Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (321)

Search Parameters:
Keywords = polymer-modified electrodes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 3343 KB  
Review
Progress in Nickel MOF-Based Materials for Electrochemical Biosensor and Supercapacitor Applications
by Shanmugam Vignesh, Khursheed Ahmad and Tae Hwan Oh
Biosensors 2025, 15(9), 560; https://doi.org/10.3390/bios15090560 - 25 Aug 2025
Viewed by 644
Abstract
Nickel-based metal–organic frameworks (Ni-MOFs) have received enormous amounts of attention from the scientific community due to their excellent porosity, larger specific surface area, tunable structure, and intrinsic redox properties. In previous years, Ni-MOFs and their hybrid composite materials have been extensively explored for [...] Read more.
Nickel-based metal–organic frameworks (Ni-MOFs) have received enormous amounts of attention from the scientific community due to their excellent porosity, larger specific surface area, tunable structure, and intrinsic redox properties. In previous years, Ni-MOFs and their hybrid composite materials have been extensively explored for electrochemical sensing applications. As per the reported literature, Ni-MOF-based hybrid materials have been used in the fabrication of electrochemical sensors for the monitoring of ascorbic acid, glucose, L-tryptophan, bisphenol A, carbendazim, catechol, hydroquinone, 4-chlorophenol, uric acid, kaempferol, adenine, L-cysteine, etc. The presence of synergistic effects in Ni-MOF-based hybrid materials plays a crucial role in the development of highly selective electrochemical sensors. Thus, Ni-MOF-based materials exhibited enhanced sensitivity and selectivity with reasonable real sample recovery, which suggested their potential for practical applications. In addition, Ni-MOF-based hybrid composites were also adopted as electrode modifiers for the development of supercapacitors. The Ni-MOF-based materials demonstrated excellent specific capacitance at low current densities with reasonable cyclic stability. This review article provides an overview of recent advancements in the utilization of Ni-MOF-based electrode modifiers with metal oxides, carbon-based materials, MXenes, polymers, and LDH, etc., for the electrochemical detection of environmental pollutants and biomolecules and for supercapacitor applications. In addition, Ni-based bimetallic and trimetallic catalysts and their composites have been reviewed for electrochemical sensing and supercapacitor applications. The key challenges, limitations, and future perspectives of Ni-MOF-based materials are discussed. We believe that the present review article may be beneficial for the scientific community working on the development of Ni-MOF-based materials for electrochemical sensing and supercapacitor applications. Full article
(This article belongs to the Special Issue Sensors for Environmental Monitoring and Food Safety—2nd Edition)
Show Figures

Figure 1

22 pages, 2775 KB  
Review
Tracking Lead: Potentiometric Tools and Technologies for a Toxic Element
by Martyna Drużyńska, Nikola Lenar and Beata Paczosa-Bator
Molecules 2025, 30(17), 3492; https://doi.org/10.3390/molecules30173492 - 25 Aug 2025
Viewed by 641
Abstract
Lead contamination remains a critical global concern due to its persistent toxicity, bioaccumulative nature, and widespread occurrence in water, food, and industrial environments. The accurate, cost-effective, and rapid detection of lead ions (Pb2+) is essential for protecting public health and ensuring [...] Read more.
Lead contamination remains a critical global concern due to its persistent toxicity, bioaccumulative nature, and widespread occurrence in water, food, and industrial environments. The accurate, cost-effective, and rapid detection of lead ions (Pb2+) is essential for protecting public health and ensuring environmental safety. Among the available techniques, potentiometric sensors, particularly ion-selective electrodes (ISEs), have emerged as practical tools owing to their simplicity, portability, low power requirements, and high selectivity. This review summarizes recent progress in lead-selective potentiometry, with an emphasis on electrode architectures and material innovations that enhance analytical performance. Reported sensors achieve detection limits as low as 10−10 M, broad linear ranges typically spanning 10−10–10−2 M, and near-Nernstian sensitivities of ~28–31 mV per decade. Many designs also demonstrate reproducible responses in complex matrices. Comparative analysis highlights advances in traditional liquid-contact electrodes and modern solid-contact designs modified with nanomaterials, ionic liquids, and conducting polymers. Current challenges—including long-term stability, calibration frequency, and selectivity against competing metal ions—are discussed, and future directions for more sensitive, selective, and user-friendly Pb2+ sensors are outlined. Full article
Show Figures

