Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (40)

Search Parameters:
Keywords = plasma jet transfer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 17668 KB  
Article
Enhancing the Aerodynamic Performance of Airfoils Using DBD Plasma Actuators: An Experimental Approach
by Eder Ricoy-Zárate, Horacio Martínez, Erik Rosado-Tamariz, Andrés Blanco-Ortega and Rafael Campos-Amezcua
Processes 2025, 13(9), 2725; https://doi.org/10.3390/pr13092725 - 26 Aug 2025
Viewed by 771
Abstract
This research presents an experimental analysis of the influence of atmospheric pressure plasma on the performance of a micro horizontal-axis wind turbine blade. The investigation was conducted using an NACA 4412 airfoil equipped with a dielectric barrier discharge (DBD) plasma actuator. The electrodes [...] Read more.
This research presents an experimental analysis of the influence of atmospheric pressure plasma on the performance of a micro horizontal-axis wind turbine blade. The investigation was conducted using an NACA 4412 airfoil equipped with a dielectric barrier discharge (DBD) plasma actuator. The electrodes were configured asymmetrically, with a 2 mm gap and copper electrodes that are 0.20 mm in thickness. A high voltage of 6 kV was applied, resulting in a current of 0.071 mA and a power output of 0.426 W. Optical emission spectroscopy identified the excited components through the interaction of the high-voltage AC electric field with air molecules: N2, N2+, O2+, and O. The electrohydrodynamic force mainly results from the observed charged ions that, when accelerated by the electric field, transfer momentum to neutral molecules via collisions, leading to the formation of the observed jet plasma. The findings indicated a notable enhancement in aerodynamic performance attributable to the electrohydrodynamic (EHD) flow generated by the plasma. The estimated electrohydrodynamic force (8.712×104 N) is capable of maintaining the flow attached to the airfoil surface, thereby augmenting flow circulation and, consequently, enhancing the lift force. According to blade element theory, the lift and drag coefficients directly influence the torque and mechanical power generated by the wind turbine rotor. Schlieren imaging was utilized to observe alterations in air density and flow patterns. Lissajous curve analysis was used to examine the electrical discharge behavior, showing that only 7.04% of the input power was converted into heat. This indicates that nearly all input electric energy was transformed into EHD force by the atmospheric pressure plasma. Compared to traditional aerodynamic control methods, DBD actuators are a feasible alternative for small wind turbines due to their lightweight design, absence of moving parts, ability to be surface-embedded without altering blade geometry, and capacity to generate active, dynamic flow control with reduced energy consumption. Full article
(This article belongs to the Special Issue Modeling and Optimization for Multi-scale Integration)
Show Figures

Figure 1

18 pages, 4643 KB  
Article
The Effect of Non-Transferred Plasma Torch Electrodes on Plasma Jet: A Computational Study
by Sai Likitha Siddanathi, Lars-Göran Westerberg, Hans O. Åkerstedt, Henrik Wiinikka and Alexey Sepman
Appl. Sci. 2025, 15(15), 8367; https://doi.org/10.3390/app15158367 - 28 Jul 2025
Viewed by 376
Abstract
This study explores how different electrode shapes affect plasma flow in a non-transferred plasma torch. Various cathode geometries—including conical, tapered, flat, and cylindrical—were examined alongside stepped anode designs. A 2D axisymmetric computational model was employed to assess the impact of these shapes on [...] Read more.
This study explores how different electrode shapes affect plasma flow in a non-transferred plasma torch. Various cathode geometries—including conical, tapered, flat, and cylindrical—were examined alongside stepped anode designs. A 2D axisymmetric computational model was employed to assess the impact of these shapes on plasma behavior. The results reveal that different cathode designs require varying current levels to maintain a consistent power output. This paper presents the changes in electric conductivity and electric potential for different input currents across the arc formation path (from the cathode tip to the anode beginning) and relating to Ohm’s law. Significant variations in plasma jet velocity and temperature were observed, especially near the cathode tip. The study concludes by evaluating thermal efficiency across geometry configurations. Flat cathodes demonstrated the highest efficiency, while the anode shape had minimal impact. Full article
(This article belongs to the Section Applied Physics General)
Show Figures

