Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (146)

Search Parameters:
Keywords = pool fire

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
43 pages, 3634 KB  
Article
Decarbonization of the Power Sector with CCS: Case Study in Two Regions in the U.S., MISO North and SPP RTO West
by Ivonne Pena Cabra, Arun K. S. Iyengar, Kirk Labarbara, Robert Wallace and John Brewer
Energies 2025, 18(17), 4738; https://doi.org/10.3390/en18174738 - 5 Sep 2025
Viewed by 835
Abstract
This paper estimates potential changes in the total system cost (TSC) of decarbonization of two regional transmission organizations (RTOs) in the United States (U.S.)—Midcontinent Independent System Operator-North (MISO-N) and Southwest Power Pool (SPP) RTO West. In particular, the study serves to highlight potential [...] Read more.
This paper estimates potential changes in the total system cost (TSC) of decarbonization of two regional transmission organizations (RTOs) in the United States (U.S.)—Midcontinent Independent System Operator-North (MISO-N) and Southwest Power Pool (SPP) RTO West. In particular, the study serves to highlight potential differences in technology costs between two decarbonization pathways at carbon reduction rates close to 100% (relative to 2019 levels) while maintaining system reliability. In Pathway A, decarbonization is achieved by replacing fossil energy (FE)-fired thermal power plants with variable renewable energy (VRE) technologies coupled with energy storage (ES). Pathway B considers retrofitting fossil fuel-fired units with carbon capture and storage (CCS) and the addition of VRE and ES. The results show that including CCS technologies in the path to decarbonization has a significant benefit from a system cost perspective. When summing up all system costs and avoided emissions over 30 years of operation of the decarbonized systems, the pathway that includes CCS is significantly more cost-effective. TSCs for MISO-N are at least USD 1279 billion (B) and at most USD 910 B under Pathways A and B, respectively. For SPP RTO West, Pathway A TSCs are at least USD 230 B, and Pathway B TSCs are at most USD 153 B. TSCs of Pathway A are 1.4–8 times larger than the total system costs of Pathway B. When CCS is not included, the cost per ton of carbon dioxide (CO2) avoided is estimated to be USD 124–489/ton for MISO-N and USD 248–552/ton for SPP RTO West. When CCS is included, the cost of avoided CO2 is projected to decrease by 29–87% (mid-point estimate of 73%) with values varying between USD 64 and 114/ton and USD 74 and 164/ton for MISO-N and SPP RTO West, respectively. These differences highlight the need for consideration of all low-carbon-intensive technology options in cost-optimal approaches to deep decarbonization and the value of CCS technologies in the energy transition. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

19 pages, 5541 KB  
Article
Study on the Competition Mechanism Between Capillary Effect and Insulation Effect of Porous Media Substrate on Fuel Combustion
by Keyu Lin, Xinsheng Jiang, Shijie Zhu, Peili Zhang, Jimiao Duan, Yuxiang Zhou, Run Li and Sai Wang
Fire 2025, 8(9), 355; https://doi.org/10.3390/fire8090355 - 5 Sep 2025
Viewed by 610
Abstract
The combustion of liquid fuels that have leaked into inert porous media, such as sand, is a critical issue for industrial safety and fire risk assessment. Despite its importance, the complex influence of porous media on the combustion process, particularly the governing mechanisms [...] Read more.
The combustion of liquid fuels that have leaked into inert porous media, such as sand, is a critical issue for industrial safety and fire risk assessment. Despite its importance, the complex influence of porous media on the combustion process, particularly the governing mechanisms of flame morphology and heat release, remains poorly understood, hindering accurate hazard prediction. This study addresses this gap by systematically investigating the combustion characteristics of 92# gasoline on quartz sand substrates with thicknesses ranging from 0 to 4 cm. Through a series of controlled laboratory experiments, key parameters including mass loss rate, heat release rate (HRR), and flame morphology were quantified. The findings reveal that, unlike the classical three-stage combustion of pool fires, the presence of porous media introduces a “slow burning period,” resulting in a unique four-stage combustion mode. The sand layer significantly suppresses combustion intensity, with the dimensionless heat release rate (Q*) being proportional to the dimensionless layer thickness (d*) raised to the power of −2.54. Crucially, flame height was found to be governed not by the HRR, but by a competition between the capillary effect (driving upward fuel transport) and the thermal effect (insulation and heat absorption). Based on this mechanism, a novel flame height prediction model was developed, which showed excellent agreement with 23 experimental datasets (R2 = 0.92, average relative error 1.72%). This study elucidates the core physical mechanisms governing liquid fuel combustion in porous media. The proposed model provides a robust theoretical foundation for predicting fire development and assessing the risks associated with leaked fuel fires, offering a valuable tool for safety engineering and emergency response. Full article
Show Figures