Figure 1

17 pages, 1576 KB  
Article
Design of an MIP-Based Electrochemical Sensor for the Determination of Paracetamol in Pharmaceutical Samples
by José Alberto Cabas Rodríguez, Fernando Javier Arévalo and Adrian Marcelo Granero
Biosensors 2025, 15(8), 544; https://doi.org/10.3390/bios15080544 - 19 Aug 2025
Viewed by 498
Abstract
Paracetamol (PAR) is a common antipyretic and analgesic extensively used to treat cold and flu symptoms. It has been proven to be effective in headaches and relieving fever and pain. It is usually found as an over-the-counter drug, which has been associated with [...] Read more.
Paracetamol (PAR) is a common antipyretic and analgesic extensively used to treat cold and flu symptoms. It has been proven to be effective in headaches and relieving fever and pain. It is usually found as an over-the-counter drug, which has been associated with an increase in cases of poisoning due to overdose. Therefore, the development of new analytical tools for the detection of PAR at low concentrations in different samples is necessary. In this work, a Molecularly Imprinted Polymer (MIP)-based electrochemical sensor was designed for the selective and sensitive determination of PAR using a glassy carbon electrode (GCE) modified with a polymeric film obtained through the electropolymerization of o-aminophenol. A complete characterization based on electrochemical techniques, such as electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV), and scanning electron microscopy (SEM) was used to examine all steps involved in the construction of the MIP-based electrochemical sensor. In addition, all parameters affecting the MIP were optimized. As a result, the MIP-based electrochemical sensor showed a very low limit of detection (LOD) of 10 nM, with an analytical sensitivity of (3.4 ± 0.1) A M⁻¹. In addition, construction of the MIP-based electrochemical sensor showed highly reproducibility, expressed in terms of a variation coefficient lower than 4%. The MIP-based electrochemical sensor was successfully used in an assay for the determination of PAR in pharmaceutical products. The performance of the MIP-based electrochemical sensor was compared to High Performance Liquid Chromatography (HPLC) for the determination of PAR in pharmaceutical samples, showing excellent agreement between the two methodologies. A very important aspect of the developed sensor was its reusability for at least twenty times. The MIP-based electrochemical sensor is a reliable analytical tool for the determination of PAR. Full article
Show Figures

Figure 1

15 pages, 3400 KB  
Article
Ti3C2TX MXene/Polyaniline-Modified Nylon Fabric Electrode for Wearable Non-Invasive Glucose Monitoring in Sweat
by Lichao Wang, Meng Li, Shengnan Ya, Hang Tian, Kerui Li, Qinghong Zhang, Yaogang Li, Hongzhi Wang and Chengyi Hou
Biosensors 2025, 15(8), 531; https://doi.org/10.3390/bios15080531 - 14 Aug 2025
Viewed by 599
Abstract
Sweat-based electrochemical sensors for wearable applications have attracted substantial interest due to their non-invasive nature, compact design, and ability to provide real-time data. Remarkable advancements have been made in integrating these devices into flexible platforms. While thin-film polymer substrates are frequently employed for [...] Read more.
Sweat-based electrochemical sensors for wearable applications have attracted substantial interest due to their non-invasive nature, compact design, and ability to provide real-time data. Remarkable advancements have been made in integrating these devices into flexible platforms. While thin-film polymer substrates are frequently employed for their durability, the prolonged buildup of sweat on such materials can disrupt consistent sensing performance and adversely affect skin comfort over extended periods. Therefore, investigating lightweight, comfortable, and breathable base materials for constructing working electrodes is essential for producing flexible and breathable sweat electrochemical sensors. In this study, nylon fabric was chosen as the base material for constructing the working electrode. The electrode is prepared using a straightforward printing process, incorporating Ti3C2TX MXene/polyaniline and methylene blue as modification materials in the electronic intermediary layer. The synergistic effect of the modified layer and the multi-level structure of the current collector enhances the electrochemical kinetics on the electrode surface, improves electron transmission efficiency, and enables the nylon fabric-based electrode to accurately and selectively measure glucose concentration in sweat. It exhibits a wide linear range (0.04~3.08 mM), high sensitivity (3.11 μA·mM−1), strong anti-interference capabilities, and high stability. This system can monitor glucose levels and trends in sweat, facilitating the assessment of daily sugar intake for personal health management. Full article
(This article belongs to the Section Biosensor and Bioelectronic Devices)
Show Figures

