Plasma Surface Modification of the Inner Wall of Montgomery’s Tracheal Implant (T-Tube)
Abstract
:1. Introduction
2. Experimental Setup, Materials, and Methods
2.1. Plasma Source
2.2. Montgomery T-Tube Stent
2.3. Samples Preparation
2.4. Surface Characterization Techniques
2.4.1. Wettability
2.4.2. XPS
2.4.3. SEM
2.4.4. Gas Temperature Inside the Stent
2.4.5. Parameters of the Treatment’s Electrical and Optical Characterization
3. Results and Discussions
3.1. Morphological Modifications
3.2. Surface Elemental Composition and O Content Distribution
3.3. Water Contact Angle
3.4. Gas Temperature Inside the T-Tube
4. Conclusions and Future Work
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Spitlle, N.; McCluskey, A. Lesson of the week: Tracheal stenosis after intubation. BMJ 2000, 321, 1000. [Google Scholar] [CrossRef] [PubMed]
- Iribarnegaray, J.M.; Luján, R.G.; Maíquez, I.P.; Salgado, F.R.; Abreu, J.A.; de Miguel Poch, E. Montgomery T-Tube in the treatment of tracheal stenosis: Experience of a respiratory endoscopy unit and review of the literature. Arq. Bronconeumol. 2021, 57, 72–73. [Google Scholar] [CrossRef]
- Carretta, A.; Casiraghi, M.; Melloni, G.; Bandiera, A.; Ciriaco, P.; Ferla, L.; Puglisi, A.; Zannini, P. Montgomery T-tube placement in the treatment of benign tracheal lesions. Eur. J. Cardio-Thorac. Surg. 2009, 36, 352–356. [Google Scholar] [CrossRef] [PubMed]
- Thorarinsdottir, H.R.; Kander, T.; Holmberg, A.; Petronis, S.; Klarin, B. Biofilm formation on three different endotracheal tubes: A prospective clinical trial. Crit. Care 2020, 24, 382. [Google Scholar] [CrossRef]
- Fusconi, M.; Vasco, V.R.L.; Delfini, A.; De Virgilio, A.; Taddei, A.R.; Vassalli, C.; Conte, M.; Del Sette, F.; Benincasa, A.T.; de Vincentiis, M. Is Montgomery Tracheal Safe-T-Tube Clinical Failure Induced by Biofilm? Otolaryngol.-Head Neck Surg. 2013, 149, 269–276. [Google Scholar] [CrossRef]
- Hage, M.; Khelissa, S.; Akoum, H.; Chihib, N.E.; Jama, C. Cold plasma surface treatments to prevent biofilm formation in food, industries and medical sectors. Appl. Microbiol. Biotechnol. 2022, 106, 81–100. [Google Scholar] [CrossRef]
- Von Woedtke, T.; Reuter, S.; Masur, K.; Weltmann, K.-D. Plasma for Medicine. Phys. Rep. 2013, 540, 291. [Google Scholar] [CrossRef]
- Fridman, G.; Friedman, G.; Gutsol, A.; Shekhter, A.B.; Vasilets, V.N.; Fridman, A. Applied Plasma Medicine. Plasma Process Polym. 2008, 5, 503. [Google Scholar] [CrossRef]
- Walden, R.; Goswami, A.; Scally, L.; McGranaghan, G.; Cullen, P.J.; Pillai, S.C. Nonthermal plasma technologies for advanced functional material processing and current applications: Opportunities and challenges. J. Environ. Chem. Eng. 2024, 12, 113541. [Google Scholar] [CrossRef]
- Berlin, M.; Leitao, E.M.; Bickerton, S.; Verbeek, C.J.R. A review of polymer surface modification by cold plasmas toward bulk functionalization. Plasma Process. Polym. 2024, 21, 2300208. [Google Scholar]
- Garner, A.; Mehlhorn, T. A Review of Cold Atmospheric Pressure Plasmas for Trauma and Acute Care. Front. Phys. 2021, 9, 786381. [Google Scholar] [CrossRef]
- Tan, F.; Fang, Y.; Zhua, L.; Al-Rubeai, M. Cold atmospheric plasma as an interface biotechnology for enhancing surgical implants. Crit. Rev. Biotechnol. 2021, 41, 425–440. [Google Scholar] [CrossRef] [PubMed]
- Kazemi, A.; Nicol, M.J.; Bilén, S.G.; Kirimanjeswara, G.S.; Knecht, S.D. Cold Atmospheric Plasma Medicine: Applications, Challenges, and Opportunities for Predictive Control. Plasma 2024, 7, 233–257. [Google Scholar] [CrossRef]
