Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,256)

Search Parameters:
Keywords = powder X-ray diffraction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1808 KiB  
Article
Holmium Metal Nanoparticle PbO2 Anode Formed by Electrodeposition for Efficient Removal of Insecticide Acetamiprid and Improved Oxygen Evolution Reaction
by Milica Kaludjerović, Sladjana Savić, Danica Bajuk-Bogdanović, Aleksandar Jovanović, Lazar Rakočević, Goran Roglić, Jadranka Milikić and Dalibor Stanković
Micromachines 2025, 16(8), 960; https://doi.org/10.3390/mi16080960 - 20 Aug 2025
Abstract
This work examines the possibility of using a PbO2-based electrode doped with the rare-earth metal holmium in the field of oxygen evolution and the development of an efficient method for the degradation of acetamiprid. Acetamiprid is a widely used insecticide and, [...] Read more.
This work examines the possibility of using a PbO2-based electrode doped with the rare-earth metal holmium in the field of oxygen evolution and the development of an efficient method for the degradation of acetamiprid. Acetamiprid is a widely used insecticide and, as such, it very often reaches waterways, where it can cause many problems for wildlife and the environment. X-ray powder diffraction analysis, Raman spectroscopy, and energy-dispersive X-ray spectroscopy results confirmed the structure of Ti/SnO2-Sb2O3/Ho-PbO2, while the morphology of its surface was investigated by scanning electron microscopy with energy-dispersive X-ray spectroscopy. Ti/SnO2-Sb2O3/Ho-PbO2 showed good OER activity in alkaline media with a Tafel slope of 138 mV dec−1. The Ti/SnO2-Sb2O3/Ho-PbO2 electrode shows very good efficiency in removing acetamiprid. By optimizing the degradation procedure, the following operating conditions were obtained: a current density of 20 mA cm−2, a pH value of the supporting electrolyte (sodium sulfate) of 2, and a concentration of the supporting electrolyte of 0.035 M. After optimization, the maximum efficiency of removing acetamiprid (10 mg L−1, 4.5 × 10−5 mol) from water was achieved, 96.8%, after only 90 min of treatment, which represents an efficiency of 1.125 mol cm−2 of the electrode. Additionally, it was shown that the degradation efficiency is strictly related to the concentration of the treated substance. Full article
Show Figures

Figure 1

20 pages, 4966 KiB  
Article
New Glass-Ceramics in the System Ca2SiO4-Ca3(PO4)2—Phase Composition, Microstructure, and Effect on the Cell Viability
by Irena Mihailova, Petya Dimitrova, Georgi Avdeev, Radostina Ivanova, Hristo Georgiev, Milena Nedkova-Shtipska, Ralitsa Teodosieva and Lachezar Radev
Materials 2025, 18(16), 3887; https://doi.org/10.3390/ma18163887 - 19 Aug 2025
Abstract
The CaO-SiO2-P2O5 system is one of the main systems studied aiming for the synthesis of new bioactive materials for bone regeneration. The interest in materials containing calcium-phosphate-silicate phases is determined by their biocompatibility, biodegradability, bioactivity, and osseointegration. The [...] Read more.
The CaO-SiO2-P2O5 system is one of the main systems studied aiming for the synthesis of new bioactive materials for bone regeneration. The interest in materials containing calcium-phosphate-silicate phases is determined by their biocompatibility, biodegradability, bioactivity, and osseointegration. The object of the present study is the synthesis by the sol-gel method of biocompatible glass-ceramics in the Ca2SiO4-Ca3(PO4)2 subsystem with the composition 6Ca2SiO4·Ca3(PO4)2 = Ca15(PO4)2(SiO4)6. The phase-structural evolution of the samples was monitored using X-ray diffraction analysis (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), and surface area analysis. A powder (20–30 µm) glass-ceramic material containing fine crystalline aggregates of dicalcium silicate and plates of silicon-substituted hydroxyapatite was obtained after heat treatment at 700 °C. After heat treatment at 1200 °C, Ca15(PO4)2(SiO4)6, silicocarnotite Ca5(PO4)2(SiO4), and pseudowollastonite CaSiO3 were identified by XRD, and the particle size varied between 20 and 70 µm. The compact glass-ceramic obtained at 1400 °C contained Ca2SiO4-Ca3(PO4)2 solid solutions with an α-Ca2SiO4 structure as a main crystalline phase. SEM showed the specific morphology of the crystalline phases and illustrated the trend of increasing particle size depending on the synthesis temperature. Effects of the glass-ceramic materials on cell viability of HL-60-derived osteoclast-like cells and on the expression of apoptotic and osteoclast-driven marker suggested that all materials at low concentrations, above 1 µg mL−1, are biocompatible, and S-1400 might have a potential application as a scaffold material for bone regeneration. Full article
(This article belongs to the Section Electronic Materials)
Show Figures

