Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (66)

Search Parameters:
Keywords = powdered activated carbon-based composites

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
37 pages, 2119 KB  
Review
Recycled Components in 3D Concrete Printing Mixes: A Review
by Marcin Maroszek, Magdalena Rudziewicz and Marek Hebda
Materials 2025, 18(19), 4517; https://doi.org/10.3390/ma18194517 - 28 Sep 2025
Abstract
Rapid population growth and accelerating urbanization are intensifying the demand for construction materials, particularly concrete, which is predominantly produced with Portland cement and natural aggregates. This reliance imposes substantial environmental burdens through resource depletion and greenhouse gas emissions. Within the framework of sustainable [...] Read more.
Rapid population growth and accelerating urbanization are intensifying the demand for construction materials, particularly concrete, which is predominantly produced with Portland cement and natural aggregates. This reliance imposes substantial environmental burdens through resource depletion and greenhouse gas emissions. Within the framework of sustainable construction, recycled aggregates and industrial by-products such as fly ash, slags, crushed glass, and other secondary raw materials have emerged as viable substitutes in concrete production. At the same time, three-dimensional concrete printing (3DCP) offers opportunities to optimize material use and minimize waste, yet it requires tailored mix designs with controlled rheological and mechanical performance. This review synthesizes current knowledge on the use of recycled construction and demolition waste, industrial by-products, and geopolymers in concrete mixtures for 3D printing applications. Particular attention is given to pozzolanic activity, particle size effects, mechanical strength, rheology, thermal conductivity, and fire resistance of recycled-based composites. The environmental assessment is considered through life-cycle analysis (LCA), emphasizing carbon footprint reduction strategies enabled by recycled constituents and low-clinker formulations. The analysis demonstrates that recycled-based 3D printable concretes can maintain or enhance structural performance while mix-level (cradle-to-gate, A1–A3) LCAs of printable mixes report CO2 reductions typically in the range of ~20–50% depending on clinker substitution and recycled constituents—with up to ~48% for fine recycled aggregates when accompanied by cement reduction and up to ~62% for mixes with recycled concrete powder, subject to preserved printability. This work highlights both opportunities and challenges, outlining pathways for advancing durable, energy-efficient, and environmentally responsible 3D-printed construction materials. Full article
(This article belongs to the Special Issue Research on Alkali-Activated Materials (Second Edition))
Show Figures

Figure 1

21 pages, 3634 KB  
Article
Nanoscale Pore Refinement and Hydration Control in Anhydrite-Modified Supersulfated Cement: Role of Calcination-Induced Crystal Phase Transition
by Zeyuan Hu, Cheng Zhang, Yi Wan, Rui Ma, Chunping Gu, Xu Yang, Jianjun Dong and Dong Cui
Nanomaterials 2025, 15(18), 1432; https://doi.org/10.3390/nano15181432 - 18 Sep 2025
Viewed by 223
Abstract
Nanostructural optimization is key to enhancing the performance of low-carbon cements. Supersulfated cement (SSC) is an eco-friendly, low-carbon cement primarily composed of blast furnace slag and calcium sulfate. This study investigates the effects of two types of crystalline anhydrite on the hydration degree [...] Read more.
Nanostructural optimization is key to enhancing the performance of low-carbon cements. Supersulfated cement (SSC) is an eco-friendly, low-carbon cement primarily composed of blast furnace slag and calcium sulfate. This study investigates the effects of two types of crystalline anhydrite on the hydration degree and strength of SSC. The experiment used III CaSO4 (high solubility) and II-U CaSO4 (low solubility) as sulfate activators, evaluating the mechanical properties of anhydrite produced at different calcination temperatures through an analysis of pore structure, phase composition, reaction degree of mineral powder, and hydration heat. The results indicate that II-U anhydrite enhances slag hydration, reduces pore size, and significantly improves the compressive strength of SSC. This improvement is attributed to its impact on slag hydration: it reduces gypsum consumption rate, delays ettringite formation, promotes gel product formation, decreases the volume ratio of ettringite to calcium silicate hydrate (C-S-H) gel, fills pores, and decreases porosity. This study reveals the influence of calcined dihydrate gypsum phase changes on the macroscopic properties of SSC and the microstructure of hydration, elucidating the hydration mechanism of anhydrite-based SSC. This work provides a nanomaterial-based strategy for SSC design via crystal phase engineering. Full article
(This article belongs to the Section Nanofabrication and Nanomanufacturing)
Show Figures