Graphical abstract

12 pages, 2679 KB  
Article
Polypyrrole-Modified Saccharomyces cerevisiae Used in Microbial Fuel Cell
by Kasparas Kižys, Domas Pirštelis, Ingrida Bružaitė and Inga Morkvėnaitė
Biosensors 2025, 15(8), 519; https://doi.org/10.3390/bios15080519 - 9 Aug 2025
Viewed by 422
Abstract
Microbial fuel cells (MFCs) are one of the contributors to the novel sustainable energy generation from organic waste. However, the application of MFCs is limited due to the slow charge transfer between cells and electrodes. This problem can be solved by modifying cells [...] Read more.
Microbial fuel cells (MFCs) are one of the contributors to the novel sustainable energy generation from organic waste. However, the application of MFCs is limited due to the slow charge transfer between cells and electrodes. This problem can be solved by modifying cells with conductive polymers, such as polypyrrole (PPy). We investigated the viability and electroactivity of modified cells at five different pyrrole concentrations, namely 8, 25, 50, 100, and 200 mM. The 100 mM concentration of PPy solution had the highest impact on yeast cells’ proliferation and growth, with the CFU/mL of PPy-treated yeast cells being 0.6 × 107 ± 5 × 10−2. The power density of the constructed MFC was evaluated by using an external load. The MFCs were analyzed using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Although CV results with different pyrrole concentrations were similar, DPV indicated that yeast modification with 50 mM pyrrole resulted in the most significant current density, which may be attributed to an increase in charge transfer due to the conductive properties of polypyrrole. The power density achieved with modified yeast in wastewater, 12 mW/m2, reached levels similar to those in laboratory solutions, 45 mW/m2. Full article
(This article belongs to the Section Biosensor Materials)
Show Figures

Figure 1

19 pages, 690 KB  
Review
Polymeric Composite-Based Electrochemical Sensing Devices Applied in the Analysis of Monoamine Neurotransmitters
by Stelian Lupu
Biosensors 2025, 15(7), 440; https://doi.org/10.3390/bios15070440 - 9 Jul 2025
Viewed by 549
Abstract
Electroanalysis of monoamine neurotransmitters is a useful tool for monitoring relevant neurodegenerative disorders and diseases. Electroanalysis of neurotransmitters using analytical devices consisting of electrodes modified with tailored and nanostructured composite materials is an active research topic nowadays. Nano- and microstructured composite materials composed [...] Read more.
Electroanalysis of monoamine neurotransmitters is a useful tool for monitoring relevant neurodegenerative disorders and diseases. Electroanalysis of neurotransmitters using analytical devices consisting of electrodes modified with tailored and nanostructured composite materials is an active research topic nowadays. Nano- and microstructured composite materials composed of various organic conductive polymers, metal/metal oxide nanoparticles, and carbonaceous materials enable an increase in the performance of electroanalytical sensing devices. Synergistic properties resulting from the combination of various pristine nanomaterials have enabled faster kinetics and increased overall performance. Herein, recent results related to the design and elaboration of electroanalytical sensing devices based on cost-effective and reliable nano- and microstructured composite materials for the quantification of monoamine neurotransmitters are presented. The discussion focuses on the fabrication procedures and detection strategies, highlighting the capabilities of the analytical platforms used in the determination of relevant analytes. The review aims to present the main benefits of using composite nanostructured materials in the electroanalysis of monoamine neurotransmitters. Full article
(This article belongs to the Special Issue Innovative Biosensing Technologies for Sustainable Healthcare)
Show Figures