Figure 1

18 pages, 2057 KB  
Article
Numerical Simulation on Effect of Pulsed Water Mist on Temperature and Thermal Radiation in Long and Narrow Underground Space During Fire
by Yanli Deng, Beifang Gu, Ruiqing Zhang, Lielie Li and Lihua Niu
Fire 2025, 8(9), 350; https://doi.org/10.3390/fire8090350 - 3 Sep 2025
Viewed by 653
Abstract
This study numerically investigated how varying pulse durations of water mist systems influence fire dynamics in long, narrow underground enclosures. A Fire Dynamics Simulator (FDS) model was built to represent a pulse-actuated, fine water mist test rig, and simulations of oil pan fires [...] Read more.
This study numerically investigated how varying pulse durations of water mist systems influence fire dynamics in long, narrow underground enclosures. A Fire Dynamics Simulator (FDS) model was built to represent a pulse-actuated, fine water mist test rig, and simulations of oil pan fires were performed to quantify the evolution of temperature and radiative heat flux. Results show that an 8 s spray followed by an 8 s pause yields the most effective suppression cycle. When spray and pause durations are equal, periodic momentum exchange resonates with the buoyant plume, intensifying the mixing of gas and enhancing cooling near the fire seat. Compared with continuous discharge, pulsed mist generates stronger buoyancy-driven disturbances and delivers superior performance in terms of local heat’s extraction and extinguishment. This study has, for the first time, determined the optimal pulse cycle (8 s spray/8 s stop) for oil pool fires in narrow and long underground spaces through FDS simulation, and revealed the enhancement effect of the gas disturbance resonance mechanism on fire suppression efficiency. Full article
Show Figures

Figure 1

19 pages, 1563 KB  
Article
Effects of Biochar Application on Nitrogen Fixation and Water Use Efficiency of Understorey Acacia Species as well as Soil Carbon and Nitrogen Pools in a Subtropical Native Forest
by Ashrafun Nessa, Shahla Hosseini Bai, Zakaria Karim, Jiaping Yang and Zhihong Xu
Forests 2025, 16(8), 1350; https://doi.org/10.3390/f16081350 - 19 Aug 2025
Viewed by 614
Abstract
This study aimed to examine how biochar and Acacia species would affect biological nitrogen fixation (BNF) and water use efficiency (WUE) of understorey Acacia species as well as soil carbon (C) and nitrogen (N) pools 15 months after biochar application in the suburban [...] Read more.
This study aimed to examine how biochar and Acacia species would affect biological nitrogen fixation (BNF) and water use efficiency (WUE) of understorey Acacia species as well as soil carbon (C) and nitrogen (N) pools 15 months after biochar application in the suburban native forest of subtropical Australia. This experiment was established with wood biochar applied at 0, 5, and 10 t ha−1 at 20 months after prescribed burning. We collected foliar and soil samples 15 months after biochar application and used N isotope composition (δ15N) and carbon isotope composition (δ13C) to assess the BNF and WUE of two understorey Acacia species (Acacia leiocalyx and Acacia disparrima). We also characterised soil C and N pools and their δ15N and δ13C. Biochar did not influence Acacia plant BNF and WUE 15 months after biochar application. However, the BNF of A. leiocalyx was significantly greater compared with that of A. disparrima. The soil under A. leiocalyx had greater NH4+-N (i.e., 10–20 cm) but lower δ15N than A. disparrima. This study represents one of the few attempts to apply the 15N natural abundance (δ15N) techniques to quantify the soil–plant–microbe interactions for N cycling in a native forest ecosystem. Understorey A. leiocalyx was more effective in improving N recovery post-fire via BNF. Soil under A. leiocalyx had greater N availability with lower δ15N, influencing plant available N sources and δ15N. Thus, A. leiocalyx would be able to fix more N2 from the air compared with that of A. disparrima in the suburban native forest ecosystem subject to periodical fuel reduction prescribed burning. Full article
(This article belongs to the Section Forest Soil)
Show Figures