Figure 1

14 pages, 2044 KB  
Article
Sustainable Valorization of Plastic Waste and Palm Fronds into Chemically Activated Carbon–Polymer Composite
by Junaid Saleem, Zubair Khalid Baig Moghal, Furqan Tahir and Gordon McKay
Polymers 2025, 17(17), 2356; https://doi.org/10.3390/polym17172356 - 29 Aug 2025
Viewed by 705
Abstract
Polyolefin waste is an abundant yet underutilized resource for developing value-added materials, while palm fronds (PF), a lignocellulosic biomass, offer a promising feedstock for activated carbon (AC) production. However, conventional AC from biomass is typically obtained in powdered form, making it difficult to [...] Read more.
Polyolefin waste is an abundant yet underutilized resource for developing value-added materials, while palm fronds (PF), a lignocellulosic biomass, offer a promising feedstock for activated carbon (AC) production. However, conventional AC from biomass is typically obtained in powdered form, making it difficult to handle and recover in aqueous systems without external support. Incorporating polyolefins during synthesis enables the formation of chemically activated polymer–carbon composite (PCC), which offers improved usability and recovery. This study aims to evaluate the environmental sustainability of producing PCC from PF and polyolefins, using Life Cycle Assessment (LCA) to quantify energy consumption and climate change impact. The LCA results show a net energy demand of 88.59 MJ and a climate change impact of 3.57 kg CO2 eq. per kg of PCC. Substituting conventional petroleum-based AC with PCC led to a 28% reduction in climate change impact and a 30% decrease in energy demand. By integrating biomass and plastic waste, this research supports sustainable material development and promotes circular economy practices in water treatment applications. Full article
(This article belongs to the Section Circular and Green Sustainable Polymer Science)
Show Figures

Figure 1

26 pages, 4438 KB  
Review
Carbon Nitride Gels: Synthesis, Modification, and Water Decontamination Applications
by Qinglan Tang, Zhen Zhang, Yuwei Pan, Michael K. H. Leung, Yizhen Zhang and Keda Chen
Gels 2025, 11(9), 685; https://doi.org/10.3390/gels11090685 - 27 Aug 2025
Viewed by 420
Abstract
Graphitic carbon nitride (g-C3N4)-based materials hold significant promise for environmental remediation, particularly water purification, owing to their unique electronic structure, metal-free composition, and robust chemical stability. However, powdered g-C3N4 faces challenges such as particle aggregation, poor [...] Read more.
Graphitic carbon nitride (g-C3N4)-based materials hold significant promise for environmental remediation, particularly water purification, owing to their unique electronic structure, metal-free composition, and robust chemical stability. However, powdered g-C3N4 faces challenges such as particle aggregation, poor recyclability, and limited exposure of active sites. Structuring g-C3N4 into hydrogels or aerogels—three-dimensional porous networks offering high surface area, rapid mass transport, and tunable porosity—represents a transformative solution. This review comprehensively examines recent advances in g-C3N4-based gels, covering synthesis strategies such as crosslinking (physical/chemical), in situ polymerization, and the sol–gel and template method. Modification approaches including chemical composition and structural engineering are systematically categorized to elucidate their roles in optimizing catalytic activity, stability, and multifunctionality. Special emphasis is placed on environmental applications, including the removal of emerging contaminants and heavy metal ions, as well as solar-driven interfacial evaporation for desalination. Throughout, the critical interplay between gel structure/composition and performance is evaluated to establish design principles for next-generation materials. Finally, this review identifies current challenges regarding scalable synthesis, long-term stability, in-depth mechanistic understanding, and performance in complex real wastewater matrices. This work aims to provide valuable insights and guidance for advancing g-C3N4-based hydrogel and aerogel technologies in environmental applications. Full article
(This article belongs to the Topic Wastewater Treatment Based on AOPs, ARPs, and AORPs)
Show Figures