Figure 1

25 pages, 7131 KiB  
Article
Effect of Heat Treatment on the Microstructure and Mechanical Properties of Vanadis 60 Steel: A Statistical Design Approach
by Florentino Alvarez-Antolin and Alejandro González-Pociño
Solids 2025, 6(3), 46; https://doi.org/10.3390/solids6030046 - 19 Aug 2025
Abstract
This study investigates the influence of key heat treatment parameters on the microstructure and mechanical properties of the powder metallurgy tool steel Vanadis 60. A fractional factorial design of experiments was applied to evaluate the effects of austenitising temperature, quenching medium, tempering temperature, [...] Read more.
This study investigates the influence of key heat treatment parameters on the microstructure and mechanical properties of the powder metallurgy tool steel Vanadis 60. A fractional factorial design of experiments was applied to evaluate the effects of austenitising temperature, quenching medium, tempering temperature, and number of tempering cycles on hardness, flexural strength, and microstructure, using detailed phase characterisation by X-ray diffraction. The results reveal two distinct processing routes tailored to different performance objectives. Maximum hardness was achieved by combining austenitisation at 1180 °C, rapid oil quenching, and tempering at 560 °C. These conditions enhance the solubility of carbon and other alloying elements, promote secondary hardening, and reduce retained austenite. Conversely, higher toughness and ductility were obtained by austenitising at 1020 °C, air cooling, and tempering at 560 °C. These parameters favour the formation of a bainitic microstructure, together with lower martensite tetragonality and minimal retained austenite. A statistically significant interaction was identified between the austenitising temperature and the number of tempering cycles; three temperings were sufficient to compensate for the lower hardness associated with reduced austenitising temperatures. The results provide a robust guidance for optimising thermal processing in highly alloyed tool steels, enabling the precise tailoring of microstructure and properties in accordance with specific mechanical service requirements. Full article
Show Figures

Figure 1

20 pages, 16428 KiB  
Article
Influence of B2O3 on Reactive and Non-Reactive Wetting Behavior of CaO-SiO2-MgO-Al2O3-B2O3 System
by Dalibor Novák, Lenka Řeháčková, Vlastimil Novák, Dalibor Matýsek and Pavlína Peikertová
Coatings 2025, 15(8), 967; https://doi.org/10.3390/coatings15080967 - 19 Aug 2025
Abstract
Boron oxide is introduced into slag as a flux, significantly lowering the liquidus temperature; however, this advantage is accompanied by several undesirable consequences. This study aims to evaluate the impact of boron oxide addition on the wetting reactivity of the CaO-SiO2-MgO-Al [...] Read more.
Boron oxide is introduced into slag as a flux, significantly lowering the liquidus temperature; however, this advantage is accompanied by several undesirable consequences. This study aims to evaluate the impact of boron oxide addition on the wetting reactivity of the CaO-SiO2-MgO-Al2O3-B2O3 slag system, particularly on platinum and graphite substrates, which are commonly utilized for wettability investigations of such systems. The slag system was modified to incorporate varying concentrations of B2O3, reaching up to 30 wt%, with the addition of this oxide at the expense of CaO and SiO2 in a constant ratio, while the contents of Al2O3 and MgO remained unchanged. High-temperature wettability tests were conducted at temperatures up to 1550 °C under a flow of high-purity argon atmosphere (99.9999%). For the platinum substrate, the results indicated non-reactive wetting, characterized by a decrease in wetting angles with increasing temperature and boron oxide content. Conversely, for the graphite substrate, the nature of wetting varied, resulting in either reactive or non-reactive behavior depending on the B2O3 content. Following the high-temperature experiments, additional analyses were performed using scanning electron microscopy (SEM) and energy-dispersive spectrometry (EDS). Furthermore, the powdered oxide systems underwent characterization through Fourier transform infrared spectroscopy (FTIR) and X-ray powder diffraction (XRPD). Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Figure 1

