold estimates and controlled compression tests, enabling data-driven selection of unit cell geometry and arrangement for effective offloading. The response is rate-dependent: higher loading speed increases peak force and hysteresis, indicating that loading rate should be treated as a design parameter to tune dynamic behavior for the target application. Although the analytical model overestimates forces by roughly 50% on average relative to experiments, it accurately captures the influence of key geometric parameters on peak force. Accordingly, experimental data can identify cell strategic geometric parameters (i.e., Q), while the achievable maximum force can be predicted from the model by applying an appropriate correction factor. By connecting modeling, calibration, and experimental validation in one coherent path, the proposed workflow enables manufacturable lattices with controllable activation thresholds for plantar pressure redistribution and provides a practical bridge from concept to application. Full article
Show Figures

Figure 1

22 pages, 2768 KB  
Article
Static Baropodometric Assessment for Musculoskeletal Rehabilitation: Plantar Pressure and Postural Load Distribution in Young Adults
by Tudor Vladimir Gurau, Madalina Gabriela Coman, Daniel Andrei Iordan, Ilie Onu, Cosmin Raducu Raileanu, Andreea Maria Adam, Gabriela Gurau, Doina Carina Voinescu, Adela Badau and Carmina Liana Musat
Life 2025, 15(9), 1354; https://doi.org/10.3390/life15091354 - 26 Aug 2025
Viewed by 1020
Abstract
Plantar pressure and foot load distribution are essential parameters in evaluating postural alignment, neuromuscular balance, and the risk of musculoskeletal disorders. This cross-sectional study analyzed static plantar pressure in 113 healthy young adults (18–35 years) using the Spine 3D Sensor Medica platform. Contact [...] Read more.
Plantar pressure and foot load distribution are essential parameters in evaluating postural alignment, neuromuscular balance, and the risk of musculoskeletal disorders. This cross-sectional study analyzed static plantar pressure in 113 healthy young adults (18–35 years) using the Spine 3D Sensor Medica platform. Contact area, load, average pressure, and maximum peak pressure were measured bilaterally in forefoot and hindfoot regions. Strong correlations were found between body weight, BMI, and plantar load, particularly in the hindfoot, while peak pressures were influenced more by individual biomechanical factors than anthropometry. Women demonstrated greater inter-limb asymmetries compared to men. These findings provide reference values for static plantar pressure and highlight their importance for clinical musculoskeletal rehabilitation. By identifying early postural imbalances and abnormal load distributions, baropodometric assessments can guide targeted interventions, improve pain management, and optimize functional recovery. The study supports incorporating advanced plantar pressure analysis in personalized rehabilitation programs for preventing and managing musculoskeletal dysfunctions. Full article
(This article belongs to the Special Issue Physical Rehabilitation for Musculoskeletal Disorders)
Show Figures

Figure 1

14 pages, 777 KB  
Article
Effectiveness of a Flossing Protocol and Manual Therapy in Improving the Clinical and Functional Status of Subjects with Recurrent Ankle Sprains; A Double-Blind Randomized Clinical Trial
by Mario Bermúdez-Egidos, Raúl Pérez-Llanes and Rubén Cuesta-Barriuso
Med. Sci. 2025, 13(3), 149; https://doi.org/10.3390/medsci13030149 - 20 Aug 2025
Viewed by 857
Abstract
Introduction: Recurrent ankle sprains can lead to chronic ankle instability. The flossing technique aims to modify the function and characteristics of fascial tissue. The objective was to evaluate the effectiveness of flossing and sliding techniques in improving subjects with previous ankle sprains. [...] Read more.
Introduction: Recurrent ankle sprains can lead to chronic ankle instability. The flossing technique aims to modify the function and characteristics of fascial tissue. The objective was to evaluate the effectiveness of flossing and sliding techniques in improving subjects with previous ankle sprains. Methods: Randomized, double-blind clinical study with a follow-up period. Twenty-six subjects were assigned to two study groups: experimental (flossing technique and passive manual therapy techniques) and placebo control group (flossing technique without compression and manual therapy techniques without sliding). The intervention lasted three weeks, with two sessions per week. The study variables were dorsiflexion under load (Leg Motion®), ankle mobility under unloaded conditions (goniometer), pressure pain threshold (algometer), and stability (Rs Scan® pressure platform). Three measurements were taken: pre-treatment (T0), post-treatment (T1), and after 3 weeks of follow-up (T2). Results: There were significant intergroup differences in dorsiflexion under load (F = 4.90; p = 0.02). Range of motion in plantar flexion without load (F = 3.78; p = 0.04), in the ellipse area (F = 4.72; p = 0.01), left stability (F = 3.74; p = 0.03), and right stability (F = 3.73; p = 0.03) without visual support. Conclusions: A physiotherapy protocol using flossing and manual sliding therapy can increase loaded dorsal flexion in young adults with previous ankle sprains. This intervention can also improve ankle plantar flexion under unloaded conditions. The area of the ellipse without visual support can improve in young adults with a history of ankle sprains following a program of flossing and manual therapy. Full article
Show Figures