Graphical abstract

15 pages, 3353 KB  
Article
N-S Co-Doped WC Nanoparticles Show High Catalytic Activity in Hydrogen Evolution Reaction
by Zhaobin Lu, Baoxin Wang, Shengtao Li, Feiyan Pan, Xuewei Zhu and Xiaofeng Wei
Coatings 2025, 15(6), 630; https://doi.org/10.3390/coatings15060630 - 24 May 2025
Viewed by 478
Abstract
In the “dual carbon” objective, the preparation of non-precious metal catalysts with low cost and high activity is essential for the study of hydrogen evolution reactions (HERs). This study employed biomass pomelo peel powder as the carbon source and ammonium metatungstate (AMT) as [...] Read more.
In the “dual carbon” objective, the preparation of non-precious metal catalysts with low cost and high activity is essential for the study of hydrogen evolution reactions (HERs). This study employed biomass pomelo peel powder as the carbon source and ammonium metatungstate (AMT) as the tungsten source and, through a facile one-step method in molten salt, fabricated a biomass carbon-based nanocatalyst featuring carbon flakes adorned with tungsten carbide (WC) nanoparticles. Dicyandiamide and cysteine were introduced as nitrogen and sulfur sources, respectively, to explore the impacts of N-S elemental doping on the structure, composition, and HER performance of the WC/C catalyst. The experimental results showed that N-S doping changed the electronic structure of WC and increased the electrochemically active surface area, resulting in a significant increase in the HER activity of WC/C@N-S catalysts. The WC/C@N-S catalyst was evaluated with hydrogen evolution performance in a 0.5 mol/L H2SO4 solution. When the cathodic current density reached 10 mA/cm2, the overpotential was 158 mV, and the Tafel slope was 68 mV/dec, underscoring its excellent HER performance. The outcomes offer novel insights into the high-value utilization of agricultural biomass resources, and pave the way for the development of cost-effective, innovative hydrogen evolution catalysts. Full article
Show Figures

Figure 1

35 pages, 12789 KB  
Article
Strength Development and Microscopic Characterization of Slag-like Powder Materials Activated by Sodium Carbonate and Sodium Hydroxide
by Donghui Li, Wenzhong Zheng and Ying Wang
Materials 2025, 18(10), 2313; https://doi.org/10.3390/ma18102313 - 15 May 2025
Viewed by 574
Abstract
Alkali-activated slag-like powder (AASP) materials are a novel type of binder prepared by activating slag-like powder (SP) with alkaline activators, providing a sustainable alternative to traditional cement for construction in remote mountainous regions, as well as on islands and reefs far from the [...] Read more.
Alkali-activated slag-like powder (AASP) materials are a novel type of binder prepared by activating slag-like powder (SP) with alkaline activators, providing a sustainable alternative to traditional cement for construction in remote mountainous regions, as well as on islands and reefs far from the inland, reducing transportation costs, shortening construction timelines, and minimizing energy consumption. SP is locally produced from siliceous and calcareous materials through calcining, water quenching, and grinding, exhibiting reactivity similar to that of ground granulated blast-furnace slag. In this study, siliceous sand and ground calcium carbonate powder were utilized to produce SP, with sodium carbonate (Na2CO3), sodium hydroxide (NaOH), and their mixture serving as activators. The results indicated that the Ca/Si ratio in SP, along with the dosage of Na2CO3 (Dsc) and Na2O content (Nc) in the activator, significantly affected the compressive strength of AASP materials at both early and late stages. The 28-day compressive strength reached up to 78.95 MPa, comparable to that of alkali-activated slag (AAS) materials. The optimum mix ratio for Na2CO3-NaOH based AASP materials was also determined to be 80% Dsc and 8% Nc (C8N2-8). Microscopic analyses were employed to investigate the changes in the macroscopic properties of AASP materials driven by hydration products, chemical group composition, and microstructure. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