Figure 1

19 pages, 3235 KB  
Article
Electrochemical Detection of Bisphenol S Based on Molecularly Imprinted Polymers Grafted on Functionalized Multiwalled Carbon Nanotubes: A Facile Sensor Fabrication Approach
by Christopher Mwanza, Lin Zhao, Qing Zhang and Shou-Nian Ding
Chemosensors 2025, 13(7), 236; https://doi.org/10.3390/chemosensors13070236 - 30 Jun 2025
Viewed by 586
Abstract
Bisphenol S (BPS), a key ingredient in polycarbonate plastics and epoxy resins, is a known endocrine-disrupting compound that poses significant risks to human health and the environment. As such, the development of rapid and reliable analytical techniques for its detection is essential. In [...] Read more.
Bisphenol S (BPS), a key ingredient in polycarbonate plastics and epoxy resins, is a known endocrine-disrupting compound that poses significant risks to human health and the environment. As such, the development of rapid and reliable analytical techniques for its detection is essential. In this work, we present a newly engineered electrochemical sensor designed for the sensitive and selective detection of BPS using a straightforward and effective fabrication approach. The sensor was constructed by grafting molecularly imprinted polymers (MIPs) onto vinyl-functionalized multiwalled carbon nanotubes (f-MWCNTs). Ethylene glycol dimethacrylate and acrylamide were used as the cross-linker and functional monomer, respectively, in the synthesis of the MIP layer. The resulting MIP@f-MWCNT nanocomposite was characterized using Fourier-transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). The MIP@f-MWCNT material was then combined with chitosan, a biocompatible binder, to fabricate the final MIP@f-MWCNT/chitosan-modified glassy carbon electrode (GCE). Electrochemical evaluation showed a broad linear detection range from 1 to 60 µM (R2 = 0.992), with a sensitivity of 0.108 µA/µM and a detection limit of 2.00 µM. The sensor retained 96.0% of its response after four weeks and exhibited high selectivity against structural analogues. In spiked plastic extract samples, recoveries ranged from 95.6% to 105.0%. This robust, cost-effective, and scalable sensing platform holds strong potential for environmental monitoring, food safety applications, and real-time electrochemical detection of endocrine-disrupting compounds like BPS. Full article
(This article belongs to the Special Issue Nanostructured Materials for Electrochemical Sensing)
Show Figures

Graphical abstract

20 pages, 5705 KB  
Article
Polyacrylic Surfactant-Enabled Engineering of Co3O4 Electrodes for Enhanced Asymmetric Supercapacitor Performance
by Rutuja U. Amate, Pritam J. Morankar, Mrunal K. Bhosale, Aviraj M. Teli, Sonali A. Beknalkar and Chan-Wook Jeon
Materials 2025, 18(12), 2916; https://doi.org/10.3390/ma18122916 - 19 Jun 2025
Viewed by 435
Abstract
In this work, we report a facile and tunable electrodeposition approach for engineering polyacrylic acid (PAA)-modified Co3O4 electrodes on nickel foam for high-performance asymmetric pouch-type supercapacitors. By systematically varying the PAA concentration (0.5 wt %, 1 wt %, and 1.5 [...] Read more.
In this work, we report a facile and tunable electrodeposition approach for engineering polyacrylic acid (PAA)-modified Co3O4 electrodes on nickel foam for high-performance asymmetric pouch-type supercapacitors. By systematically varying the PAA concentration (0.5 wt %, 1 wt %, and 1.5 wt %), we demonstrate that the CO-1 sample (1 wt % PAA) exhibited the most optimized structure and electrochemical behavior. The CO-1 electrode delivered a remarkable areal capacitance of 3467 mF/cm2 at 30 mA/cm2, attributed to its interconnected nanosheet morphology, enhanced ion diffusion, and reversible Co2+/Co3+/Co4+ redox transitions. Electrochemical impedance spectroscopy confirmed low internal resistance (0.4267 Ω), while kinetic analysis revealed a dominant diffusion-controlled charge storage contribution of 91.7%. To evaluate practical applicability, an asymmetric pouch-type supercapacitor device was assembled using CO-1 as the positive electrode and activated carbon as the negative electrode. The device operated efficiently within a 1.6 V window, achieving an impressive areal capacitance of 157 mF/cm2, an energy density of 0.056 mWh/cm2, a power density of 1.9 mW/cm2, and excellent cycling stability. This study underscores the critical role of polymer-assisted growth in tailoring electrode architecture and provides a promising route for integrating cost-effective and scalable supercapacitor devices into next-generation energy storage technologies. Full article
Show Figures