Figure 1

16 pages, 5438 KB  
Article
Fire Assessment of a Subway Train Fire: A Study Based on Full-Scale Experiments and Numerical Simulations
by Xingji Wang, Keshu Zhang, Qilong Shi, Bin Zeng, Qiang Li and Dong Li
Fire 2025, 8(7), 259; https://doi.org/10.3390/fire8070259 - 30 Jun 2025
Cited by 1 | Viewed by 898
Abstract
Assessments of subway train fires were conducted based on full-scale experiments and numerical simulations. The experimental platform and simulation model were established according to a real subway train in China. The results show that there was no obvious flame spread, and all the [...] Read more.
Assessments of subway train fires were conducted based on full-scale experiments and numerical simulations. The experimental platform and simulation model were established according to a real subway train in China. The results show that there was no obvious flame spread, and all the electrical circuitry maintained its integrity during a standard luggage fire. The maximum HRR (heat release rate) of the luggage fire obtained through the full-scale experiment was 155.5 kW, which was almost the same as the standard HRR curve provided in EN 45545-1. However, the fire only lasted approximately 180 s, which was much shorter than a standard fire (600 s). Through numerical simulations of an entire subway train, the side wall and roof ignited quickly, and the fire continually spread to the adjacent compartment under the extreme scenario with a gasoline pool fire and exposed winterproof material. The maximum HRRs of the luggage and gasoline pool fires were 179.7 and 17,800.0 kW, respectively. According to the experimental and simulation results, the Duggan method, which assumes that all combustibles inside a train compartment burn at the same time, was not appropriate for assessing the fires in the subway train, and a simple revised frame was proposed instead. Full article
(This article belongs to the Special Issue Modeling, Experiment and Simulation of Tunnel Fire)
Show Figures

Figure 1

18 pages, 4401 KB  
Article
Computational Fluid Dynamics Investigation of Flow and Flame Behavior in Natural Gas Burners for Borax Pentahydrate Furnaces
by Mehmed Rafet Ozdemir, Ramazan Sener, İlker Solakoglu and Bahadır Tunaboylu
Processes 2025, 13(6), 1660; https://doi.org/10.3390/pr13061660 - 26 May 2025
Viewed by 1147
Abstract
The combustion behavior and thermal performance of industrial-scale borax pentahydrate (Na2B4O7·5H2O) melting furnaces remain underexplored despite their critical role in boric oxide (B2O3) production, a key input for high-performance manufacturing. This [...] Read more.
The combustion behavior and thermal performance of industrial-scale borax pentahydrate (Na2B4O7·5H2O) melting furnaces remain underexplored despite their critical role in boric oxide (B2O3) production, a key input for high-performance manufacturing. This study addressed this gap by employing three-dimensional computational fluid dynamics (CFD) simulations to model two operational natural gas-fired furnaces with distinct burner configurations (four-burner and six-burner systems). The analysis focused on optimizing burner placement, specifically, the axial distance and inclination angle, to enhance thermal uniformity and reduce refractory wall damage caused by aggressive high-temperature borate corrosion. A comprehensive parametric study of twelve burner configurations revealed that tilting the burners at 5–10° significantly improved temperature uniformity while reducing peak wall temperatures and mitigating localized hot spots. The optimal design, incorporating a 10° burner angle and a staggered burner arrangement (Case 11), attained a melt pool temperature of 1831.3 K and a charging average wall temperature of 1812.0 K. These values represent essential benchmarks for maximizing furnace efficiency and operational stability. The modified designs for the four- and six-burner systems led to improved temperature distributions and a notable reduction in maximum wall temperatures, directly contributing to longer maintenance intervals and improved refractory durability. The findings of this study confirm that minor geometrical and angular adjustments in burner placement can yield significant performance gains. The validated CFD approach and proposed design modifications offer a scalable, low-cost strategy for improving combustion efficiency and furnace lifespan in borax processing facilities. Full article
Show Figures