17 pages, 2406 KiB  
Article
Microscopic and Crystallographic Analysis of Increased Acid Resistance of Melted Dental Enamel Using 445 nm Diode Laser: An Ex-Vivo Study
by Samir Nammour, Marwan El Mobadder, Aldo Brugnera, Praveen Arany, Mireille El Feghali, Paul Nahas and Alain Vanheusden
Dent. J. 2025, 13(8), 376; https://doi.org/10.3390/dj13080376 - 19 Aug 2025
Abstract
Background/Objectives: This study aimed to evaluate the efficacy of a 445 nm diode laser in enhancing enamel resistance to acid-induced demineralization and to investigate the associated compositional and structural modifications using scanning electron microscopy (SEM), electron spectroscopy for chemical analysis (ESCA), and [...] Read more.
Background/Objectives: This study aimed to evaluate the efficacy of a 445 nm diode laser in enhancing enamel resistance to acid-induced demineralization and to investigate the associated compositional and structural modifications using scanning electron microscopy (SEM), electron spectroscopy for chemical analysis (ESCA), and X-ray diffraction (XRD) crystallographic analysis. Methods: A total of 126 extracted human teeth were used. A total of 135 (n = 135) enamel discs (4 × 4 mm) from 90 teeth were assigned to either a laser-irradiated group or an untreated control group for SEM, ESCA, and XRD analyses. Additionally, 24 mono-rooted teeth were used to measure pulp temperature changes during laser application. Laser irradiation was performed using a 445 nm diode laser with a pulse width of 200 ms, a repetition rate of 1 Hz, power of 1.25 W, an energy density of 800 J/cm2, a power density of 3980 W/cm2, and a 200 µm activated fiber. Following acid etching, SEM was conducted to assess microstructural and ionic alterations. The ESCA was used to evaluate the Ca/P ratio, and XRD analyses were performed on enamel powders to determine changes in phase composition and crystal lattice parameters. Results: The laser protocol demonstrated thermal safety, with minimal pulp chamber temperature elevation (0.05667 ± 0.04131 °C). SEM showed that laser-treated enamel had a smoother surface morphology and reduced acid-induced erosion compared with controls. Results of the ESCA revealed no significant difference in the Ca/P ratio between groups. XRD confirmed the presence of hydroxyapatite structure in laser-treated enamel and detected an additional diffraction peak corresponding to a pyrophosphate phase, potentially enhancing acid resistance. Results of the spectral analysis showed the absence of α-TCP and β-TCP phases and a reduction in the carbonate content in the laser group. Furthermore, a significant decrease in the a-axis lattice parameter suggested lattice compaction in laser-treated enamel. Conclusions: Irradiation with a 445 nm diode laser effectively enhances enamel resistance to acid demineralization. This improvement may be attributed to chemical modifications, particularly pyrophosphate phase formation, and structural changes including prism-less enamel formation, surface fusion, and decreased permeability. These findings provide novel insights into the mechanisms of laser-induced enhancement of acid resistance in enamel. Full article
(This article belongs to the Special Issue Laser Dentistry: The Current Status and Developments)
Show Figures