Figure 1

13 pages, 7042 KB  
Article
Electrochemical Sensor Capable of Enhancing Dopamine Sensitivity Based on Micron-Sized Metal–Organic Frameworks
by Ruhui Yan, Yuewu Zhao, Huaixiao Geng, Mengxia Yan, Jine Wang and Shuang Han
Biosensors 2025, 15(6), 348; https://doi.org/10.3390/bios15060348 - 30 May 2025
Viewed by 617
Abstract
Micron-sized, ultrathin metal–organic framework (MOF) sheet is a two-dimensional (2D) hybrid material with a large specific surface area, which can be used not only in the fields of energy and biomedicine, but also in electrode modification to improve the electrochemical detection effect. In [...] Read more.
Micron-sized, ultrathin metal–organic framework (MOF) sheet is a two-dimensional (2D) hybrid material with a large specific surface area, which can be used not only in the fields of energy and biomedicine, but also in electrode modification to improve the electrochemical detection effect. In this work, the 2D-structured Co-TCPP(Fe) MOF sheets were synthesized from porphyrin molecules and cobalt ions and then combined with reduced graphene oxide (rGO) and perfluorosulfonic acid polymer (Nafion) solution to construct Co-TCPP(Fe)/rGO/Nafion-modified electrodes capable of sensitively capturing dopamine (DA). The 2D ultrathin lamellar structure of this electrode-modified material is beneficial to the formation of π-π stacking effect with DA molecules, and the oxygen-containing groups carried on its surface can also form electrostatic attraction with the amino groups of DA molecules. Therefore, the Co-TCPP(Fe)/rGO/Nafion-modified electrode under the synergistic effect shows a specific adsorption effect on DA molecules, resulting in high anti-interference ability and a low detection limit of 0.014 µM in the concentration range of 0.1–100 µM. Furthermore, the Co-TCPP(Fe)/rGO/Nafion composite material composed of micron-sized, ultrathin lamellar structures also shows high reusability due to the stability of its coordination structure and can demonstrate good results when applied to the actual sample detection of human urine. Full article
(This article belongs to the Special Issue Advances in Biosensors Based on Framework Materials)
Show Figures

