Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (196)

Search Parameters:
Keywords = powertrain integration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
45 pages, 5989 KB  
Review
A Review of Hybrid-Electric Propulsion in Aviation: Modeling Methods, Energy Management Strategies, and Future Prospects
by Feifan Yu, Jiajie Chen, Panao Gao, Yu Kong, Xiaokang Sun, Jiqiang Wang and Xinmin Chen
Aerospace 2025, 12(10), 895; https://doi.org/10.3390/aerospace12100895 - 3 Oct 2025
Abstract
Aviation is under increasing pressure to reduce carbon emissions in conventional transports and support the growth of low-altitude operations such as long-endurance eVTOLs. Hybrid-electric propulsion addresses these challenges by integrating the high specific energy of fuels or hydrogen with the controllability and efficiency [...] Read more.
Aviation is under increasing pressure to reduce carbon emissions in conventional transports and support the growth of low-altitude operations such as long-endurance eVTOLs. Hybrid-electric propulsion addresses these challenges by integrating the high specific energy of fuels or hydrogen with the controllability and efficiency of electrified powertrains. At present, the field of hybrid-electric aircraft is developing rapidly. To systematically study hybrid-electric propulsion control in aviation, this review focuses on practical aspects of system development, including propulsion architectures, system- and component-level modeling approaches, and energy management strategies. Key technologies in the future are examined, with emphasis on aircraft power-demand prediction, multi-timescale control, and thermal integrated energy management. This review aims to serve as a reference for configuration design, modeling and control simulation, as well as energy management strategy design of hybrid-electric propulsion systems. Building on this reference role, the review presents a coherent guidance scheme from architectures through modeling to energy-management control, with a practical roadmap toward flight-ready deployment. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

22 pages, 2765 KB  
Article
Efficiency-Oriented Gear Selection Strategy for Twin Permanent Magnet Synchronous Machines in a Shared Drivetrain Architecture
by Tamás Sándor, István Bendiák and Róbert Szabolcsi
Vehicles 2025, 7(4), 110; https://doi.org/10.3390/vehicles7040110 - 29 Sep 2025
Abstract
This article presents a gear selection methodology for electric vehicle powertrains employing two identical Permanent Magnet Synchronous Machines (PMSMs) arranged in a twin-drive configuration. Both machines are coupled through a shared output shaft and operate with coordinated torque–speed characteristics, enabling efficient utilization of [...] Read more.
This article presents a gear selection methodology for electric vehicle powertrains employing two identical Permanent Magnet Synchronous Machines (PMSMs) arranged in a twin-drive configuration. Both machines are coupled through a shared output shaft and operate with coordinated torque–speed characteristics, enabling efficient utilization of the available gear stages. The proposed approach establishes a control-oriented drivetrain framework that incorporates mechanical dynamics together with real-time thermal states and loss mechanisms. Unlike conventional strategies, which rely mainly on static or speed-based shifting rules, the method integrates detailed thermal and electromagnetic loss modeling directly into the gear-shifting logic. By accounting for the dynamic thermal behavior of PMSMs under variable load conditions, the strategy aims to reduce cumulative drivetrain losses, including electromagnetic, thermal, and mechanical, while maintaining high efficiency. The methodology is implemented in a MATLAB/Simulink R2024a and LabVIEW 2024Q2 co-simulation environment, where thermal feedback and instantaneous efficiency metrics dynamically guide gear selection. Simulation results demonstrate measurable improvements in energy utilization, particularly under transient operating conditions. The resulting efficiency maps are broader and flatter, as the motors’ operating points are continuously shifted toward zones of optimal performance through adaptive gear ratio control. The novelty of this work lies in combining real-time loss modeling, thermal feedback, and coordinated gear management in a twin-motor system, validated through experimentally motivated efficiency maps. The findings highlight a scalable and dynamic control framework suitable for advanced electric vehicle architectures, supporting intelligent efficiency-oriented drivetrain strategies that enhance sustainability, thermal management, and system performance across diverse operating conditions. Full article
Show Figures