Figure 1

11 pages, 1303 KB  
Article
Spectral and Spatial Analysis of Plantar Force Distributions Across Foot-Strike Patterns During Treadmill Running
by Paul William Macdermid and Stephanie Julie Walker
Appl. Sci. 2025, 15(15), 8709; https://doi.org/10.3390/app15158709 - 6 Aug 2025
Viewed by 628
Abstract
Treadmill running gait differs to overland running and is commonly used to evaluate interventions. One challenge is accurately defining strike pattern and related impact kinetics. This study aimed to characterise foot-strike patterns during treadmill running using the spatial distribution of in-shoe plantar forces [...] Read more.
Treadmill running gait differs to overland running and is commonly used to evaluate interventions. One challenge is accurately defining strike pattern and related impact kinetics. This study aimed to characterise foot-strike patterns during treadmill running using the spatial distribution of in-shoe plantar forces and to identify differences in impact kinetics through spectral analysis. Low- and high-frequency power components were analysed in heel, midfoot and forefoot strike patterns. No distinct impact peaks were identified in the force traces; however, significant spatial differences were found. Forefoot strikes exhibited lower peak impact force, average loading rate, and high-frequency power spectral density (PSD) components compared to heel and midfoot strikes, with heel also lower than midfoot. Strike pattern classification was derived from spatial force distribution, where >70% posterior and >50% anterior denote heel and forefoot strikes, while midfoot strikes demonstrate a more balanced distribution with >25% in the central zone. These findings support the integration of spatial, force-based classification with frequency-domain analysis to enhance the evaluation of impact attenuation in treadmill-based running interventions. Full article
Show Figures

Figure 1

16 pages, 2067 KB  
Article
Ankle Joint Kinematics in Expected and Unexpected Trip Responses with Dual-Tasking and Physical Fatigue
by Sachini N. K. Kodithuwakku Arachchige, Harish Chander and Adam C. Knight
Biomechanics 2025, 5(3), 62; https://doi.org/10.3390/biomechanics5030062 - 6 Aug 2025
Viewed by 1194
Abstract
Concurrent cognitive tasks, such as avoiding visual, auditory, chemical, and electrical hazards, and concurrent motor tasks, such as load carriage, are prevalent in ergonomic settings. Trips are extremely common in the workplace, leading to fatal and non-fatal fall-related injuries. Intrinsic factors, such as [...] Read more.
Concurrent cognitive tasks, such as avoiding visual, auditory, chemical, and electrical hazards, and concurrent motor tasks, such as load carriage, are prevalent in ergonomic settings. Trips are extremely common in the workplace, leading to fatal and non-fatal fall-related injuries. Intrinsic factors, such as attention, fatigue, and anticipation, as well as extrinsic factors, including tasks at hand, affect trip recovery responses. Objective: The purpose of this study was to investigate the ankle joint kinematics in unexpected and expected trip responses during single-tasking (ST), dual-tasking (DT), and triple-tasking (TT), before and after a physically fatiguing protocol among young, healthy adults. Methods: Twenty volunteers’ (10 females, one left leg dominant, age 20.35 ± 1.04 years, height 174.83 ± 9.03 cm, mass 73.88 ± 15.55 kg) ankle joint kinematics were assessed using 3D motion capture system during unperturbed gait (NG), unexpected trip (UT), and expected trip (ET), during single-tasking (ST), cognitive dual-tasking (CDT), motor dual-tasking (MDT), and triple-tasking (TT), under both PRE and POST fatigue conditions. Results: Greater dorsiflexion angles were observed during UT compared to NG, MDT compared to ST, and TT compared to ST. Significantly greater plantar flexion angles were observed during ET compared to NG and during POST compared to PRE. Conclusions: Greater dorsiflexion angles during dual- and triple-tasking suggest that divided attention affects trip recovery. Greater plantar flexion angles following fatigue are likely an anticipatory mechanism due to altered muscle activity and increased postural control demands. Full article
(This article belongs to the Section Gait and Posture Biomechanics)
Show Figures