18 pages, 5665 KB  
Article
Thermal Properties of MWCNT-rGO-MgO-Incorporated Alkali-Activated Engineered Composites
by Mohammad A. Hossain and Khandaker M. A. Hossain
J. Compos. Sci. 2025, 9(3), 117; https://doi.org/10.3390/jcs9030117 - 3 Mar 2025
Viewed by 1559
Abstract
This study evaluates the influence of multiwall carbon nanotubes (MWCNTs), reduced graphene oxide (rGO), and magnesium oxide (MgO) on the thermal conductivity of alkali-activated engineered composites (AAECs). Thirty-two ambient-cured AAECs consisting of two types of powdered-form reagents/activators (type 1—calcium hydroxide: sodium meta silicate [...] Read more.
This study evaluates the influence of multiwall carbon nanotubes (MWCNTs), reduced graphene oxide (rGO), and magnesium oxide (MgO) on the thermal conductivity of alkali-activated engineered composites (AAECs). Thirty-two ambient-cured AAECs consisting of two types of powdered-form reagents/activators (type 1—calcium hydroxide: sodium meta silicate = 1:2.5; type 2—calcium hydroxide: sodium sulfate 2.5:1), two dosages of MgO (0 and 0.5%) of MgO, three percentages (0, 0.3%, and 0.6%) of MWCNTs/rGO, and binary (45% ground granulated blast furnace slag ‘GGBFS’ and 55% Class C fly ash ‘FA-C’) and ternary combinations (40% GGBFS, 25% FA-C and 35% class F fly ash ‘FA-F’) of industrial-waste-based source materials, silica sand, and polyvinyl alcohol (PVA) fiber were developed using the ‘one-part dry mix’ technique. Problems associated with the dispersion and agglomeration of nanomaterials during production were avoided through the use of defined ultra-sonication with a high-shear mixing protocol. The impact of the combination of source materials, activators, and MgO/MWCNT/rGO dosages and their combinations on the thermal properties of AAECs is evaluated and discussed based on temperature–time history and thermal conductivity/diffusivity properties along with micro-structural characteristics. It was found that the change in temperature of the AAECs decreased during testing with the addition of MWCNTs/rGO/MgO. The thermal conductivity and diffusivity of AAECs increased with the increase in MWCNT/rGO/MgO contents due to the formation of additional crystalline reaction products, improved matrix connectivity, and high conductivity of nanomaterials. MWCNT AAECs showed the highest thermal conductivity of 0.91–1.26 W/mK with 49% enhancement compared to control AAECs followed by rGO AAECs. The study confirmed the viability of producing MgO/MWCNT/rGO-incorporated AAECs with enhanced thermal properties. Full article
(This article belongs to the Special Issue Recent Progress in Hybrid Composites)
Show Figures

Figure 1

37 pages, 12837 KB  
Article
Physical, Compressive Strength, and Microstructural Characteristics of Alkali-Activated Engineered Composites Incorporating MgO, MWCNTs, and rGO
by Mohammad Ali Hossain and Khandaker M. A. Hossain
Appl. Sci. 2025, 15(4), 1712; https://doi.org/10.3390/app15041712 - 7 Feb 2025
Cited by 3 | Viewed by 1281
Abstract
Thirty-two ambient cured alkali-activated engineered composites (AAECs) were developed by incorporating MgO, multi-walled carbon nanotubes (MWCNTs), reduced graphene oxide (rGO), and polyvinyl alcohol (PVA) fiber with a one-part dry mix technique using powder-based activators/reagents. The effects of material variables, namely binary or ternary [...] Read more.
Thirty-two ambient cured alkali-activated engineered composites (AAECs) were developed by incorporating MgO, multi-walled carbon nanotubes (MWCNTs), reduced graphene oxide (rGO), and polyvinyl alcohol (PVA) fiber with a one-part dry mix technique using powder-based activators/reagents. The effects of material variables, namely binary or ternary combination source materials (fly ash C or F and ground granulated blast furnace slag ‘GGBFS’), two types of reagents with varying chemical ratios and dosages of additives (from 0 to 5% MgO and from 0 to 6% MWCNT/rGO), on the physical (slump flow, flow time, flow velocity, and density), hardness (compressive strength from 0 to 180 days and 28-day ultrasonic pulse velocity ‘UPV’), and micro-structural (SEM/EDS, XRD and FTIR) properties were evaluated. All these variables, individually or combined, influenced the properties and microstructural aspects of AAECs. Problems associated with the dispersion and agglomeration of nanomaterials, which could disrupt the microstructure and weaken its mechanical/physical properties, were avoided through the use of defined ultra-sonication with a high-shear mixing protocol. All AAECs achieved a 28-day compressive strength ranging from 26.0 MPa to 48.5 MPa and a slump flow > 800 mm, satisfying the criteria for flowable structural concrete. The addition of 5% MgO and up to 0.3% MWCNT/rGO increased the compressive strength/UPV of AAECs with MgO-MWCNT or rGO combination provided an improved strength at a higher dosage of 0.6%. A linear correlation between compressive strength and UPV was derived. As per SEM/EDS and XRD analyses, besides common C-A-S-H/N-C-A-S-H or C-A-S-H/C-S-H gels, the addition of MgO led to the formation of magnesium-aluminum hydrotalcite (Ht) and M-S-H (demonstrating self-healing potential), while the incorporation of rGO produced zeolites which densified the matrix and increased the compressive strength/UPV of the AAECs. Fourier transform infrared spectrometer (FTIR) analysis also suggested the formation of an aluminosilicate network in the AAECs, indicating a more stable structure. The increased UPV of MWCNT/rGO-incorporated AAECs indicated their better conductivity and ability of self-sensing. The developed AAECs, incorporating carbon-nano materials and MgO additive, have satisfactory properties with self-healing/-sensing potentials. Full article
(This article belongs to the Special Issue Alkali-Activated Materials: Advances and Novel Applications)
Show Figures