Figure 1

26 pages, 10949 KB  
Article
Tribological Investigation of Plasma-Based Coatings for Use in Quasi-Monolithic Engine Cylinder Bores
by Siddharth Banerjee, Joshua Stroh, Dimitry Sediako and Jimi Tjong
Metals 2025, 15(4), 370; https://doi.org/10.3390/met15040370 - 27 Mar 2025
Viewed by 470
Abstract
This study evaluates the tribological characteristics of quasi-monolithic engine cylinder coatings and piston rings using a custom-built linear reciprocating tribometer. The coatings were deposited on an Al-Si alloy cylinder bore using the Plasma Transfer Wire Arc (PTWA) and Electrolytic Jet Plasma Oxidation (EJPO) [...] Read more.
This study evaluates the tribological characteristics of quasi-monolithic engine cylinder coatings and piston rings using a custom-built linear reciprocating tribometer. The coatings were deposited on an Al-Si alloy cylinder bore using the Plasma Transfer Wire Arc (PTWA) and Electrolytic Jet Plasma Oxidation (EJPO) processes. The coatings’ tribological performances were investigated in the boundary lubrication regime. The performance of conventional chrome-coated cast iron piston rings was tested and compared to that of EJPO- and PTWA-coated engine cylinder samples that were extracted from a cast Al-Si engine block. Scanning electron microscopy and profilometry were used to compare the evolution of wear and the prevalent wear mechanism. This paper also presents the verification and repeatability analysis of a custom-built tribometer against a standard industry-calibrated tribometer. The wear test results showed that the EJPO coating had 0.05% to 10.35% lower wear rates than its PTWA counterpart throughout a wide range of loading conditions and sliding distances. The variation in the counter-face behavior is likely due to the different surface topographic parameters such as skewness, kurtosis, and porosity. Full article
Show Figures

Figure 1

25 pages, 7953 KB  
Article
A Study of Particle Heating and Oxidation Protection in a Modified Internally Injected Ar–H2 Atmospheric Plasma Spraying Torch
by Mahrukh Mahrukh, Sen-Hui Liu, Li Zhang, Sohail Husnain, Cheng-Chung Yang, Xiao-Tao Luo and Chang-Jiu Li
Plasma 2025, 8(1), 5; https://doi.org/10.3390/plasma8010005 - 13 Feb 2025
Cited by 3 | Viewed by 1631
Abstract
This study employs computational fluid dynamics (CFD) to analyze the in-flight dynamics of particles in an Ar–H2 atmospheric plasma spray (APS) torch with a modified diverging-type nozzle. The focus is on optimizing injection parameters—plasma gas flow rates, input power, and carrier gas [...] Read more.
This study employs computational fluid dynamics (CFD) to analyze the in-flight dynamics of particles in an Ar–H2 atmospheric plasma spray (APS) torch with a modified diverging-type nozzle. The focus is on optimizing injection parameters—plasma gas flow rates, input power, and carrier gas flow rates—to enhance coating microstructure and deposition efficiency by achieving superheated molten metal droplets. Using a discrete phase model, the heat and momentum transfer of Ni/Al/C (2 wt.% diamond) composite powders (30–110 µm) within the plasma jet were simulated. Results show that particle characteristics, such as temperature and oxidation, can be controlled by adjusting plasma jet temperature (T∞) and velocity (U∞). Smaller particles heat faster, reaching higher temperatures with increased evaporation and oxidation rates. The modified nozzle enables Ni-based alloy particles to reach ~2500 °C, reducing oxygen inclusion in the plasma jet core. This setup allows for the control of the onset of carbon and oxygen reactions, wherein carbon serves as a sacrificial element, protecting the base alloy elements (such as aluminum) from excessive oxidation. Full article
Show Figures