Figure 1

15 pages, 958 KB  
Article
Can Plantar Pressure Distribution During Gait Be Estimated from Quiet Stance in Healthy Individuals?
by Marta Mirando, Chiara Pavese, Valeria Pingue, Stefania Sozzi and Antonio Nardone
J. Funct. Morphol. Kinesiol. 2025, 10(3), 301; https://doi.org/10.3390/jfmk10030301 - 5 Aug 2025
Cited by 1 | Viewed by 1786
Abstract
Objectives: We assessed the difference between quiet stance and gait in the spatial distribution and intensity of foot plantar pressures and whether it is possible to estimate the distribution during gait from data obtained during stance. Methods: A total of 60 [...] Read more.
Objectives: We assessed the difference between quiet stance and gait in the spatial distribution and intensity of foot plantar pressures and whether it is possible to estimate the distribution during gait from data obtained during stance. Methods: A total of 60 healthy subjects with a mean age of 31.0 ± 9.4 years performed two trials for quiet stance and four trials for gait on a baropodometric walkway with their eyes open. Foot plantar pressures were recorded from 10 areas of the foot sole. Results: During quiet stance, the highest plantar pressure occurred at metatarsal heads (M2 to M4) and the medial (MH) and lateral halves of the heel (LH). During gait, the profile of plantar pressure values was like that during stance, but significantly higher. The differences concentrated at the big toe (T1), M2 to M4, MH, and LH, whilst toes (T2,3,4,5) and midfoot (MF) showed the smallest difference. A significant positive correlation was found between the corresponding areas of foot pressure during gait and stance. Conclusions: During quiet stance and gait, the overall profile of plantar pressure distribution was similar. During quiet stance, the subjects loaded more on the heels, in keeping with the known position of the center of pressure just in front of the ankles. During gait, higher pressures on the metatarsal areas are related to the forward propulsion of the center of mass. The correlation between the corresponding areas of foot pressure during gait and stance suggests that the pressure distribution during gait can partly be estimated from that during stance. This finding might be useful in most clinical settings when a single sensorized platform rather than a complete walkway is available. Full article
Show Figures