Figure 1

17 pages, 5156 KB  
Article
Sustainable Geopolymer Tuff Composites Utilizing Iron Powder Waste: Rheological and Mechanical Performance Evaluation
by Mohamed Lyes Kamel Khouadjia, Sara Bensalem, Cherif Belebchouche, Abderrachid Boumaza, Salim Hamlaoui and Slawomir Czarnecki
Sustainability 2025, 17(3), 1240; https://doi.org/10.3390/su17031240 - 4 Feb 2025
Cited by 2 | Viewed by 1363
Abstract
Geopolymers are a sustainable alternative to Portland cement, with the potential to significantly reduce the carbon footprint of conventional cement production. This study investigates the valorization of industrial waste iron powder (IP) as a fine filler in geopolymers synthesized from volcanic tuff (VTF). [...] Read more.
Geopolymers are a sustainable alternative to Portland cement, with the potential to significantly reduce the carbon footprint of conventional cement production. This study investigates the valorization of industrial waste iron powder (IP) as a fine filler in geopolymers synthesized from volcanic tuff (VTF). Composites were prepared with IP substitutions of 5%, 10%, and 20% by weight, using sodium hydroxide and sodium silicate as alkaline activators. Microstructural and phase analyses were conducted using scanning electron microscope coupled with energy dispersive X-ray spectroscopy (SEM-EDS), X-ray fluorescence (XRF), X-ray diffraction (XRD), and differential scanning calorimetry (DSC), while rheological properties, compressive strength, and flexural strength were assessed. The impact of curing temperatures (25 °C and 80 °C) on mechanical performance was evaluated. Results revealed that air content increased to 3.5% with 20% IP substitution, accompanied by a slight rise in flow time (0.8–2 s). Compressive and flexural strengths at 25 °C decreased by up to 22.48% and 28.39%, respectively. Elevated curing at 80 °C further reduced compressive and flexural strengths by an average of 45.30% and 64.68%, highlighting the adverse effects of higher temperatures. Although these formulations are not suitable for load-bearing applications, the findings suggest potential for non-structural uses, such as pavement base layers, aligning with sustainable construction principles by repurposing industrial waste and reducing reliance on energy-intensive cement production. Full article
(This article belongs to the Section Waste and Recycling)
Show Figures