Graphical abstract

10 pages, 5653 KB  
Article
Machining Path Optimization of Inductively Coupled Plasma Based on Surface Heat Transfer Model
by Peiqi Jiao, Bin Fan, Qiang Xin, Xiang Wu and Hong Wang
Micromachines 2025, 16(1), 71; https://doi.org/10.3390/mi16010071 - 8 Jan 2025
Cited by 1 | Viewed by 806
Abstract
Inductively coupled plasma (ICP), a non-contact optical processing method, has been widely used in the preparation of fused quartz. However, the thermal effect during processing inevitably affects the stability of the removal rate, reduces the processing accuracy, and restricts the further development of [...] Read more.
Inductively coupled plasma (ICP), a non-contact optical processing method, has been widely used in the preparation of fused quartz. However, the thermal effect during processing inevitably affects the stability of the removal rate, reduces the processing accuracy, and restricts the further development of plasma processing. This paper analyzes the critical temperature that affects the changes in plasma removal depth, establishes a heat transfer model for plasma jet processing through simulations, derives the heat conduction equation during processing, and obtains the critical radius corresponding to the critical temperature related to the processing speed. Additionally, this work analyzes the path temperature of the grating track used in processing and obtains the path temperature variation curve. Based on the critical radius, a staggered grating track was proposed, which verified that this track can effectively control the path temperature, thereby suppressing the error caused by the thermal effect of processing. This study not only helps to gain a deeper understanding of the heat transfer process in plasma machining, but also provides a basis for achieving high-precision plasma machining path optimization schemes. Full article
Show Figures

Figure 1

16 pages, 3077 KB  
Article
Comparison Between Numerical and Experimental Methodologies for Total Enthalpy Determination in Scirocco PWT
by Antonio Smoraldi and Luigi Cutrone
Aerospace 2024, 11(12), 1023; https://doi.org/10.3390/aerospace11121023 - 14 Dec 2024
Viewed by 1125
Abstract
Arc-jet facility tests are critical for replicating the extreme thermal conditions encountered during high-speed planetary entry, where the precise determination of flow enthalpy is essential. Despite its importance, a systematic comparison of methods for determining enthalpy in the Scirocco Plasma Wind Tunnel had [...] Read more.
Arc-jet facility tests are critical for replicating the extreme thermal conditions encountered during high-speed planetary entry, where the precise determination of flow enthalpy is essential. Despite its importance, a systematic comparison of methods for determining enthalpy in the Scirocco Plasma Wind Tunnel had not yet been conducted. This study evaluates three experimental techniques—the sonic throat method, the heat balance method, and the heat transfer method—under various operating conditions in the Scirocco facility, employing a nozzle C configuration (10° half-angle conical nozzle with a 90 cm exit diameter). These methods are compared with computational fluid dynamics (CFDs) simulations to address discrepancies between experimental and predicted enthalpy and heat flux values. Significant deviations between measured and simulated results prompted a reassessment of the numerical and experimental models. Initially, the Navier–Stokes model, which assumes chemically reacting, non-equilibrium flows and fully catalytic copper walls, underestimated the heat flux. By incorporating partial catalytic behavior for the copper probe surface, the CFD results showed better agreement with the experimental data, providing a more accurate representation of heat flux and flow enthalpy within the test environment. Full article
(This article belongs to the Special Issue Thermal Protection System Design of Space Vehicles)
Show Figures