- Gupta, T.T.; Ayan, H. Application of Non-Thermal Plasma on Biofilm: A Review. Appl. Sci. 2019, 9, 3548. [Google Scholar] [CrossRef]
- Gilmore, B.F.; Flynn, P.B.; O’Brien, S.; Hickok, N.; Freeman, T.; Bourke, P. Cold Plasmas for Biofilm Control: Opportunities and Challenges. Trends Biotechnol. 2018, 36, 627. [Google Scholar] [CrossRef]
- Xu, Z.; Shen, J.; Cheng, C.; Hu, S.; La, Y.; Chu, P.K. In-vitro antimicrobial effects and mechanism of atmospheric-pressure He/O2 plasma jet on Staphylococcus aureus biofilm. J. Phys. D Appl. Phys. 2017, 50, 105201. [Google Scholar] [CrossRef]
- Dave, P.; Balasubramanian, C.; Hans, S.; Patil, C.; Nema, S.K. Oxygen Plasma for Prevention of Biofilm Formation on silicone Catheter Surfaces: Influence of Plasma Exposure Time. Plasma Chem. Plasma Process. 2022, 42, 815–831. [Google Scholar] [CrossRef]
- Prysiazhnyi, V.; Saturnino, V.F.B.; Kostov, K.G. Transferred Plasma Jet as a Tool to Improve Wettability of Inner Surfaces of Polymer Tubes. Int. J. Polym. Anal. Charact. 2017, 22, 215–221. [Google Scholar] [CrossRef]
- Organski, L.; Wang, X.; Myers, A.; Chen, Y.-C.; Park, K.; Horava, S.D.; Richard, C.A.; Yeo, Y.; Alexey, S. Inner surface modification of polyethylene tubing induced by dielectric barrier discharge plasma. J. Vac. Sci. Technol. 2022, A 40, 063005. [Google Scholar] [CrossRef]
- Kitazaki, S.; Tanaka, A.; Hayashi, N. Sterilization of narrow tube inner surface using discharge plasma, ozone, and UV light irradiation. Vacuum 2014, 110, 217e220. [Google Scholar] [CrossRef]
- Muto, R.; Hayashi, N. Sterilization characteristics of narrow tubing by nitrogen oxides generated in atmospheric pressure air plasma. Sci. Rep. 2023, 13, 6947. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.; Jiang, Y.; Zhao, K.; Zou, C.; Zhao, Y.; Zhang, L.; Fang, Z. An atmospheric pressure plasma device with multiple ring electrodes for decontamination of flexible tubing with variable scales. Plasma Process Polym. 2023, 20, e2300063. [Google Scholar] [CrossRef]
- Wang, T.; Shi, L.; Lv, L.; Liu, J. Homogeneous surface hydrophilization on the inner walls of polymer tubes using a flexible atmospheric cold microplasma jet. Plasma Process Polym. 2020, 17, e2000056. [Google Scholar] [CrossRef]
- Karrer, S.; Unger, P.; Gruber, M.; Gebhardt, L.; Schober, R.; Berneburg, M.; Bosserhoff, A.K.; Arndt, S. In Vitro Safety Study on the Use of Cold Atmospheric Plasma in the Upper Respiratory Tract. Cells 2024, 13, 1411. [Google Scholar] [CrossRef]
- Schafer, S.; Swain, T.; Parra, M.; Slavin, B.V.; Mirsky, N.A.; Nayak, V.V.; Witek, L.; Coelho, P.G. Nonthermal Atmospheric Pressure Plasma Treatment of Endosteal Implants for Osseointegration and Antimicrobial Efficacy: A Comprehensive Review. Bioengineering 2024, 11, 320. [Google Scholar] [CrossRef]
- da Silva, D.M.; Nascimento, F.D.; Milhan, N.V.M.; de Oliveira, M.A.C.; Cardoso, P.F.G.; Legendre, D.; Aoki, F.G.; Kostov, K.G.; Koga-Ito, C.Y. Cold Atmospheric Helium Plasma in the Post-COVID-19 Era: A Promising Tool for the Disinfection of Silicone Endotracheal Prostheses. Microorganisms 2024, 12, 130. [Google Scholar] [CrossRef]
- Nascimento, F.D.; da Graça Sampaio, A.; Milhan, N.V.M.; Gontijo, A.V.L.; Mattern, P.; Gerling, T.; Robert, E.; Koga-Ito, C.Y.; Kostov, K.G. A Low Cost, Flexible Atmospheric Pressure Plasma Jet Device with Good Antimicrobial Efficiency. IEEE Trans. Radiat. Plasma Med. Sci. 2024, 8, 307–322. [Google Scholar] [CrossRef]
- General Requirements for Plasma Sources in Medicine, Berlin, Germany. 2014. Available online: https://www.beuth.de/de/-/-/203493369 (accessed on 12 November 2024).