Figure 1

24 pages, 54509 KB  
Article
Stability and Rheological Properties of Grouts with Waste Glass Powder as Cement Replacement: Influences of Content and Alkali Activator
by Liuxi Li, Chao Deng, Yi Zhou, Qundong Tan, Wenqin Yan, Dequan Zhou and Yi Zhou
Materials 2025, 18(2), 353; https://doi.org/10.3390/ma18020353 - 14 Jan 2025
Cited by 2 | Viewed by 1051
Abstract
Effective recycling and utilization of waste glass is a critical issue that urgently needs to be addressed. This study aims to explore the feasibility of using ground waste glass powder (particle size ≤ 75 μm) as a supplementary cementitious material to partially replace [...] Read more.
Effective recycling and utilization of waste glass is a critical issue that urgently needs to be addressed. This study aims to explore the feasibility of using ground waste glass powder (particle size ≤ 75 μm) as a supplementary cementitious material to partially replace cement in the preparation of low-carbon and environmentally friendly grouting materials. The research systematically evaluates the impact of waste glass powder (WGP) on the fresh properties (particularly the stability and rheological characteristics) of cement-based grouting materials under various conditions, including WGP content (0–40%), the addition of NaOH activator (Na2O content of 4%) or not, and water–solid ratio (w/s = 0.5, 0.65, 0.8, 1.0). The results indicate that, in the absence of activator, the addition of WGP generally increases the amount of free liquid exudation in the grout, reducing its stability; however, under low w/s ratios, appropriate amounts of WGP can enhance stability. When the w/s ratio is high and the WGP content is large, the grout stability decreases significantly. The addition of NaOH activator (Na2O content of 4%) significantly reduces free liquid exudation, enhancing the stability of the grout, especially when the w/s ratio is less than 1.0. Furthermore, the Herschel–Bulkley Model was experimentally validated to accurately describe the rheological behavior of waste glass–cement slurries, with all R2 values exceeding 0.99. WGP and alkaline activator have significant effects on the rheological properties of the grout. Although they do not change its flow pattern, they significantly affect shear stress and viscosity. The viscosity of the slurry is influenced by the combined effects of w/s ratio, WGP content, and alkaline activator, with complex interactions among the three. The application of these research findings in the field of grouting engineering not only contributes to significantly reducing glass waste but also promotes the production of sustainable cement-based composites, lowering carbon dioxide emissions by reducing cement usage, and thereby alleviating environmental burdens. Full article
Show Figures

Figure 1

11 pages, 2765 KB  
Article
Eco-Friendly Castor Oil-Based Composite with High Clam Shell Powder Content
by Fangqing Weng, Kui Jian, Yazhou Yi, Peirui Zhang, Ernest Koranteng, Qing Huang, Jiahui Liu and Guoping Zeng
Polymers 2024, 16(23), 3232; https://doi.org/10.3390/polym16233232 - 21 Nov 2024
Cited by 5 | Viewed by 1300
Abstract
Eco-friendly castor oil-based composites with a high content of clam shell powder were prepared in this study. Biomass composites were prepared by blending castor-oil-based polyurethane prepolymer (COPU) with a filler consisting of high-content clam shell powder (CSP), named CSP-COPU. The structure, microstructure, mechanical [...] Read more.
Eco-friendly castor oil-based composites with a high content of clam shell powder were prepared in this study. Biomass composites were prepared by blending castor-oil-based polyurethane prepolymer (COPU) with a filler consisting of high-content clam shell powder (CSP), named CSP-COPU. The structure, microstructure, mechanical properties, and thermal stability of the composites were investigated. The results showed that even at a loading as high as 75 wt.% of the CSP filler, the composite still exhibited good tensile strength and elongation at break. Furthermore, compared with the CSP-COPU composites, TCOS-50 synthesized through blending OH-terminated castor oil-based polyurethane prepolymer (TCOPU) and CSP filler proved that the chemical bond between COPU containing terminal -NCO groups and CSP containing active -OH groups was the key reason to obtaining the composite material with desirable properties. These findings provide prospects for applying biomass-loaded CSP-COPU composites in the packaging industry while contributing to carbon peak achievement and carbon neutrality. Full article
Show Figures