Figure 1

17 pages, 4244 KB  
Article
Plasma Surface Modification of the Inner Wall of Montgomery’s Tracheal Implant (T-Tube)
by Konstantin G. Kostov, Ananias A. Barbosa, Fellype do Nascimento, Paulo F. G. Cardoso, Ana C. P. L. Almeida, Antje Quade, Daniel Legendre, Luiz R. O. Hein, Diego M. Silva and Cristiane Y. Koga-Ito
Polymers 2024, 16(22), 3223; https://doi.org/10.3390/polym16223223 - 20 Nov 2024
Viewed by 1363
Abstract
Tracheal stenosis (i.e., the abnormal narrowing of the trachea) can occur due to a variety of inflammatory and infectious processes as well as due to therapeutic procedures undertaken by the patient. The most common cause of tracheal obstruction in patients has been prolonged [...] Read more.
Tracheal stenosis (i.e., the abnormal narrowing of the trachea) can occur due to a variety of inflammatory and infectious processes as well as due to therapeutic procedures undertaken by the patient. The most common cause of tracheal obstruction in patients has been prolonged intubation. Depending on the extent of the stenosis and its exact location, the surgical insertion of a tracheal stent is the only option for addressing this issue. The Montgomery T-tube implant is a valuable tracheal stent made from medical-grade silicone that provides a functional airway while supporting the tracheal mucosa. However, its performance is subject to gradual deterioration due to biofilm colonization of the stent’s inner wall, which may explain the discomfort claimed by many patients and clinical failures. Recently, cold atmospheric plasmas (CAPs) have emerged as an alternative technology to many conventional medical procedures, such as wound healing, skin treatment, decontamination of medical devices, etc. Here, we report on plasma-induced surface modification of the inner wall of a T-tube implant, considering future biomedical applications. To generate the plasma, we employed a cold atmospheric pressure plasma jet in gas helium, which was directly inserted into the T-tube implant. To assess the treatment uniformity, the degree of surface modification and its extension along the stent’s inner wall was analyzed using different process parameters. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

13 pages, 5792 KB  
Article
Modification of the Surface Crystallinity of Polyphenylene Sulfide and Polyphthalamide Treated by a Pulsed-Arc Atmospheric Pressure Plasma Jet
by Abdessadk Anagri, Sarab Ben Saïd, Cyrille Bazin, Farzaneh Arefi-Khonsari and Jerome Pulpytel
Polymers 2024, 16(18), 2582; https://doi.org/10.3390/polym16182582 - 12 Sep 2024
Cited by 1 | Viewed by 1314
Abstract
Atmospheric plasma jets generated from air or nitrogen using commercial sources with relatively high energy densities are commonly used for industrial applications related to surface treatments, especially to increase the wettability of polymers or to deposit thin films. The heat fluxes to which [...] Read more.
Atmospheric plasma jets generated from air or nitrogen using commercial sources with relatively high energy densities are commonly used for industrial applications related to surface treatments, especially to increase the wettability of polymers or to deposit thin films. The heat fluxes to which the substrates are subjected are typically in the order of 100–300 W/cm2, depending on the treatment conditions. The temperature rise in the treated polymer substrates can have critical consequences, such as a change in the surface crystallinity or even the surface degradation of the materials. In this work, we report the phase transitions of two semicrystalline industrial-grade polymer resins reinforced with glass fibers, namely polyphenylene sulfide (PPS) and polyphthalamide (PPA), subjected to plasma treatments, as well as the modeling of the associated heat transfer phenomena using COMSOL Multiphysics. Depending on the treatment time, the surface of PPS becomes more amorphous, while PPA becomes more crystalline. These results show that the thermal history of the materials must be considered when implementing surface engineering by this type of plasma discharge. Full article
(This article belongs to the Special Issue Plasma Processing of Polymers, 2nd Edition)
Show Figures