Figure 1

15 pages, 4750 KiB  
Article
Analysis of Occurrence States of Rare Earth Elements in the Carbonatite Deposits in China
by Zuopei Jiang, Ni He, Liang Hu, Yayuan Liu, Jingyi Gong and Hongbo Zhao
Minerals 2025, 15(8), 866; https://doi.org/10.3390/min15080866 - 16 Aug 2025
Viewed by 214
Abstract
Rare earth elements (REEs), as necessary elements in many industries, have driven increased demand for mineral exploitation. However, understanding the occurrence states of REEs is crucial for their extraction. Therefore, this work primarily investigated the differences in the occurrence states of REEs and [...] Read more.
Rare earth elements (REEs), as necessary elements in many industries, have driven increased demand for mineral exploitation. However, understanding the occurrence states of REEs is crucial for their extraction. Therefore, this work primarily investigated the differences in the occurrence states of REEs and the thermal decomposition behavior of carbonatite rare earth deposits in China using scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray powder diffraction, and X-ray photoelectron spectroscopy. The results showed that the bastnaesite concentrate from the M deposit in southwestern China (referred to herein as B-ore), contained REEs accounting for 53.59%, and was associated with small amounts of wulfenite, barite, and iron ore. In contrast, the contents of REEs in the raw ores of N deposit in northern China (referred to herein as R-ore) was relatively low (3.71%), but were also enriched in Fe. R-ore consisted of small particle, with 32.44% sized between 0.075 and 0.11 mm, and 26.38% below 0.075 mm. The contents of Fe, La, and Ce in these smaller particles were higher than those of larger particles. Fe might be substituted with Ce, La, and other REEs in magnetite crystals, forming isomorphic structures. This research was expected to provide assistance in the efficient extraction of REEs from carbonatite deposits. Full article
Show Figures

Figure 1

18 pages, 9874 KiB  
Article
Vibe of Wildness and Death: A Multidisciplinary Study of the Arena Wall Decoration of the Amphitheater in Viminacium (Kostolac, Serbia)
by Dragana Gavrilović, Ivan Bogdanović, Velibor Andrić and Maja Gajić-Kvaščev
Heritage 2025, 8(8), 331; https://doi.org/10.3390/heritage8080331 - 14 Aug 2025
Viewed by 179
Abstract
This paper focuses on the study of the arena wall decoration in the amphitheater at the archaeological site of Viminacium. The architectural characteristics of the amphitheater, along with the spectacle iconography, have made this finding one of the most interesting discoveries at Viminacium, [...] Read more.
This paper focuses on the study of the arena wall decoration in the amphitheater at the archaeological site of Viminacium. The architectural characteristics of the amphitheater, along with the spectacle iconography, have made this finding one of the most interesting discoveries at Viminacium, as well as in a wider context. A multidisciplinary approach that included an iconographic and archaeological study, as well as Energy Dispersive X-ray Fluorescence (EDXRF), X-ray Powder Diffraction (XRD), and Raman and Fourier-transform Infrared (FTIR) spectroscopy analysis, was applied to determine the palette of the pigments used for the arena wall decoration and understand the iconography and its context in more detail. Among the commonly used earth pigments (yellow, red, brown, and green colors), copper-based pigments (green and blue Egyptian blue), and the most precious ones for the period—namely, cinnabar and lapis lazuli—were identified. The applied analytical techniques enabled a tentative suggestion of the origin of the raw materials of some of the pigments that were used, such as marine sediments or rocks from different destinations. Due to the fact that the Viminacium amphitheater constitutes a typical example of a provincial building reserved for public spectacles, the results of this study will significantly contribute to our understanding of the function of the amphitheaters in the Danubian region, as well as throughout the Roman world. Full article
Show Figures