Figure 1

33 pages, 14264 KB  
Article
Experimental Study on Mixed Combustion Characteristics of Methanol/Diesel Pool Fires in Engine Rooms of Hybrid Ships
by Jiaqi Dong, Zhongzheng Wu, Jinqi Han, Jianghao Li, Jiacheng Liu, Yunfeng Yan and Liang Wang
Energies 2025, 18(8), 1991; https://doi.org/10.3390/en18081991 - 12 Apr 2025
Viewed by 937
Abstract
Methanol/diesel hybrid−powered vessels represent a significant advancement in green and low−carbon innovation in the maritime transportation sector and have been widely adopted across various shipping markets. However, the dual−fuel power system modifies the fire load within the engine room compared to traditional vessels, [...] Read more.
Methanol/diesel hybrid−powered vessels represent a significant advancement in green and low−carbon innovation in the maritime transportation sector and have been widely adopted across various shipping markets. However, the dual−fuel power system modifies the fire load within the engine room compared to traditional vessels, thereby significantly influencing the fire safety of methanol/diesel−powered ships. In this study, anhydrous methanol and light−duty diesel (with 0 °C pour point) were used as fuels to investigate the mixed combustion characteristics of these immiscible fuels in circular pools with diameters of 6, 10, 14, and 20 cm at various mixing ratios. By analyzing the fuel mass loss rate, flame morphology, and heat transfer characteristics, it was determined that methanol and diesel exhibited distinct stratification during combustion, with the process comprising three phases: pure methanol combustion phase, transitional combustion phase, and pure diesel combustion phase. Slopover occurred during the transitional combustion phase, and its intensity decreased as the pool diameter or methanol fuel quantity increased. Based on this conclusion, a quantitative relationship was established between slopover intensity, pool diameter, and the methanol/diesel volume ratio. Additionally, during the transitional combustion phase, the average flame height exhibited an exponential coupling relationship with the pool diameter and the methanol/diesel volume ratio. Therefore, a modification was made to the classical flame height model to account for these effects. Moreover, a prediction model for the burning rate of methanol/diesel pool fires was established based on transient temperature variations within the fuel layer. This model incorporated a correction factor related to pool diameter and fuel mixture ratio. Additionally, the causes of slopover were analyzed from the perspectives of heat transfer and fire dynamics, further refining the physical interpretation of the correction factor. Full article
(This article belongs to the Section I2: Energy and Combustion Science)
Show Figures