Graphical abstract

22 pages, 5494 KB  
Article
The Influence of Electric Arc Plasma Turbulence on Heat Transfer Processes Involving Powder Materials
by Yuri K. Petrenya, Vladimir Ya. Frolov, Dmitriy S. Kriskovets, Boris A. Yushin and Dmitriy V. Ivanov
Energies 2023, 16(15), 5632; https://doi.org/10.3390/en16155632 - 26 Jul 2023
Cited by 1 | Viewed by 1542
Abstract
The paper presents an analysis of the heat transfer processes in electric arc plasma conditions between the powder material and the plasma jet in different convective states. The heat transfer processes in the plasma jet generated for coating deposition are considered based on [...] Read more.
The paper presents an analysis of the heat transfer processes in electric arc plasma conditions between the powder material and the plasma jet in different convective states. The heat transfer processes in the plasma jet generated for coating deposition are considered based on varying the conditions for the jet–powder interaction. The formed coating deposited onto the substrate acts as an indicator of the heat transfer efficiency. The heat transfer between the plasma jet and the powder material is facilitated by the turbulent nature of the plasma jet. The presented calculation results demonstrate the influence of the plasma flow turbulence on the motion of the fine powder and heating of the generated jet at the outlet of the plasma torch. An analysis of the influence of plasma flow turbulence on the acceleration and heating of fine powder particles was carried out. The experimental results allowed for the determination of the effect of the plasma jet turbulence degree on the heat transfer processes between the plasma and fine powder: the technological efficiency of the device with varying parameters of the spraying process and the flow rates of the material supply and plasma-forming gas were presented. The values of the plasma-forming gas supply rate, the material supply rate, and the Reynolds number were obtained while the other process parameters were fixed. The research was carried out within the state assignment of the Ministry of Science and Higher Education of the Russian Federation (theme No. FSEG-2023-0012). Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

22 pages, 33933 KB  
Review
Plasma-Activated Water: Physicochemical Properties, Generation Techniques, and Applications
by Kiing S. Wong, Nicholas S. L. Chew, Mary Low and Ming K. Tan
Processes 2023, 11(7), 2213; https://doi.org/10.3390/pr11072213 - 23 Jul 2023
Cited by 68 | Viewed by 28008
Abstract
Plasma-activated water (PAW) is water that has been treated with atmospheric pressure plasma. Due to the presence of reactive oxygen and nitrogen species (RONS), PAW can be used in various applications such as (1) surface disinfection and food decontamination, (2) enhancement in seed [...] Read more.
Plasma-activated water (PAW) is water that has been treated with atmospheric pressure plasma. Due to the presence of reactive oxygen and nitrogen species (RONS), PAW can be used in various applications such as (1) surface disinfection and food decontamination, (2) enhancement in seed germination, and (3) enhancement in surface cooling in the nucleate boiling regime. Briefly, for surface disinfection, the reactive species in PAW can induce oxidative stress on microbes; for enhancement of seed germination, the reactive species in PAW can trigger seed germination and provide nutrients; for enhancement in surface cooling, the reactive species cause a reduction in the surface tension of PAW, facilitating the phase-change heat transfer and, quite unexpectedly, minimizing the surface oxidation. Here, we review the physicochemical properties of PAW, the three commonly used techniques (plasma jet, dielectric barrier discharge, and corona discharge) for generating atmospheric pressure plasma, and the use of PAW for the above three applications. In particular, we review the recent development of the miniaturization of the plasma generator integrated with an acoustic neutralizer to produce plasma-activated aerosols, elimination of the need for storage, and the interesting physicochemical properties of PAW that lead to cooling enhancement. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

24 pages, 13607 KB  
Article
Mechanisms of Plasma Actuators Controlling High-Aspect-Ratio Rectangular Jet Width for Automobile Air Conditioning Systems
by Anh Viet Pham and Kazuaki Inaba
Fluids 2023, 8(7), 186; https://doi.org/10.3390/fluids8070186 - 21 Jun 2023
Viewed by 1781
Abstract
High-aspect-ratio (HAR) rectangular jets have attracted attention in automobile air conditioning (A/C) systems and turbulent jet applications owing to their excellent air delivery and mixing and attractive interior design. Active flow control (AFC) of rectangular jets using plasma actuators (PAs) has proven to [...] Read more.
High-aspect-ratio (HAR) rectangular jets have attracted attention in automobile air conditioning (A/C) systems and turbulent jet applications owing to their excellent air delivery and mixing and attractive interior design. Active flow control (AFC) of rectangular jets using plasma actuators (PAs) has proven to be a promising technique because the actuator is simple, has low energy consumption, and can create flow features without interference. This research aims to understand the interaction between PAs and flow from a HAR rectangular nozzle using hot-wire anemometry, particle image velocimetry, and theoretical studies. Understanding how PAs affect the flow is beneficial for designing air vents to fit automobile A/C systems and various engineering applications by recreating the flow features with other AFC techniques and actuators. The combination of periodic excitation and vectoring effects transfers the flow’s mean energy to organized structures—known as spanwise vortexes—as large as 6 mm. The interaction between these coherent structures and the dissipative environment compresses the vortexes, resulting in the flow converging on the spanwise–streamwise (X–Z) plane and diverging on the transverse–streamwise (X–Y) plane. HAR rectangular jet flow features controlled by PAs can be predicted for specific cases by calculating the Strouhal number based on PA operating parameters. Full article
(This article belongs to the Special Issue Turbulent Flow, 2nd Edition)
Show Figures