Figure 1

19 pages, 6660 KiB  
Article
Chemistry, Raman Spectroscopy and Micro-Textures of Theophrastite and Other Ni-Minerals from the Vermion Fe-Ni-Laterites, Greece: Genetic Significance
by Maria Economou-Eliopoulos, Christos Kanellopoulos, Angeliki Papoutsa, Theodoros Markopoulos, Federica Zaccarini and Maria Perraki
Minerals 2025, 15(8), 857; https://doi.org/10.3390/min15080857 - 14 Aug 2025
Viewed by 439
Abstract
A small, strongly schistose Ni-laterite occurrence at the Vermion ophiolite (40°26′ Ν, 22°10′ Ε), Northen Greece, along a strong shear zone, is characterized by relatively high Ni, Co and Mn contents, magnetite as the dominant mineral, garnet (grossularite), theophrastite [β-Ni(OH)2], otwayite-like [...] Read more.
A small, strongly schistose Ni-laterite occurrence at the Vermion ophiolite (40°26′ Ν, 22°10′ Ε), Northen Greece, along a strong shear zone, is characterized by relatively high Ni, Co and Mn contents, magnetite as the dominant mineral, garnet (grossularite), theophrastite [β-Ni(OH)2], otwayite-like phase (ideally Ni2CO3(OH)2.H2O), (Ni, Co, Mn)-hydroxides, and Ni-phyllosilicates. New analytical data, including black-white and color back-scattered electron images (BSEIs), elemental mapping and scanning, and Raman Spectroscopy, alongside silicates and hydroxides revealed the presence of varying silica content (less than 1 to 29 wt.%) in theophrastite and in (Ni, Co, Mn ± Fe)-hydroxides, although the X-ray powder diffraction data correspond to those of pure hydroxides. The gradual stacking of fine fibrous otwayite-like crystals to the boundaries of successive thin layers and within layers themselves, results in porous mineral phases of varying density shifting towards more compact mineral with increasing residence time. The presented data suggest that a potential explanation of the presence of Si in theophrastite may be the precipitation of Si after initial Ni-hydroxyl-carbonate fine crystals deposition. A potential sequence of the stability of Ni-minerals at Vermion may be as follows: Hydroxyl-carbonates < [β-Ni(OH)2] (theophrastite) < (Ni, Co, Mn)(OH)2 < Ni-phyllosilicates; this may be a significant factor for Ni-exploration in Ni-larerite deposits. Full article
Show Figures

Figure 1

20 pages, 3199 KiB  
Article
The Application of a Simple Synthesis Process to Obtain Trirutile-Type Cobalt Antimonate Powders and the Study of Their Electrical Properties in Propane Atmospheres for Use in Gas Sensors
by Lucía Ivonne Juárez Amador, Héctor Guillén Bonilla, Alex Guillén Bonilla, José Trinidad Guillén Bonilla, Verónica María Rodríguez Betancourtt, Jorge Alberto Ramírez Ortega, Antonio Casillas Zamora and Emilio Huizar Padilla
Coatings 2025, 15(8), 952; https://doi.org/10.3390/coatings15080952 - 14 Aug 2025
Viewed by 304
Abstract
The dynamic response in propane atmospheres at different voltages was investigated for samples made from powders of the semiconductor oxide CoSb2O6 synthesized using the microwave-assisted colloidal method. Powders of the compound calcined at 700 °C were studied with X-ray diffraction, [...] Read more.
The dynamic response in propane atmospheres at different voltages was investigated for samples made from powders of the semiconductor oxide CoSb2O6 synthesized using the microwave-assisted colloidal method. Powders of the compound calcined at 700 °C were studied with X-ray diffraction, confirming the CoSb2O6 crystalline phase. The microstructural characteristics of the oxide were analyzed using scanning and transmission electron microscopy (SEM/TEM), revealing a high abundance of nanorods, nanoplates, and irregular nanoparticles. These nanoparticles have an average size of ~21 nm. Using UV-Vis, absorption bands associated with the electronic transitions of the CoSb2O6’s characteristic bonds were identified, which yielded a bandgap value of ~1.8 eV. Raman spectroscopy identified vibrational bands corresponding to the oxide’s Sb–O and Co–O bonds. Dynamic sensing tests at 300 °C confirmed the material’s p-type semiconductor behavior, showing an increase in resistance upon exposure to propane. Critically, these tests revealed that the sensor’s baseline resistance and overall response are tunable by the applied voltage (1–12 V), with the highest sensitivity observed at the lowest voltages. This establishes a clear relationship between the electrical operating parameters and the sensing performance. The samples exhibited good operational stability, capacity, and efficiency, along with short response and recovery times. Extra-dry air (1500 cm3/min) was used as the carrier gas to stabilize the films’ surfaces during propane detection. These findings lead us to conclude that the CoSb2O6 could serve as an excellent gas detector. Full article
(This article belongs to the Special Issue Thin Films and Nanostructures Deposition Techniques)
Show Figures