Figure 1

14 pages, 15501 KB  
Article
Experimental Study on the Burning Characteristics of Photovoltaic Modules with Different Inclination Angles Under the Pool Fire
by Jingwen Xiao, Dong Lin, Jia Zeng, Shuai Zhang and Jinlong Zhao
Fire 2025, 8(4), 143; https://doi.org/10.3390/fire8040143 - 2 Apr 2025
Viewed by 1061
Abstract
Mountain photovoltaic (PV) power stations cover vast areas and contain dense equipment. Once direct current arc faults occur in PV modules, they can pose a serious thermal threat to surrounding facilities and combustible materials, potentially resulting in a PV array fire accident. In [...] Read more.
Mountain photovoltaic (PV) power stations cover vast areas and contain dense equipment. Once direct current arc faults occur in PV modules, they can pose a serious thermal threat to surrounding facilities and combustible materials, potentially resulting in a PV array fire accident. In this work, a series of PV module fire experiments were conducted to investigate the burning characteristics of PV modules exposed to the pool fire. The burning process, burning damage extent, and temperature distribution were measured and analyzed. The results showed that the surfaces of PV modules exhibited different burning characteristics due to the pool fire. Based on different characteristics, the front side was classified into four zones: intact zone, delamination zone, carbonization zone and burn-through zone. The back side was similarly divided into four zones: undamaged backsheet zone, burnt TPT zone, cell detachment zone and burn-through zone. Meanwhile, the burning process and surface temperature rise rate of intact PV modules were significantly lower than those of cracked modules at the same inclination angle. Cracked modules exhibited a heightened susceptibility to being rapidly burnt through by the pool fire. As the inclination angle increased from 0° to 60°, the burning damage extent and the expansion rate of high-temperature regions initially ascended and subsequently decreased, reaching their maximum at the inclination angle of 15°. These findings can offer valuable insights that can serve as a reference for the fire protection design and risk assessment of mountain PV power stations, ensuring their safe operation. Full article
(This article belongs to the Special Issue Photovoltaic and Electrical Fires: 2nd Edition)
Show Figures

Figure 1

21 pages, 2497 KB  
Article
Integrating Color and Contour Analysis with Deep Learning for Robust Fire and Smoke Detection
by Abror Shavkatovich Buriboev, Akmal Abduvaitov and Heung Seok Jeon
Sensors 2025, 25(7), 2044; https://doi.org/10.3390/s25072044 - 25 Mar 2025
Cited by 3 | Viewed by 871
Abstract
Detecting fire and smoke is essential for maintaining safety in urban, industrial, and outdoor settings. This study suggests a unique concatenated convolutional neural network (CNN) model that combines deep learning with hybrid preprocessing methods, such as contour-based algorithms and color characteristics analysis, to [...] Read more.
Detecting fire and smoke is essential for maintaining safety in urban, industrial, and outdoor settings. This study suggests a unique concatenated convolutional neural network (CNN) model that combines deep learning with hybrid preprocessing methods, such as contour-based algorithms and color characteristics analysis, to provide reliable and accurate fire and smoke detection. A benchmark dataset with a variety of situations, including dynamic surroundings and changing illumination, the D-Fire dataset was used to assess the technique. Experiments show that the suggested model outperforms both conventional techniques and the most advanced YOLO-based methods, achieving accuracy (0.989) and recall (0.983). In order to reduce false positives and false negatives, the hybrid architecture uses preprocessing to enhance Regions of Interest (ROIs). Additionally, pooling and fully linked layers provide computational efficiency and generalization. In contrast to current approaches, which frequently concentrate only on fire detection, the model’s dual smoke and fire detection capabilities increase its adaptability. Although preprocessing adds a little computing expense, the methodology’s excellent accuracy and resilience make it a dependable option for safety-critical real-world applications. This study sets a new standard for smoke and fire detection and provides a route forward for future developments in this crucial area. Full article
(This article belongs to the Special Issue Intelligent Sensing and Artificial Intelligence for Image Processing)
Show Figures