Figure 1

44 pages, 45485 KB  
Review
A Critical Review of the Technical Characteristics of Recycled Brick Powder and Its Influence on Concrete Properties
by Jinkang Hu, Wisal Ahmed and Dengwu Jiao
Buildings 2024, 14(11), 3691; https://doi.org/10.3390/buildings14113691 - 20 Nov 2024
Cited by 12 | Viewed by 4414
Abstract
This paper presents a systematic overview of the applications of RBP as a substitute for cement. Initially, the fundamental properties of RBP, including physical properties, chemical compositions, and morphology, are discussed. Subsequently, the effects of RBP on various aspects of cement-based materials, such [...] Read more.
This paper presents a systematic overview of the applications of RBP as a substitute for cement. Initially, the fundamental properties of RBP, including physical properties, chemical compositions, and morphology, are discussed. Subsequently, the effects of RBP on various aspects of cement-based materials, such as fresh properties, shrinkage behavior, hydration, microstructure, strength development, and durability, are thoroughly reviewed. The findings of this study reveal that waste brick powder exhibits pozzolanic activity and can be used to partially replace cement in concrete formulations. However, its relatively high water absorption and irregular shape increase the water demand and, thus, reduce the rheological properties. The incorporation of RBP with 10–20% or finer particle sizes can refine the pore structure and promote the formation of hydration products. However, replacements of RBP greater than 25% can lead to adverse effects on the mechanical properties, frost resistance, and carbonation resistance of cementitious composites. Therefore, to enhance the effectiveness of RBP, measures such as improving fineness, incorporating mineral admixtures, adjusting curing conditions, and applying nano- or chemical modifications are necessary. This study provides valuable technical support for promoting the sustainable preparation of construction materials, which holds important environmental and economic implications. Full article
Show Figures

Figure 1

23 pages, 6749 KB  
Article
A Study of the Influence of Thermoactivated Natural Zeolite on the Hydration of White Cement Mortars
by Ventseslav Stoyanov, Vilma Petkova, Katerina Mihaylova and Maya Shopska
Materials 2024, 17(19), 4798; https://doi.org/10.3390/ma17194798 - 29 Sep 2024
Cited by 1 | Viewed by 1262
Abstract
One trend in the development of building materials is the partial or complete replacement of traditional materials that have a high carbon footprint with eco-friendly ecological raw materials and ingredients. In the present work, the influence of replacing cement with 10 wt% thermally [...] Read more.
One trend in the development of building materials is the partial or complete replacement of traditional materials that have a high carbon footprint with eco-friendly ecological raw materials and ingredients. In the present work, the influence of replacing cement with 10 wt% thermally activated natural zeolite on the structural and physical-mechanical characteristics of cured mortars based on white Portland cement and river sand was investigated. The phase compositions were determined by wavelength dispersive X-ray fluorescence (WD-XRF) analysis, X-ray powder diffraction (PXRD), diffuse reflectance infrared Fourier transformed spectroscopy (DRIFTS), and scanning electron microscopy (SEM), as well as thermogravimetric analysis simultaneously with differential scanning calorimetry (TG/DTG-DSC). The results show that the incorporation of zeolite increases the amount of pores accessible with mercury intrusion porosimetry by about 40%, but the measured strengths are also higher by over 13%. When these samples were aged in an aqueous environment from day 28 to day 120, the amount of pores decreased by about 10% and the compressive strength increased by nearly 15%, respectively. The microstructural analysis carried out proves that these results are due to hydration with a low content of crystal water and the realization of pozzolanic reactions that last over time. Replacing some of the white cement with thermally activated natural zeolite results in the formation of a greater variety of crystals, including new crystalline CSH and CSAH phases that allow better intergrowth and interlocking. The results of the investigations allow us to present a plausible reaction mechanism of pozzolanic reactions and of the formation of new crystal hydrate phases. This gives grounds to claim that the replacement of part of the cement with zeolite improves the corrosion resistance of the investigated building solutions against aggressive weathering. Full article
Show Figures