Figure 1

23 pages, 2445 KB  
Review
Nanofiber-Based Innovations in Energy Storage Systems
by Iva Rezić Meštrović and Maja Somogyi Škoc
Polymers 2025, 17(11), 1456; https://doi.org/10.3390/polym17111456 - 23 May 2025
Viewed by 1032
Abstract
Nanofibers have emerged as transformative materials in the field of energy storage, offering unique physicochemical properties such as high surface area, porosity, and tunable morphology. Recent advancements have also introduced genetically modified fibers—engineered at the biological level to produce functionalized nanostructures with customizable [...] Read more.
Nanofibers have emerged as transformative materials in the field of energy storage, offering unique physicochemical properties such as high surface area, porosity, and tunable morphology. Recent advancements have also introduced genetically modified fibers—engineered at the biological level to produce functionalized nanostructures with customizable properties. These bioengineered nanofibers add a sustainable and potentially self-healing component to energy storage materials. This paper reviews key applications of conventional and genetically modified nanofibers in lithium-ion and sodium-ion batteries, supercapacitors, hybrid systems, and flexible energy storage with a focus on how genetic and molecular engineering of fibrous materials enables new capabilities in ion transport, electrode architecture, and device longevity. Together, these advances contribute to the development of next-generation energy storage systems with enhanced performance, biocompatibility, and sustainability. This review therefore critically examines the current state, advantages, and limitations of both synthetic and biopolymer-based materials in energy storage applications. It discusses recent technological innovations, such as polymer–nanoparticle composites, functionalized polymer matrices, and next-generation polymer electrolytes. Future research should prioritize enhancing conductivity, improving scalability, and reducing environmental impact, ensuring that polymer-based materials contribute to the development of more efficient and sustainable energy storage technologies. Full article
(This article belongs to the Section Polymer Fibers)
Show Figures

Figure 1

25 pages, 899 KB  
Review
A Scoping Review of Vitamins Detection Using Electrochemically Polymerised, Molecularly Imprinted Polymers
by Mohd Azerulazree Jamilan, Balqis Kamarudin, Zainiharyati Mohd Zain, Kavirajaa Pandian Sambasevam, Faizatul Shimal Mehamod and Mohd Fairulnizal Md Noh
Polymers 2025, 17(10), 1415; https://doi.org/10.3390/polym17101415 - 21 May 2025
Cited by 1 | Viewed by 845
Abstract
Vitamins are crucial micro-nutrients for overall well-being, making continuous monitoring essential. There are demands to provide an alternative detection, especially using a portable detection or a point-of-care-testing (POCT) device. One promising approach is employing an in situ electro-polymerised MIP (eMIP), which offers a [...] Read more.
Vitamins are crucial micro-nutrients for overall well-being, making continuous monitoring essential. There are demands to provide an alternative detection, especially using a portable detection or a point-of-care-testing (POCT) device. One promising approach is employing an in situ electro-polymerised MIP (eMIP), which offers a straightforward polymerisation technique on screen-printed electrodes (SPEs). Here, we report a review based on three databases (PubMed, Scopus, and Web of Science) from 2014 to 2024 using medical subject heading (MeSH) terms “electrochemical polymerisation” OR “electropolymerisation” crossed with the terms “molecularly imprinted polymer” AND “vitamin A” OR “vitamin D” OR “vitamin E” OR “vitamin K” OR “fat soluble vitamin” OR “vitamin B” OR “vitamin C” OR “water soluble vitamin”. The resulting 12 articles covered the detection of vitamins in ascorbic acid, riboflavin, cholecalciferol, calcifediol, and menadione using monomers of catechol (CAT), 3,4-ethylenedioxythiophene (EDOT), o-aminophenol (oAP), o-phenylenediamine (oPD), pyrrole, p-aminophenol (pAP), p-phenylenediamine (pPD), or resorcinol (RES), using common bare electrodes including graphite rod electrode (GRE), glassy carbon electrode (GCE), gold electrode (GE), and screen-printed carbon electrode (SPCE). The most common electrochemical detections were differential pulse voltammetry (DPV) and linear sweep voltammetry (LSV). The imprinting factor (IF) of the eMIP-modified electrodes were from 1.6 to 21.0, whereas the cross-reactivity was from 0.0% to 29.9%. Several types of food and biological samples were tested, such as supplement tablets, poultry and pharmaceutical drugs, soft drinks, beverages, milk, infant formula, human and calf serum, and human plasma. However, more discoveries and development of detection methods needs to be performed, especially for the vitamins that have not been studied yet. This will allow the improvement in the application of eMIPs on portable-based detection and POCT devices. Full article
(This article belongs to the Special Issue Molecularly Imprinted Polymers: Latest Advances and Applications)
Show Figures