Figure 1

17 pages, 5309 KB  
Article
Application of Carbon Nanotube-Based Elastomeric Matrix for Capacitive Sensing in Diabetic Foot Orthotics
by Monisha Elumalai, Andre Childs, Samantha Williams, Gabriel Arguello, Emily Martinez, Alaina Easterling, Dawn San Luis, Swaminathan Rajaraman and Charles M. Didier
Micromachines 2025, 16(7), 804; https://doi.org/10.3390/mi16070804 - 11 Jul 2025
Viewed by 784
Abstract
Diabetic foot ulcers (DFUs) represent a critical global health issue, necessitating the development of advanced smart, flexible, and wearable sensors for continuous monitoring that are reimbursable within foot orthotics. This study presents the design and characterization of a pressure sensor implemented into a [...] Read more.
Diabetic foot ulcers (DFUs) represent a critical global health issue, necessitating the development of advanced smart, flexible, and wearable sensors for continuous monitoring that are reimbursable within foot orthotics. This study presents the design and characterization of a pressure sensor implemented into a shoe insole to monitor diabetic wound pressures, emphasizing the need for a high sensitivity, durability under cyclic mechanical loading, and a rapid response time. This investigation focuses on the electrical and mechanical properties of carbon nanotube (CNT) composites utilizing Ecoflex and polydimethylsiloxane (PDMS). Morphological characterization was conducted using Transmission Electron Microscopy (TEM), Laser Confocal Microscopy, and Scanning Electron Microscopy (SEM). The electrical and mechanical properties of the CNT/Ecoflex- and the CNT/PDMS-based sensor composites were then investigated. CNT/Ecoflex was then further evaluated due to its lower variability performance between cycles at the same pressure, as well as its consistently higher capacitance values across all trials in comparison to CNT/PDMS. The CNT/Ecoflex composite sensor showed a high sensitivity (2.38 to 3.40 kPa−1) over a pressure sensing range of 0 to 68.95 kPa. The sensor’s stability was further assessed under applied pressures simulating human weight. A custom insole prototype, incorporating 12 CNT/Ecoflex elastomeric matrix-based sensors (as an example) distributed across the metatarsal heads, midfoot, and heel regions, was developed and characterized. Capacitance measurements, ranging from 0.25 pF to 60 pF, were obtained across N = 3 feasibility trials, demonstrating the sensor’s response to varying pressure conditions linked to different body weights. These results highlight the potential of this flexible insole prototype for precise and real-time plantar surface monitoring, offering an approachable avenue for a challenging diabetic orthotics application. Full article
(This article belongs to the Special Issue Bioelectronics and Its Limitless Possibilities)
Show Figures

Figure 1

12 pages, 851 KB  
Systematic Review
Plantar Pressure Distribution in Charcot–Marie–Tooth Disease: A Systematic Review
by Alberto Arceri, Antonio Mazzotti, Federico Sgubbi, Simone Ottavio Zielli, Laura Langone, GianMarco Di Paola, Lorenzo Brognara and Cesare Faldini
Sensors 2025, 25(14), 4312; https://doi.org/10.3390/s25144312 - 10 Jul 2025
Viewed by 903
Abstract
Background: Charcot-Marie-Tooth (CMT) disease is a hereditary motor and sensory neuropathy that affects foot morphology and gait patterns, potentially leading to abnormal plantar pressure distribution. This systematic review synthesizes the existing literature examining plantar pressure characteristics in CMT patients. Methods: A [...] Read more.
Background: Charcot-Marie-Tooth (CMT) disease is a hereditary motor and sensory neuropathy that affects foot morphology and gait patterns, potentially leading to abnormal plantar pressure distribution. This systematic review synthesizes the existing literature examining plantar pressure characteristics in CMT patients. Methods: A comprehensive search was conducted across PubMed, Scopus, and Web of Science databases. Risk of bias was assessed using the Newcastle–Ottawa Scale. Results: Six studies comprising 146 patients were included. Four studies employed dynamic baropodometry, and two used in-shoe pressure sensors to evaluate the main plantar pressure parameters. The findings were consistent across different populations and devices, with a characteristic plantar-pressure profile of marked midfoot off-loading with peripheral overload at the forefoot and rearfoot, often accompanied by a lateralized center-of-pressure path and a prolonged pressure–time exposure. These alterations reflect both structural deformities and impaired neuromuscular control. Interventional studies demonstrated a load redistribution of pressure after corrective surgery, though residual lateral overload often persists. Conclusions: Plantar pressure mapping seems to be a valuable tool to identify high-pressure zones of the foot in order to personalize orthotic treatment planning, to objectively monitor disease progression, and to evaluate therapeutic efficacy. Further longitudinal studies with standardized protocols are needed to confirm these results. Full article
Show Figures