Figure 1

27 pages, 10368 KiB  
Article
Hydrothermal Scheelite Associated with Upper Cretaceous Intrusions in Romania: A Mineralogical Insight to the W Metallogeny
by Ştefan Marincea, Delia-Georgeta Dumitraş, Cristina Sava Ghineț, George Dincă, Aurora-Măruța Iancu, Frédéric Hatert, Martin Depret and Gelu Costin
Minerals 2025, 15(8), 854; https://doi.org/10.3390/min15080854 - 13 Aug 2025
Viewed by 299
Abstract
Hydrothermal scheelite from three Romanian occurrences was analyzed in order to ascertain its structural, physical, vibrational, paragenetic, and crystal-chemical peculiarities as an important tool for characterizing the metallogenetic behavior and facilitating the ore-processing. All three occurrences, i.e., Ciclova and Oravița in Banat and [...] Read more.
Hydrothermal scheelite from three Romanian occurrences was analyzed in order to ascertain its structural, physical, vibrational, paragenetic, and crystal-chemical peculiarities as an important tool for characterizing the metallogenetic behavior and facilitating the ore-processing. All three occurrences, i.e., Ciclova and Oravița in Banat and Băița Bihor in the Bihor Mountains, are related to skarn deposits developed at the contact of Upper Cretaceous granodioritic bodies with Mesozoic calcareous deposits. Typical crystals show {001}, {111}, and {101} forms and are up to 15 mm across. The structure was successfully refined as tetragonal, space group I41/a, with R1 = 0.0165 (Ciclova), 0.0204 (Oravița), and 0.0237 (Băița Bihor), respectively. The cell parameters refined for the same samples are a = 5.2459(10) Å and c = 11.3777(5) Å at Ciclova, a = 5.2380(2) Å and c = 11.3679(8) Å at Oravița, and a = 5.2409(2) Å and c = 11.3705(6) Å at Băița Bihor. The multiplicity of bands in both infrared absorption and Raman spectra is consistent with the S4 punctual symmetry of the tungstate anion, agreeing with the structural data. In all cases, the analyzed scheelite is close to the CaWO4 end-member. Cathodoluminescence peculiarities at the level of single crystals suggest that they crystallized in a slightly oxidizing to reducing environment from late hydrothermal solutions. Textural and paragenetic peculiarities suggest that scheelite from the three occurrences crystallized from epithermal, low-temperature, fluoride- and boron-bearing aqueous solutions. Full article
(This article belongs to the Special Issue Igneous Rocks and Related Mineral Deposits)
Show Figures

Figure 1

15 pages, 12294 KiB  
Article
Physicochemical Properties of Supramolecular Complexes Formed Between Cyclodextrin and Rice Bran-Derived Komecosanol
by Mione Uchimura, Akiteru Ohtsu, Junki Tomita, Yoshiyuki Ishida, Daisuke Nakata, Keiji Terao and Yutaka Inoue
Physchem 2025, 5(3), 34; https://doi.org/10.3390/physchem5030034 - 13 Aug 2025
Viewed by 206
Abstract
In this study, supramolecular inclusion complexes composed of komecosanol (Ko), a lipophilic compound derived from rice bran, and α-cyclodextrin (αCD) were prepared using a solvent-free three-dimensional (3D) ball milling method. Their physicochemical properties were examined using various techniques. Powder X-ray diffraction analysis of [...] Read more.
In this study, supramolecular inclusion complexes composed of komecosanol (Ko), a lipophilic compound derived from rice bran, and α-cyclodextrin (αCD) were prepared using a solvent-free three-dimensional (3D) ball milling method. Their physicochemical properties were examined using various techniques. Powder X-ray diffraction analysis of the ground mixture at a Ko/αCD ratio of 1/8 revealed the disappearance of diffraction peaks characteristic of Ko and the emergence of new peaks, indicating the formation of a distinct crystalline phase. Moreover, differential scanning calorimetry analysis showed the disappearance of the endothermic peaks corresponding to Ko, indicating molecular-level interactions with αCD. Near-infrared spectroscopy results suggested the formation of hydrogen bonds between the C–H groups of Ko and the O–H groups of αCD. Solid-state 13C CP/MAS NMR and T1 relaxation time measurements indicated the formation of a pseudopolyrotaxane structure, while scanning electron microscopy images confirmed distinct morphological changes consistent with complex formation. These findings demonstrate that 3D ball milling facilitates the formation of Ko/αCD inclusion complexes with a supramolecular architecture, providing a novel approach to improve the formulation and bioavailability of poorly water-soluble lipophilic compounds. Full article
(This article belongs to the Section Biophysical Chemistry)
Show Figures