Figure 1

19 pages, 3261 KB  
Article
Risk Assessment of Hydrogen Fuel System Leakage in Ships Based on Noisy-OR Gate Model Bayesian Network
by Gen Li, Haidong Zhang, Shibo Li and Chunchang Zhang
J. Mar. Sci. Eng. 2025, 13(3), 523; https://doi.org/10.3390/jmse13030523 - 9 Mar 2025
Cited by 4 | Viewed by 1504
Abstract
To mitigate the risk of hydrogen leakage in ship fuel systems powered by internal combustion engines, a Bayesian network model was developed to evaluate the risk of hydrogen fuel leakage. In conjunction with the Bow-tie model, fuzzy set theory, and the Noisy-OR Gate [...] Read more.
To mitigate the risk of hydrogen leakage in ship fuel systems powered by internal combustion engines, a Bayesian network model was developed to evaluate the risk of hydrogen fuel leakage. In conjunction with the Bow-tie model, fuzzy set theory, and the Noisy-OR Gate model, an in-depth analysis was also conducted to examine both the causal factors and potential consequences of such incidents. The Bayesian network model estimates the likelihood of hydrogen leakage at approximately 4.73 × 10−4 and identifies key risk factors contributing to such events, including improper maintenance procedures, inadequate operational protocols, and insufficient operator training. The Bow-tie model is employed to visualize the causal relationships between risk factors and their potential consequences, providing a clear structure for understanding the events leading to hydrogen leakage. Fuzzy set theory is used to address the uncertainties in expert judgments regarding system parameters, enhancing the robustness of the risk analysis. To mitigate the subjectivity inherent in root node probabilities and conditional probability tables, the Noisy-OR Gate model is introduced, simplifying the determination of conditional probabilities and improving the accuracy of the evaluation. The probabilities of flash or pool fires, jet fires, and vapor cloud explosions following a leakage are calculated as 4.84 × 10−5, 5.15 × 10−5, and 4.89 × 10−7, respectively. These findings highlight the importance of strengthening operator training and enforcing stringent maintenance protocols to mitigate the risks of hydrogen leakage. The model provides a valuable framework for safety evaluation and leakage risk management in hydrogen-powered ship fuel systems. Full article
Show Figures

Figure 1

21 pages, 18054 KB  
Article
Experimental Investigation of the Effects of Fire Size on Burning Characteristics in a Well-Confined Military Vehicle Compartment
by Soleh Fajar Junjunan, Khaled Chetehouna, Nicolas Gascoin, Ilyas Sellami and Antoine Oger
Fire 2025, 8(2), 75; https://doi.org/10.3390/fire8020075 - 12 Feb 2025
Viewed by 1001
Abstract
This study presents an experimental investigation into the effects of fire size on burning characteristics within well-confined military vehicle engine compartments. The research evaluates burning duration, self-extinguishing phenomena, heat release rates, pressure dynamics, and flame morphology using heptane pool fires of varying pan [...] Read more.
This study presents an experimental investigation into the effects of fire size on burning characteristics within well-confined military vehicle engine compartments. The research evaluates burning duration, self-extinguishing phenomena, heat release rates, pressure dynamics, and flame morphology using heptane pool fires of varying pan diameters (8 cm, 16 cm, and 24 cm). Key findings include the proportional relationship between fire size and heat release rate, with larger pans causing higher oxygen consumption, elevated pressure differences, and increased total heat flux. Self-extinguishment was observed for larger pans due to oxygen depletion, with extinction time linked to the ratio of compartment volume to heat release rate. Temperature measurements revealed significantly higher ceiling temperatures and heat flux levels for larger fires, emphasizing the structural and thermal risks. These results contribute to understanding fire behavior in confined spaces, offering practical implications for designing fire protection systems tailored to military vehicles. Full article
Show Figures

Figure 1

14 pages, 4866 KB  
Article
Application of Composite Dry Powders for Simultaneous Fire Extinguishment and Liquid Solidification of Methanol
by Xiaomin Ni, Kai Zhang, Zhong Zheng, Wenjie Wang and Shi Hu
Fire 2025, 8(2), 69; https://doi.org/10.3390/fire8020069 - 7 Feb 2025
Cited by 2 | Viewed by 1187
Abstract
Extinguishing methanol fires poses significant challenges due to methanol’s high toxicity, polarity, and fluidity. While conventional fire suppressants, such as alcohol-resistant firefighting foam, water mist and dry powders, can extinguish methanol fires, they fail to prevent the spread of liquid methanol, creating a [...] Read more.
Extinguishing methanol fires poses significant challenges due to methanol’s high toxicity, polarity, and fluidity. While conventional fire suppressants, such as alcohol-resistant firefighting foam, water mist and dry powders, can extinguish methanol fires, they fail to prevent the spread of liquid methanol, creating a risk of environmental contamination as the mixture of suppressants and methanol flows into surrounding soil and water resources. To address this issue, a novel kind of composite dry powder has been developed to effectively combat methanol pool fires. The powder can not only rapidly extinguish flames but also transform liquid methanol into gel-like substances, significantly reducing the hazards caused by the flow of harmful liquids. Laboratory experiments identify an optimal mass ratio of 0.16 between the composite powder and methanol to achieve complete flame extinction and liquid solidification. The superior performance of as-prepared composite powder could be mainly ascribed to the cooperation of metallic salts, polymers, and silica additives. Additionally, the powder is effective for extinguishing ethanol fires, making it a valuable tool for the emergency management of alcohol fires in leakage incidents. Full article
(This article belongs to the Special Issue Composite Fire Suppressants)
Show Figures