Figure 1

12 pages, 1443 KB  
Article
The Influence of School Backpack Load on Dynamic Gait Parameters in 7-Year-Old Boys and Girls
by Paulina Tomal, Anna Fryzowicz, Jarosław Kabaciński, Dominika Witt, Przemysław Lisiński and Lechosław B. Dworak
Sensors 2025, 25(13), 4219; https://doi.org/10.3390/s25134219 - 6 Jul 2025
Viewed by 936
Abstract
School-aged children are routinely exposed to additional physical stress due to carrying school backpacks. These backpacks often exceed recommended limits and can contain not only books and notebooks but also laptops, water bottles, and other personal items. The present study aimed to evaluate [...] Read more.
School-aged children are routinely exposed to additional physical stress due to carrying school backpacks. These backpacks often exceed recommended limits and can contain not only books and notebooks but also laptops, water bottles, and other personal items. The present study aimed to evaluate the impact of different backpack loads (10%, 15%, and 20% of body weight) on dynamic gait parameters in 7-year-old girls and boys. Twenty-six children (13 girls, 13 boys) participated in the study. Gait analysis was performed using the Footscan® system (RSscan International, Olen, Belgium; 2 m × 0.4 m × 0.02 m, 16,384 sensors) equipped with Footscan software version 7 (Gait 2nd generation), examining peak force (FMAX), peak pressure (PMAX), contact area (CA), and time to peak force (Time to FMAX) across five anatomical foot zones. The study revealed significant changes in all parameters, particularly at loads of 15% and 20% of body weight. Increases in plantar pressure, contact area, and asymmetry were observed, along with delays in time to peak force. These findings support the recommendation that children’s backpack loads should not exceed 10% of their body weight to prevent potential adverse effects on postural and musculoskeletal development. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

10 pages, 752 KB  
Article
Flexible Syndesmotic Reconstruction with Two Suture Buttons Provides Equal Stability Compared to Syndesmotic Screws: A Biomechanical Study
by Alexander Milstrey, Vivienne Hoell, Ann-Sophie C. Weigel, Jens Wermers, Stella Gartung, Julia Evers, Michael J. Raschke and Sabine Ochman
Bioengineering 2025, 12(7), 685; https://doi.org/10.3390/bioengineering12070685 - 23 Jun 2025
Viewed by 617
Abstract
Background: This study investigated syndesmotic stability after transection and the effects of stabilization using rigid and dynamic reconstruction techniques. Methods: Syndesmotic stability was analyzed using a six-degree-of-freedom robotic arm on 14 human specimens. Stability was analyzed in the neutral position and [...] Read more.
Background: This study investigated syndesmotic stability after transection and the effects of stabilization using rigid and dynamic reconstruction techniques. Methods: Syndesmotic stability was analyzed using a six-degree-of-freedom robotic arm on 14 human specimens. Stability was analyzed in the neutral position and during dorsiflexion and plantar flexion using an external rotation stress test under an axial load of 200 Newtons. The examination was performed on intact and sequentially transected syndesmosis in the following order: (1) anterior inferior tibiofibular ligament (AITFL); (2) interosseous ligament (IOL); and (3) posterior inferior tibiofibular ligament (PITFL). Then, reconstruction was performed using different syndesmotic screw techniques or a dynamic Suture Button system (Arthrex TightRope; n = 7). Results: A syndesmotic transection mainly caused sagittal instability of the fibula. While both static and dynamic reconstruction provided stabilization, screw fixation, particularly with two screws and a plate, demonstrated superior control of the fibular movement, especially in the sagittal and transverse planes, compared to one Suture Button. Conclusions: The results suggest that syndesmotic stabilization with one Suture Button may be insufficient for cases involving three-ligamentous injuries, whereas two Suture Buttons may offer comparable biomechanical stability to syndesmotic screws. Additionally, the study suggests that lateral radiographs may provide additional clinical value in assessing syndesmotic stability. Full article
(This article belongs to the Section Biomechanics and Sports Medicine)
Show Figures