Graphical abstract

22 pages, 9002 KiB  
Article
Systematic Study of Preparing Porous CaCO3 Vaterite Particles for Controlled Drug Release
by Nan Zhang, Binhang Zhao, Pan Yang and Haifei Zhang
Nanomaterials 2025, 15(16), 1227; https://doi.org/10.3390/nano15161227 - 12 Aug 2025
Viewed by 289
Abstract
Porous CaCO3 vaterite particles have been widely used as drug carriers for biomedical applications due to their high biocompatibility and low production costs. However, controlling the particle size and porosity of CaCO3 nanoparticles with the desired crystalline phase is still challenging. [...] Read more.
Porous CaCO3 vaterite particles have been widely used as drug carriers for biomedical applications due to their high biocompatibility and low production costs. However, controlling the particle size and porosity of CaCO3 nanoparticles with the desired crystalline phase is still challenging. In this study, we have systematically investigated the preparation of CaCO3 nanoparticles under various conditions including precursor types/ratios/concentrations, additive concentrations (ethylene glycol), and temperatures. The materials were fully characterized by optical microscopy, scanning and transmission electron microscopy, infrared spectroscopy, powder X-ray diffraction, dynamic laser scattering, thermogravimetric analysis, and gas sorption. The impacts of the reaction parameters were rationalized and the mechanism for the formation of porous vaterite particles was suggested. It was possible to produce porous vaterite nanoparticles (200 nm) under the optimized conditions, which were further used as drug carrier to upload a model drug curcumin. The potential of using these vaterite particles for controlled drug release was demonstrated. Full article
(This article belongs to the Section Inorganic Materials and Metal-Organic Frameworks)
Show Figures

Figure 1

21 pages, 13122 KiB  
Article
A Novel CuAlMnFe/CeO2 Composite Alloy: Investigating the Wear and Corrosion Features
by Fatih Doğan and Erhan Duru
Solids 2025, 6(3), 43; https://doi.org/10.3390/solids6030043 - 11 Aug 2025
Viewed by 287
Abstract
Shape memory alloys (SMAs) are known for their exceptional mechanical properties, particularly their superior wear resistance compared to conventional alloys with similar surface hardness. Rare earth oxides are often used as additives to further improve these characteristics. This study investigates the effects of [...] Read more.
Shape memory alloys (SMAs) are known for their exceptional mechanical properties, particularly their superior wear resistance compared to conventional alloys with similar surface hardness. Rare earth oxides are often used as additives to further improve these characteristics. This study investigates the effects of different CeO2 (cerium dioxide) concentrations (0.01 wt.%, 0.1 wt.%, 0.5 wt.%, and 1.0 wt.%) on the properties of CuAlMnFe alloys produced via powder metallurgy (PM). Various analyses were performed, including scanning electron microscopy (SEM), Energy Dispersive Spectroscopy (EDS), X-ray diffraction (XRD), as well as hardness, wear, and corrosion tests. The increase in wear rate is closely related to the formation of precipitates from CeO2 addition. Improvements in wear resistance and hardness are attributed to the effects of grain refinement and solid solution strengthening due to CeO2. Specifically, the wear rate increased from 1.5 × 10−3 mm3/(Nm) to 3.4 × 10−3 mm3/(Nm) with higher CeO2 content. Additionally, the friction coefficient of the CuAlMnFe alloy was reduced with CeO2 addition, indicating enhanced frictional properties. The optimal CeO2 concentration of 0.5% was found to improve grain uniformity, resulting in better wear resistance. Incorporating CeO2 particles into CuAlMnFe alloy enhances hardness and reduces wear rate when used in appropriate amounts. Additionally, it exhibits superior corrosion resistance, as evidenced by a positive shift in corrosion potential in Tafel measurements in solutions and a decrease in corrosion current density. The C0.5 specimen showed the highest corrosion potential (Ecorr, −588 V) and the lowest corrosion current density (icorr, 6.17 μA/cm2) during electrochemical corrosion in 3.5 wt.% NaCl solution. Full article
Show Figures