Figure 1

13 pages, 2242 KB  
Article
Influence of Oxygen Impurity on Nitrogen Atmospheric-Pressure Plasma Jet
by Jia-Shiuan Tsai and Jian-Zhang Chen
Appl. Sci. 2023, 13(7), 4199; https://doi.org/10.3390/app13074199 - 26 Mar 2023
Cited by 1 | Viewed by 2084
Abstract
This study discussed the effect of oxygen impurity in the inlet gas of a nitrogen atmospheric pressure plasma jet (APPJ). A numerical model that takes into account the fluid dynamics, heat transfer, mass transfer, diffusion, and chemical reactions was developed to simulate the [...] Read more.
This study discussed the effect of oxygen impurity in the inlet gas of a nitrogen atmospheric pressure plasma jet (APPJ). A numerical model that takes into account the fluid dynamics, heat transfer, mass transfer, diffusion, and chemical reactions was developed to simulate the nitrogen APPJ. Further, a DC nitrogen APPJ experiment was performed to verify the plasma temperature characteristics on the treated surface. The plasma temperature decreased with an increase in the oxygen impurity. Moreover, the oxygen impurity influenced the related excited and neutral species. Specifically, with added oxygen impurity, N-related species decreased whereas O- and NOx-related species increased. Because the excited state species constitutes the most important reactant in APPJ treatment, this study could serve as a reference for the adjustment of a nitrogen APPJ. Full article
(This article belongs to the Section Fluid Science and Technology)
Show Figures

Figure 1

23 pages, 7129 KB  
Article
Application of Plasma Bridge for Grounding of Conductive Substrates Treated by Transferred Pulsed Atmospheric Arc
by Dariusz Korzec, Markus Hoffmann and Stefan Nettesheim
Plasma 2023, 6(1), 139-161; https://doi.org/10.3390/plasma6010012 - 5 Mar 2023
Cited by 2 | Viewed by 3098
Abstract
An atmospheric pressure plasma jet (APPJ) sustained by a pulsed atmospheric arc (PAA) transferred on an electrically conducting surface was operated with a mean power of 700 W, a pulse frequency of 60 kHz, and a gas mixture of N2 and H [...] Read more.
An atmospheric pressure plasma jet (APPJ) sustained by a pulsed atmospheric arc (PAA) transferred on an electrically conducting surface was operated with a mean power of 700 W, a pulse frequency of 60 kHz, and a gas mixture of N2 and H2 with up to 10% H2, flowing at 30 to 70 SLM. It was shown that the plasma bridge ignited between the grounded injector and electrically conducting and floating substrates can be used for electrical grounding. This allowed for arc transfer on such substrates. The plasma bridge was stable for Argon flow through the injector from 3 to 10 SLM. Its length was between 5 and 15 mm. The plasma bridge current was 350 mA. The copper contact pads on an alumina electronic board were treated using the plasma bridge sustained by Ar injection for grounding. First, an oxide film of about 65 nm was grown by a compressed dry air (CDA) plasma jet. Then, this film was reduced at a speed of 4 cm2/s by forming gas 95/5 (95% of N2 and 5% of H2) plasma jet. Full article
(This article belongs to the Special Issue Feature Papers in Plasma Sciences)
Show Figures