Figure 1

13 pages, 5470 KB  
Article
Cushioning Performance of Specialized Running Socks for Enhanced Shock Absorption and Reduced Plantar Pressure
by Xia Zhou, Pui-Ling Li, Kit-Lun Yick and Annie Yu
Materials 2025, 18(13), 2941; https://doi.org/10.3390/ma18132941 - 21 Jun 2025
Viewed by 1410
Abstract
Running socks play an important role in alleviating foot impact and preventing foot injuries. Despite the variety of commercial options, their cushioning effectiveness is not well understood. This study examines three different types of running socks made of bio-based and synthetic textiles. Material [...] Read more.
Running socks play an important role in alleviating foot impact and preventing foot injuries. Despite the variety of commercial options, their cushioning effectiveness is not well understood. This study examines three different types of running socks made of bio-based and synthetic textiles. Material testing includes compression, tensile, and shock absorption, while wear tests assess plantar loading in 10 adult recreational runners on a treadmill. Results show that specialized running socks offer superior shock absorption compared to regular running socks, largely due to fabric thickness and weight. Socks made of high-performance bio-composite fibers significantly reduced maximum peak pressure and impulse in the great toe (p < 0.05) and first metatarsal head (p < 0.05) during running. Additionally, ground contact time in the forefoot (p < 0.05) area was significantly lower with specialized running socks. Compared to regular running socks, five-toed running socks can reduce the pressure load on the forefoot area. These findings can guide the design of specialized sockwear for better foot protection and improved sports performance. Full article
(This article belongs to the Special Issue Leather, Textiles and Bio-Based Materials)
Show Figures

Graphical abstract

11 pages, 275 KB  
Article
Effects of a Specific Proprioceptive Training Program on Injury Prevention and Stress in Basketball Players: A Pilot Study
by Vincenzo Cristian Francavilla, Giuseppe Messina, Omar Mingrino, Maria Chiara Parisi and Donatella Di Corrado
J. Funct. Morphol. Kinesiol. 2025, 10(2), 226; https://doi.org/10.3390/jfmk10020226 - 12 Jun 2025
Viewed by 2674
Abstract
Background: Basketball carries a high risk of both chronic and acute musculoskeletal injuries, affecting various parts of the body. Additionally, stress is a critical factor that influences athletic performance, particularly in high-pressure sports like basketball. This study aimed to investigate the impact [...] Read more.
Background: Basketball carries a high risk of both chronic and acute musculoskeletal injuries, affecting various parts of the body. Additionally, stress is a critical factor that influences athletic performance, particularly in high-pressure sports like basketball. This study aimed to investigate the impact of a specific proprioceptive training protocol on professional basketball players. Methods: Thirty male basketball players (M = 21.93, SD = 3.75 years) were divided into two groups: an experimental group (n = 15) and a control group (n = 15). The experimental group completed an adapted proprioceptive training program designed to enhance position-specific skills, following their regular team training. The control group continued to follow their routine training program without any additional proprioceptive intervention. The parameters assessed included stress levels, longitudinal body axis alignment, spinal range of motion, and total plantar load distribution. These were measured at three time points: baseline (T0), after 4 weeks of training (T1), and after 8 weeks of training (T2). Results: Data analysis showed a significant reduction in stress (p < 0.001), postural alignment (p < 0.001), and spinal range of motion (p < 0.001) in the experimental group compared to the control group. Conclusions: In conclusion, the findings highlight the effectiveness of specific and detailed training programs in injury prevention, offering valuable insights for coaches and sports psychologists. Full article
(This article belongs to the Special Issue Mood and Emotion in Sport and Exercise Performance)
14 pages, 1226 KB  
Article
Effects of Dynamic Stability Training with Water Inertia Load on Gait and Biomechanics in Older Women: A Randomized Clinical Trial
by Hyun Ju Kim and Il Bong Park
J. Funct. Morphol. Kinesiol. 2025, 10(2), 207; https://doi.org/10.3390/jfmk10020207 - 3 Jun 2025
Viewed by 1340
Abstract
Background: Gait decline in older adults is closely linked to reduced ankle propulsion and a compensatory reliance on proximal joints. This randomized trial investigated whether dynamic stability training using water inertia can improve gait mechanics and redistribute lower-limb joint moments in older women. [...] Read more.
Background: Gait decline in older adults is closely linked to reduced ankle propulsion and a compensatory reliance on proximal joints. This randomized trial investigated whether dynamic stability training using water inertia can improve gait mechanics and redistribute lower-limb joint moments in older women. Hypotheses: (1) The training would improve gait speed, stride length, and cadence. (2) The ankle plantar flexor moment and positive mechanical work would increase, while hip extension moment would decrease. Method: Twenty-four women aged 65 years and older were randomly assigned to either an experimental or control group. The experimental group wore a water-filled aquavest, and the control group wore a weighted vest. Both groups performed the same training program twice weekly for 12 weeks. Outcome measures included gait speed, stride length, cadence, ankle plantar flexion moment, hip extension moment, and positive mechanical work during terminal stance. A two-way mixed (between–within) analysis of variance (ANOVA) evaluated the group × time interaction effects. Results: Significant group × time interactions were found for gait speed (p < 0.001), stride length (p < 0.001), ankle moment (p = 0.017), and positive work (p < 0.001). Cadence increased in both groups over time (p < 0.05), with no interaction. The hip moment declined slightly in the experimental group. Conclusions: Water inertia load training enhanced propulsion and promoted an ankle-dominant gait, supporting its use to improve gait function and reduce proximal compensation in older women. Full article
(This article belongs to the Section Kinesiology and Biomechanics)
Show Figures