Figure 1

21 pages, 15471 KiB  
Article
Tribology of EDM Recast Layers Vis-À-Vis TIG Cladding Coatings: An Experimental Investigation
by Muhammad Adnan, Waqar Qureshi and Muhammad Umer
Micromachines 2025, 16(8), 913; https://doi.org/10.3390/mi16080913 - 7 Aug 2025
Viewed by 415
Abstract
Tribological performance is critical for the longevity and efficiency of machined components in industries such as aerospace, automotive, and biomedical. This study investigates whether electrical discharge machining recast layers can serve as a cost-effective and time-efficient alternative to conventional tungsten inert gas cladding [...] Read more.
Tribological performance is critical for the longevity and efficiency of machined components in industries such as aerospace, automotive, and biomedical. This study investigates whether electrical discharge machining recast layers can serve as a cost-effective and time-efficient alternative to conventional tungsten inert gas cladding coatings for enhancing surface properties. The samples were prepared using electrical discharge machining and tungsten inert gas cladding. For electrical discharge machining, various combinations of electrical and non-electrical parameters were applied using Taguchi’s L18 orthogonal array. Similarly, tungsten inert gas cladding coatings were prepared using a suitable combination of current, voltage, powder size, and speed. The samples were characterized using, scanning electron microscopy, optical microscopy, microhardness testing, tribological testing, energy-dispersive X-ray spectroscopy, X-ray diffraction analysis and profilometry. The electrical discharge machining recast layers exhibited superior tribological performance compared to tungsten inert gas cladding coatings. This improvement is attributed to the formation of carbides, such as TiC and Ti6C3.75. The coefficient of friction and specific wear rate were reduced by 11.11% and 1.57%, respectively, while microhardness increased by 10.93%. Abrasive wear was identified as the predominant wear mechanism. This study systematically compares electrical discharge machining recast layers with tungsten inert gas cladding coatings. The findings suggest that optimized electrical discharge machining recast layers can serve as effective coatings, offering cost and time savings. Full article
(This article belongs to the Special Issue Recent Developments in Electrical Discharge Machining Technology)
Show Figures

Figure 1

19 pages, 13584 KiB  
Article
Enhanced Diffraction and Spectroscopic Insight into Layer-Structured Bi6Fe2Ti3O18 Ceramics
by Zbigniew Pędzich, Agata Lisińska-Czekaj, Dionizy Czekaj, Agnieszka Wojteczko and Barbara Garbarz-Glos
Materials 2025, 18(15), 3690; https://doi.org/10.3390/ma18153690 - 6 Aug 2025
Viewed by 229
Abstract
Bi6Fe2Ti3O18 (BFTO) ceramics were synthesized via a solid-state reaction route using stoichiometric amounts of Bi2O3, TiO2, and Fe2O3 powders. A thermal analysis of the powder mixture was [...] Read more.
Bi6Fe2Ti3O18 (BFTO) ceramics were synthesized via a solid-state reaction route using stoichiometric amounts of Bi2O3, TiO2, and Fe2O3 powders. A thermal analysis of the powder mixture was conducted to optimize the heat treatment parameters. Energy-dispersive X-ray spectroscopy (EDS) confirmed the conservation of the chemical composition following calcination. Final densification was achieved through hot pressing. The crystal structure of the sintered samples, examined via X-ray diffraction at room temperature, revealed a tetragonal symmetry for BFTO ceramics sintered at 850 °C. Electron backscatter diffraction (EBSD) provided detailed insight into the crystallographic orientation and microstructure. Broadband dielectric spectroscopy (BBDS) was employed to investigate the dielectric response of BFTO ceramics over a frequency range of 10 mHz to 10 MHz and a temperature range of −30 °C to +200 °C. The temperature dependence of the relative permittivity (εr) and dielectric loss tangent (tan δ) were measured within a frequency range of 100 kHz to 900 kHz and a temperature range of 25 °C to 570 °C. The impedance data obtained from the BBDS measurements were validated using the Kramers–Kronig test and modeled using the Kohlrausch–Williams–Watts (KWW) function. The stretching parameter (β) ranged from ~0.72 to 0.82 in the impedance formalism within the temperature range from 200 °C to 20 °C. Full article
Show Figures

Figure 1

Back to TopTop