Graphical abstract

17 pages, 6284 KB  
Article
Study on the Energy Storage and Driving Performance of IPMC with Laminated Structure Electrodes
by Jintao Zhao, Yanqi Dong, Zhenjie Zhang, Dongyu Yang, Siyan Zhang and Mingchuan Jia
Coatings 2025, 15(5), 577; https://doi.org/10.3390/coatings15050577 - 13 May 2025
Viewed by 541
Abstract
Ionic polymer–metal composites (IPMC) have the advantages of a large driving mass ratio, low driving voltage, and high current sensitivity, but their low electrode continuity, low energy storage, and unclear driving response mechanisms limit further application and development. In this study, Nafion is [...] Read more.
Ionic polymer–metal composites (IPMC) have the advantages of a large driving mass ratio, low driving voltage, and high current sensitivity, but their low electrode continuity, low energy storage, and unclear driving response mechanisms limit further application and development. In this study, Nafion is used as the base film and metallic silver is used as the electrode material to modify IPMC electrodes. The physical and electrochemical properties of silver-based IPMC with three electrode preparation processes are tested, and the effects of different electrode preparation processes and structures on the energy storage performance and driving performance of IPMC are analyzed. The results show that the electrode coating effect of the Hot Press Chemical Plating method (HPCP) is good and maintains better continuity, and the formed layer electrode can improve the energy storage performance of IPMC, and the enhancement of energy storage performance can improve the driving performance of IPMC. This study enhances the energy storage performance and driving performance of IPMC from the perspective of electrode process and structure and provides a basis for the study of the enhancement of energy storage performance of IPMC by the HPCP electrode preparation process. Full article
(This article belongs to the Special Issue Cutting Performance of Coated Tools)
Show Figures

Graphical abstract

13 pages, 5903 KB  
Article
Assembled Carbon Nanostructure Prepared by Spray Freeze Drying for Si-Based Anodes
by Wanxiong Zhu, Liewen Guo, Kairan Li, Mengxue Shen, Chang Lu, Zipeng Jiang, Huaihe Song and Ang Li
Nanomaterials 2025, 15(9), 661; https://doi.org/10.3390/nano15090661 - 26 Apr 2025
Viewed by 620
Abstract
Silicon-based materials provide a new pathway to break through the energy storage limits of battery systems but their industrialization process is still constrained by inherent diffusion hysteresis and unstable electrode structures. In this work, we propose a novel structural design strategy employing a [...] Read more.
Silicon-based materials provide a new pathway to break through the energy storage limits of battery systems but their industrialization process is still constrained by inherent diffusion hysteresis and unstable electrode structures. In this work, we propose a novel structural design strategy employing a modified spray freeze drying technique to construct multidimensional carbon nanostructures. The continuous morphological transition from carbon nanowires to carbon nanosheets was facilitated by the inducement of ultralow-temperature phase separation and the effect of polymer self-assembly. The unique wrinkled carbon nanosheet encapsulation effectively mitigated the stress concentration induced by the aggregation of silicon nanoparticles, while the open two-dimensional structure buffered the volume changes of silicon. As expected, the SSC-5M composite retained a reversible capacity of 1279 mAh g−1 after 100 cycles at 0.2 C (1 C = 1700 mAh g−1) and exhibited a capacity retention of 677.1 mAh g−1 after 400 cycles at 1 C, demonstrating excellent cycling stability. This study offers a new strategy for the development of silicon-based energy storage devices. Full article
(This article belongs to the Special Issue Nanoscale Carbon Materials for Advanced Energy-Related Applications)
Show Figures