Figure 1

16 pages, 21052 KB  
Article
Effect of APS Spraying Parameters on the Microstructure Formation of Fe3Al Intermetallics Coatings Using Mechanochemically Synthesized Nanocrystalline Fe-Al Powders
by Cezary Senderowski, Nataliia Vigilianska, Oleksii Burlachenko, Oleksandr Grishchenko, Anatolii Murashov and Sergiy Stepanyuk
Materials 2023, 16(4), 1669; https://doi.org/10.3390/ma16041669 - 16 Feb 2023
Cited by 5 | Viewed by 1757
Abstract
The present paper presents a study of the behaviour of Fe3Al intermetallic powders particles based on 86Fe-14Al, 86Fe-14(Fe5Mg), and 60.8Fe-39.2(Ti37.5Al) compositions obtained by mechanochemical synthesis at successive stages of the plasma spraying process: during transfer in the volume of the gas [...] Read more.
The present paper presents a study of the behaviour of Fe3Al intermetallic powders particles based on 86Fe-14Al, 86Fe-14(Fe5Mg), and 60.8Fe-39.2(Ti37.5Al) compositions obtained by mechanochemical synthesis at successive stages of the plasma spraying process: during transfer in the volume of the gas stream and deformation at the moment of impact on the substrate. The effect of the change in current on the size of powder particles during their transfer through the high-temperature stream and the degree of particle deformation upon impact with the substrate was determined. It was found that during transfer through the plasma jet, there was an increase in the average size of sputtering products by two–three times compared to the initial effects of mechanochemical synthesis due to the coagulation of some particles. In this case, an increase in current from 400 to 500 A led to a growth in average particle size by 14–47% due to the partial evaporation of fine particles with an increase in their heating degree. An increase in current also led to a 5–10% growth in particle deformation degree upon impact on the substrate due to the rising temperature and velocity of the plasma jet. Based on the research, the parameters of plasma spraying of mechanically synthesized Fe3Al intermetallic-based powders were determined, at which dense coatings with a thin-lamellar structure were formed. Full article
Show Figures

Figure 1

11 pages, 4374 KB  
Article
Synthesis of Silicon Nitride Nanoparticles by Upcycling Silicon Wafer Waste Using Thermal Plasma Jets
by Tae-Hee Kim, Seungjun Lee and Dong-Wha Park
Materials 2022, 15(24), 8796; https://doi.org/10.3390/ma15248796 - 9 Dec 2022
Cited by 2 | Viewed by 2338
Abstract
Silicon (Si) waste generation is a critical issue in the development of semiconductor industries, and significant amounts of Si waste are disposed via landfilling. Herein, we propose an effective and high value-added recycling method for generating nitride nanoparticles from Si waste, such as [...] Read more.
Silicon (Si) waste generation is a critical issue in the development of semiconductor industries, and significant amounts of Si waste are disposed via landfilling. Herein, we propose an effective and high value-added recycling method for generating nitride nanoparticles from Si waste, such as poor-grade Si wafers, broken wafers, and Si scrap with impurities. Si waste was crushed and used as precursors, and an Ar-N2 thermal plasma jet was applied at 13 kW (300 A) under atmospheric pressure conditions. A cone-type reactor was employed to optimize heat transfer, and Si waste was injected into the high-temperature region between the cathode and anode to react with free/split nitrogen species. Spherical Si3N4 nanoparticles were successfully synthesized using isolated nitrogen plasma in the absence of ammonia gas. The crystalline structure comprised mixed α- and β-Si3N4 phases with the particle size <30 nm. Furthermore, the influence of ammonia gas on nitridation was investigated. Our findings indicated that Si3N4 nanoparticles were successfully synthesized in the absence of ammonia gas, and their crystallinity could be altered based on the reactor geometry. Therefore, the as-proposed thermal plasma technique can be used to successfully synthesize high value-added nanopowder from industrial waste. Full article
(This article belongs to the Special Issue Plasma Processing, Synthesis, and Nanomaterials)
Show Figures

Figure 1

Back to TopTop