Figure 1

23 pages, 3428 KB  
Article
Determining Spatial Responses of Fishers (Pekania Pennanti) to Mechanical Treatments of Forest Stands for Fuel Reduction
by Tessa R. Smith, Eric M. Gese, R. David Clayton, Patricia A. Terletzky, Kathryn L. Purcell and Craig M. Thompson
Animals 2025, 15(3), 434; https://doi.org/10.3390/ani15030434 - 4 Feb 2025
Viewed by 1065
Abstract
Historical forestry practices (e.g., fire suppression, heavy timber logging) have contributed to a discernable change in stand composition of western forests in the U.S., which now comprise a tinderbox mixture of increased surface and ladder fuels, dense stands, and fire-intolerant species. Forest managers [...] Read more.
Historical forestry practices (e.g., fire suppression, heavy timber logging) have contributed to a discernable change in stand composition of western forests in the U.S., which now comprise a tinderbox mixture of increased surface and ladder fuels, dense stands, and fire-intolerant species. Forest managers are mitigating this concern by implementing silviculture practices (e.g., selective logging, thinning, prescribed burning) to reduce fuel loads and improve stand resiliency. Concern for habitat specialists, such as the fisher (Pekania pennanti), have arisen as they may be negatively influenced in the short-term by modifications to their environment that are needed to ensure long-term habitat persistence. To address this issue, we initiated an 8-year study in 2010 in Ashland, Oregon, to determine the behavioral response of fishers to fuel reduction treatments applied in forested stands. We measured the distance of each location from eight GPS-collared fishers to all treatments before and after they were treated within each home range, and performed three statistical tests for robustness, including a multi-response permutation procedure, chi-squared test of independence, and a Kolmogorov–Smirnov assessment. We found high variation among individuals to the tolerance of habitat manipulation. Using effect size to interpret the magnitude of fisher response to pre- and post-treatment effects, 1 fisher showed a moderate negative relationship to fuel reduction treatments, 5 exhibited a weak negative response, and 2 had a weak positive association with treatments. We used analysis of variance on the three fishers exhibiting the largest effect sizes to treatment disturbance, and used treatment, temporal, and habitat covariates to explore whether these factors influenced behavioral differences. Treatment season and vegetation class were important factors influencing response distance in the pre-treatment period. Post-treatment variables eliciting a negative treatment response were treatment season and treatment size, and results were slightly different when parsing out individual effects compared to a pooled sample set. Our findings suggested that seasonal timing and the location of management activities could influence fisher movement throughout their home range, but it was largely context-dependent based on the perceived risks or benefits to individuals. Full article
(This article belongs to the Section Ecology and Conservation)
Show Figures