Figure 1

11 pages, 528 KB  
Article
Impact of Multiple Sclerosis on Load Distribution, Plantar Pressures, and Ankle Dorsiflexion Range of Motion in Women
by Sara Zúnica-García, Esther Chicharro-Luna, Alba Gracia-Sánchez, Isabel Jiménez-Trujillo, Jonatan García-Campos and Ángel P. Sempere
Healthcare 2025, 13(11), 1231; https://doi.org/10.3390/healthcare13111231 - 23 May 2025
Viewed by 680
Abstract
Alterations in static plantar pressure distribution serve as important indicators of gait and balance impairments in individuals with Multiple Sclerosis (MS). In addition, the identification of altered patterns of plantar load distribution, along with restricted ankle dorsiflexion, may serve as early markers of [...] Read more.
Alterations in static plantar pressure distribution serve as important indicators of gait and balance impairments in individuals with Multiple Sclerosis (MS). In addition, the identification of altered patterns of plantar load distribution, along with restricted ankle dorsiflexion, may serve as early markers of postural instability and gait dysfunction in women with MS. Objectives: To assess differences in static plantar pressure, load distribution, and ankle dorsiflexion range of motion between women diagnosed with MS and women without the condition. Methods: A cross-sectional observational study was conducted between April and December 2024. Women with MS were recruited from patient associations in the provinces of Alicante and Murcia, as well as from the neurology outpatient clinic at the Doctor Balmis University Hospital (Alicante, Spain). Static postural assessment was performed using the Neo-Plate® pressure platform, which measured maximum and mean plantar pressure (kPa), load distribution (%), contact surface area (cm2), and anterior–posterior weight distribution between the forefoot and rearfoot. The ankle dorsiflexion range of motion was assessed with a universal two-arm goniometer. All parameters were compared with those of a group of women without a diagnosis of MS. Results: Compared to women without MS, participants with MS showed a significantly greater load on the right forefoot (25.75% vs. 23.41%, p = 0.021), and reduced load on the right (23.09% vs. 26.01%, p = 0.004) and left rearfoot (26.60% vs. 30.85%, p = 0.033). Total forefoot loading was significantly higher (52.33% vs. 46.40%, p < 0.001), and rearfoot loading was lower (47.64% vs. 52.42%, p = 0.006) in the MS group. Ankle dorsiflexion range of motion was also significantly reduced in women with MS, both with the knee flexed (5.95° ± 4.50 and 6.76° ± 4.69 vs. 15.45° ± 5.04 and 14.90° ± 5.43) and extended (2.69° ± 3.69 and 3.12° ± 3.83 vs. 8.17° ± 3.41 and 8.60° ± 3.31), with all differences reaching statistical significance (p < 0.001). Conclusions: Women with MS present significant alterations in static plantar load distribution, with increased forefoot and decreased rearfoot loading, as well as markedly reduced ankle dorsiflexion, in comparison to women without the disease. These findings suggest the presence of postural imbalances associated with MS, potentially affecting functional stability and mobility. Full article
Show Figures

Figure 1

Back to TopTop