Figure 1

14 pages, 3050 KB  
Article
Performance Investigation of PSF-nAC Composite Ultrafiltration Membrane for Protein Separation
by Gunawan Setia Prihandana, Muslim Mahardika, Budi Arifvianto, Ario Sunar Baskoro, Yudan Whulanza, Tutik Sriani and Farazila Yusof
Polymers 2024, 16(18), 2654; https://doi.org/10.3390/polym16182654 - 20 Sep 2024
Cited by 5 | Viewed by 1340
Abstract
As a promising wastewater treatment technology, ultrafiltration membranes face challenges related to fouling and flux reduction. To enhance these membranes, various strategies have been explored. Among them, the incorporation of nano-activated carbon (nAC) powder has emerged as an effective method. In this study, [...] Read more.
As a promising wastewater treatment technology, ultrafiltration membranes face challenges related to fouling and flux reduction. To enhance these membranes, various strategies have been explored. Among them, the incorporation of nano-activated carbon (nAC) powder has emerged as an effective method. In this study, composite polysulfone (PSF) ultrafiltration membranes were fabricated using nAC powder at concentrations ranging from 0 to 8 wt.%. These membranes underwent comprehensive investigation, including assessments of membrane morphology, hydrophilicity, pure water flux, equilibrium water content, porosity, average pore size, and protein separation. The addition of activated carbon improved several desirable properties. Specifically, the hydrophilicity of the PSF membranes was enhanced, with the contact angle reduced from 69° to 58° for 8 wt.% of nAC composite membranes compared to the pristine PSF membrane. Furthermore, the water flux test revealed that 6 wt.% activated carbon-based membranes exhibited the highest flux, with a nearly 3 times improvement at 2 bar. Importantly, this enhancement did not compromise the protein rejection. Additionally, the introduction of nAC had a significant effect on the membrane’s pore size by improving lysozyme rejection up to 40%. Overall, these findings will guide the selection of the optimal concentration of nAC for PSF ultrafiltration membranes. Full article
(This article belongs to the Special Issue Polymeric Materials in Wastewater Treatment)
Show Figures

Figure 1

16 pages, 3519 KB  
Article
Adsorptive–Photocatalytic Composites of α-Ferrous Oxalate Supported on Activated Carbon for the Removal of Phenol under Visible Irradiation
by Salomé Galeas, Víctor H. Guerrero, Patricia I. Pontón, Carla S. Valdivieso-Ramírez, Paul Vargas-Jentzsch, Paola Zárate and Vincent Goetz
Molecules 2024, 29(15), 3690; https://doi.org/10.3390/molecules29153690 - 4 Aug 2024
Viewed by 1658
Abstract
Adsorptive–photocatalytic composites based on activated carbon (AC) and α-ferrous oxalate dihydrate (α-FOD) were synthesized by an original two-step method and subsequently used for the removal of phenol from aqueous solutions. To obtain the composites, ferrotitaniferous black mineral sands (0.6FeTiO3·0.4Fe2O [...] Read more.
Adsorptive–photocatalytic composites based on activated carbon (AC) and α-ferrous oxalate dihydrate (α-FOD) were synthesized by an original two-step method and subsequently used for the removal of phenol from aqueous solutions. To obtain the composites, ferrotitaniferous black mineral sands (0.6FeTiO3·0.4Fe2O3) were first dissolved in an oxalic acid solution at ambient pressure, and further treated under hydrothermal conditions to precipitate α-FOD on the AC surface. The ratio of oxalic acid to the mineral sand precursor was tuned to obtain composites with 8.3 and 42.7 wt.% of α-FOD on the AC surface. These materials were characterized by X-ray powder diffraction, scanning electron microscopy, and the nitrogen adsorption–desorption method. The phenol removal efficiency of the composites was determined during 24 h of adsorption under dark conditions, followed by 24 h of adsorption–photocatalysis under visible light irradiation. AC/α-FOD composites with 8.3 and 42.7 wt.% of α-FOD adsorbed 60% and 51% of phenol in 24 h and reached a 90% and 96% removal efficiency after 12 h of irradiation, respectively. Given its higher photocatalytic response, the 42.7 wt.% α-FOD composite was also tested during successive cycles of adsorption and adsorption–photocatalysis. This composite exhibited a reasonable level of cyclability (~99% removal after four alternated dark/irradiated cycles of 24 h and ~68% removal after three simultaneous adsorption–photocatalysis cycles of 24 h). The promising performance of the as-prepared composites opens several opportunities for their application in the effective removal of organic micropollutants from water. Full article
(This article belongs to the Special Issue Heterogeneous Catalysis for Sustainability and Carbon-Neutrality)
Show Figures

Graphical abstract

Back to TopTop