Figure 1

18 pages, 2388 KB  
Article
Experimental Investigations on the Repeatability of the Fire-Resistance Testing of Electric Vehicle Post-Crash Safety Procedures
by Daniel Darnikowski and Magdalena Mieloszyk
Sensors 2025, 25(3), 688; https://doi.org/10.3390/s25030688 - 24 Jan 2025
Viewed by 1516
Abstract
The widespread adoption of electric vehicles (EVs) has elevated the importance of rigorous safety standards, particularly for fire resistance in post-crash scenarios. Existing testing protocols, such as Regulation No. 100, utilize petrol pool fires to simulate real-world fire hazards but lack comprehensive analysis [...] Read more.
The widespread adoption of electric vehicles (EVs) has elevated the importance of rigorous safety standards, particularly for fire resistance in post-crash scenarios. Existing testing protocols, such as Regulation No. 100, utilize petrol pool fires to simulate real-world fire hazards but lack comprehensive analysis regarding their repeatability and reliability. This study addresses this critical gap by evaluating the variability and consistency of fire-resistance tests performed on multiple battery energy storage systems (BESSs) under standardized conditions. A custom-built measurement system incorporating thermocouples, anemometers, and hygrometers provided high-resolution data on flame dynamics, ambient conditions, and pool fire efficiency. Statistical evaluations following ISO 5725 series guidelines revealed substantial inconsistencies, including unstable exposure temperatures and sensitivity to local turbulence. These findings call into question the robustness of current testing methods, and we propose an alternative approach employing LPG burners for improved precision and repeatability. By identifying significant flaws in existing standards and offering scientifically grounded enhancements, this work contributes a novel perspective to the field of EV safety, advancing global fire-resistance testing protocols. Full article
(This article belongs to the Special Issue Advanced Sensing Technology for Detection of Battery States)
Show Figures

Figure 1

12 pages, 1232 KB  
Article
Biochar Application and Mowing Independently and Interactively Influence Soil Enzyme Activity and Carbon Sequestration in Karst and Red Soils in Southern China
by Wenjia Luo, Daniel F. Petticord, Shiwen Zhu, Shaowu Zhu, Yuanlong Wu, Xun Yi, Xinyue Wang, Yili Guo and Xuxin Song
Agronomy 2025, 15(1), 252; https://doi.org/10.3390/agronomy15010252 - 20 Jan 2025
Cited by 1 | Viewed by 1648
Abstract
Soil organic carbon (SOC), a critical component of the global carbon cycle, represents the largest terrestrial carbon reservoir, and is thus a major component of influencing climate regulation and ecosystem health. Grasslands store substantial carbon in their soils, but this carbon reservoir is [...] Read more.
Soil organic carbon (SOC), a critical component of the global carbon cycle, represents the largest terrestrial carbon reservoir, and is thus a major component of influencing climate regulation and ecosystem health. Grasslands store substantial carbon in their soils, but this carbon reservoir is easily degraded by both grazing and mowing, particularly in vulnerable karst landscapes. This study investigates the potential of biochar, a carbon-rich soil amendment, as a management tool to maintain SOC or mitigate the degradation of SOC during mowing in karst grasslands in Southern China, using both red acidic and calcareous soils as experimental variables. T SOC fractions, soil enzyme activities, and soil pH were measured to determine the effect of mowing and biochar application on carbon stability and microbial activity. Consistent with expectations, mowing increases belowground biomass and promotes carbon loss through increased microbial activity, particularly in calcareous soils where mowing also decreases soil pH, increasing acidity and reducing the stability of Ca–carbon complexes. Biochar, however, counteracted these effects, increasing both particulate organic carbon (POC) and mineral-associated organic carbon (MAOC), especially in red soils where the addition of biochar greatly increased soil pH (from 5.4 to 6.33) (an effect not observed in the already-alkaline karst soils). Enzyme activities related to carbon degradation, such as β-D-Glucosidase and peroxidase, increased in biochar-amended soils (β-D-Glucosidase increased from 12.77 to 24.53 nmol/g/h and peroxidase increased from 1.1 to 2.36 mg/g/2h), each of which contribute to the degradation of carbon containing organic matter so that it may be ultimately stored in more recalcitrant forms. Mowing led to reduced polyphenol oxidase activity, but the presence of biochar mitigated these losses, protecting SOC pools (increased from 0.03 to 0.79 mg/g/2h). This study highlights biochar as an effective tool for enhancing SOC stability in karst grasslands, particularly in acidic soils, and suggests that integrating biochar into mowing regimes may optimize carbon sequestration while reducing fire risk. These findings offer valuable theoretical guidance for developing sustainable land management in sensitive ecosystems. Full article
Show Figures

Figure 1

Back to TopTop