Figure 1

19 pages, 4657 KB  
Article
Highly Sensitive Oxytetracycline Detection Using QCM and Molecularly Imprinted Polymers with Deep Eutectic Solvents
by Cheng Chen, Liling Wang, Lin Xu, Houjun Wang, Peng Ye, Shuang Liao and Feng Tan
Polymers 2025, 17(7), 946; https://doi.org/10.3390/polym17070946 - 31 Mar 2025
Cited by 1 | Viewed by 662
Abstract
This study presents an efficient method for detecting oxytetracycline, which is critical in environmental monitoring and food safety. A highly sensitive detection platform was developed by combining molecularly imprinted polymers (MIPs) with silica as a carrier, modified with deep eutectic solvents (DES), and [...] Read more.
This study presents an efficient method for detecting oxytetracycline, which is critical in environmental monitoring and food safety. A highly sensitive detection platform was developed by combining molecularly imprinted polymers (MIPs) with silica as a carrier, modified with deep eutectic solvents (DES), and a quartz crystal microbalance (QCM) sensor. The MIPs were specifically designed to target oxytetracycline hydrochloride, using SiO2 as the carrier, DES as the functional monomer, N, N-methylenebisacrylamide as the crosslinker, and ammonium persulfate as the initiator. The MIPs exhibited an adsorption capacity of 27.23 mg/g for oxytetracycline hydrochloride. After modification of the MIPs onto a gold electrode surface, a QCM-based sensor platform was constructed. The sensor demonstrated an exceptionally low detection limit of 0.019 ng/mL for oxytetracycline and exhibited excellent sensitivity in tap water. Furthermore, the sensor maintained over 90% detection performance after two weeks of room-temperature storage, indicating its stability. This method provides a rapid, highly sensitive approach for oxytetracycline detection, with potential for future improvements and widespread application in antibiotic testing. Full article
(This article belongs to the Special Issue Functional Polymers and Novel Applications)
Show Figures

Figure 1

17 pages, 5652 KB  
Article
A Molecularly Imprinted Polymer Nanobodies (nanoMIPs)-Based Electrochemical Sensor for the Detection of Staphylococcus epidermidis
by Witsanu Rapichai, Chularat Hlaoperm, Adriana Feldner, Julia Völkle, Kiattawee Choowongkomon, Jatuporn Rattanasrisomporn and Peter A. Lieberzeit
Sensors 2025, 25(7), 2150; https://doi.org/10.3390/s25072150 - 28 Mar 2025
Cited by 1 | Viewed by 1194
Abstract
Methicillin-resistant Staphylococcus epidermidis (MRSE) contamination is commonly found on human skin and medical devices. Herein, we present a sensor utilizing molecularly imprinted polymer nanobodies (nanoMIP) for recognition and electrochemical impedance spectroscopy (EIS) to detect S. epidermidis. Sensor manufacturing involves synthesizing nanoMIP via solid-phase [...] Read more.
Methicillin-resistant Staphylococcus epidermidis (MRSE) contamination is commonly found on human skin and medical devices. Herein, we present a sensor utilizing molecularly imprinted polymer nanobodies (nanoMIP) for recognition and electrochemical impedance spectroscopy (EIS) to detect S. epidermidis. Sensor manufacturing involves synthesizing nanoMIP via solid-phase synthesis using whole bacteria as templates. Screen-printed gold electrode (AuSPE)-modified 16-mercaptohexadecanoic acid (MHDA) served to immobilize the nanoMIPs on the sensor surface through an amide bond, with the remaining functional groups blocked by ethanolamine (ETA). Scanning electron microscope (SEM) analysis of the modified AuSPE surface reveals immobilized spherical nanoMIP particles of 114–120 nm diameter, while atomic force microscope (AFM) analysis showed increased roughness and height compared to bare AuSPE. The sensor is selective for S. epidermidis, with a remarkable detection limit of 1 CFU/mL. This research demonstrates that the developed nanoMIP-based sensor effectively detects S. epidermidis. Further research will focus on developing protocols to integrate the nanoMIP-based EIS sensor into medical and industrial applications, ultimately contributing to improved safety for both humans and animals in the future. Full article
(This article belongs to the Section Nanosensors)
Show Figures

Figure 1

Back to TopTop