- ISO 10993-1:2018; Biological Evaluation of Medical Devices—Part 1: Evaluation and Testing within a Risk Management Process. International Standard Organization: Geneva, Switzerland, 2018. Available online: https://www.iso.org/standard/68936.html (accessed on 12 November 2024).
- Ariati, R.; Sales, F.; Souza, A.; Lima, R.A.; Ribeiro, J. Polydimethylsiloxane Composites Characterization and Its Applications: A Review. Polymers 2021, 13, 4258. [Google Scholar] [CrossRef]
- Nascimento, F.D.; Parada, S.; Moshkalev, S.; Machida, M. Plasma treatment of poly(dimethylsiloxane) surfaces using a compact atmospheric pressure dielectric barrier discharge device for adhesion improvement. Jpn. J. Appl. Phys. 2016, 55, 021602. [Google Scholar] [CrossRef]
- Nascimento, F.D.; Machida, M.; Canesqui, M.A.; Moshkalev, S.A. Comparison between Conventional and Transferred DBD Plasma Jets for Processing of PDMS Surfaces. IEEE Trans. Plasma Sci. 2017, 45, 346–355. [Google Scholar] [CrossRef]
- Ruben, B.; Elisa, M.; Leandro, L.; Victor, M.; Gloria, G.; Marina, S.; Pandiyan, S.M.K.R.; Nadhira, L. Oxygen plasma treatments of polydimethylsiloxane surfaces: Effect of the atomic oxygen on capillary flow in the microchannels. Micro Nano Lett. 2017, 12, 754–757. [Google Scholar] [CrossRef]
- Ouyang, M.; Yuan, C.; Muisener, J.; Boulares, A.; Koberstein, J.T. Conversion of Some Silicone Polymers to Silicon Oxide vy UV/Ozone Photochemical Processes. Chem. Mater. 2000, 12, 1591–1596. [Google Scholar] [CrossRef]
- Gomathi, N.; Mishra, I.; Varma, S.; Neogi, S. Surface modification of poly(dimethylsiloxane) through oxygen and nitrogen plasma treatment to improve its characteristics towards biomedical applications. Surf. Topogr. Metrol. Prop. 2015, 3, 035005. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kostov, K.G.; Barbosa, A.A.; do Nascimento, F.; Cardoso, P.F.G.; Almeida, A.C.P.L.; Quade, A.; Legendre, D.; Hein, L.R.O.; Silva, D.M.; Koga-Ito, C.Y. Plasma Surface Modification of the Inner Wall of Montgomery’s Tracheal Implant (T-Tube). Polymers 2024, 16, 3223. https://doi.org/10.3390/polym16223223
Kostov KG, Barbosa AA, do Nascimento F, Cardoso PFG, Almeida ACPL, Quade A, Legendre D, Hein LRO, Silva DM, Koga-Ito CY. Plasma Surface Modification of the Inner Wall of Montgomery’s Tracheal Implant (T-Tube). Polymers. 2024; 16(22):3223. https://doi.org/10.3390/polym16223223
Chicago/Turabian StyleKostov, Konstantin G., Ananias A. Barbosa, Fellype do Nascimento, Paulo F. G. Cardoso, Ana C. P. L. Almeida, Antje Quade, Daniel Legendre, Luiz R. O. Hein, Diego M. Silva, and Cristiane Y. Koga-Ito. 2024. "Plasma Surface Modification of the Inner Wall of Montgomery’s Tracheal Implant (T-Tube)" Polymers 16, no. 22: 3223. https://doi.org/10.3390/polym16223223
APA StyleKostov, K. G., Barbosa, A. A., do Nascimento, F., Cardoso, P. F. G., Almeida, A. C. P. L., Quade, A., Legendre, D., Hein, L. R. O., Silva, D. M., & Koga-Ito, C. Y. (2024). Plasma Surface Modification of the Inner Wall of Montgomery’s Tracheal Implant (T-Tube). Polymers, 16(22), 3223. https://doi.org/10.3390/polym16223223