Figure 1

15 pages, 1898 KB  
Article
Design and Cost Evaluation of Additively Manufactured Electric Vehicle Gearbox Housings
by Steffen Jäger and Tilmann Linde
World Electr. Veh. J. 2025, 16(10), 552; https://doi.org/10.3390/wevj16100552 - 25 Sep 2025
Abstract
Additive manufacturing technologies enable the design of complex lightweight structures for electric powertrain applications. This study evaluates the topology optimization and conceptual additive manufacturing of a real electric vehicle gearbox housing, aiming to reduce weight while maintaining structural stiffness. Based on an existing [...] Read more.
Additive manufacturing technologies enable the design of complex lightweight structures for electric powertrain applications. This study evaluates the topology optimization and conceptual additive manufacturing of a real electric vehicle gearbox housing, aiming to reduce weight while maintaining structural stiffness. Based on an existing industrial component, a topology-optimized design featuring an X-shaped rib structure was developed. The manufacturing concept combines Laser Metal Deposition (LMD) with a pre-machined turned part. A comparative material study was carried out using finite element simulations to assess aluminum, magnesium, titanium, and stainless steel in terms of weight, deformation, and natural frequency. The results indicate that aluminum alloys offer the best balance of stiffness and weight due to their high specific modulus and favorable processability. The optimized design achieved a simulated weight reduction of approximately 21% with only a minor increase in rotational deformation. A cost analysis of different manufacturing methods suggests that, while conventional casting remains more economical at higher volumes, additive processes are becoming increasingly viable for small series. The study provides a theoretical foundation for future development of lightweight functionally integrated gearbox housings in electric mobility. Full article
Show Figures

Figure 1

16 pages, 4249 KB  
Article
Defining Robust NVH Requirements for an Electrified Powertrain Mounting System Based on Solution Space During Early Phase of Development
by José G. Cóndor López, Karsten Finger and Sven Herold
Appl. Sci. 2025, 15(18), 10241; https://doi.org/10.3390/app151810241 - 20 Sep 2025
Viewed by 172
Abstract
Electrification introduces additional NVH (noise, vibration and harshness) challenges during the development of powertrain mounting systems due to high-frequency excitations from the powertrain and the absence of masking effects from the combustion engine. In these frequency ranges, engine mounts can stiffen up to [...] Read more.
Electrification introduces additional NVH (noise, vibration and harshness) challenges during the development of powertrain mounting systems due to high-frequency excitations from the powertrain and the absence of masking effects from the combustion engine. In these frequency ranges, engine mounts can stiffen up to a factor of five due to continuum resonances, reducing their structure-borne sound isolation properties and negatively impacting the customer’s NVH perception. Common hardening factors used during elastomer mount development are therefore limited in terms of their applicable validation frequency range. This study presents a methodology for determining decoupled permissible stiffness ranges for a double-isolated mounting system up to 1500 Hz, based on solution space engineering. Instead of optimizing for a single best design, we seek to maximize solution boxes, resulting in robust stiffness ranges that ensure the fulfillment of the formulated system requirements. These ranges serve as NVH requirements at the component level, derived from the sound pressure level at the seat location. They provide tailored guidelines for mount development, such as geometric design or optimal resonance placement, while simultaneously offering maximum flexibility by spanning the solution space. The integration of machine learning approaches enables the application of large-scale finite-element models within the framework of solution space analysis by reducing the computational time by a factor of 7.19·103. From a design process standpoint, this facilitates frontloading by accelerating the evaluation phase as suppliers can directly benchmark their mounting concepts against the permissible ranges and immediately verify compliance with the defined targets. Full article
(This article belongs to the Special Issue Advances in Dynamic Systems by Smart Structures)
Show Figures

Figure 1

42 pages, 11496 KB  
Article
Research on Energy Management Strategy for Marine Methanol–Electric Hybrid Propulsion System Based on DP-ANFIS Algorithm
by Zhao Li, Wuqiang Long, Wenliang Lu and Hua Tian
Energies 2025, 18(18), 4879; https://doi.org/10.3390/en18184879 - 13 Sep 2025
Viewed by 406
Abstract
To address the challenges of high fuel consumption and emissions in traditional diesel-powered inland law enforcement vessels, this study proposes a methanol–electric hybrid propulsion system retrofitted with a novel energy management strategy (EMS) based on the integration of Dynamic Programming (DP) and Adaptive [...] Read more.
To address the challenges of high fuel consumption and emissions in traditional diesel-powered inland law enforcement vessels, this study proposes a methanol–electric hybrid propulsion system retrofitted with a novel energy management strategy (EMS) based on the integration of Dynamic Programming (DP) and Adaptive Neuro-Fuzzy Inference System (ANFIS). The DP-ANFIS algorithm combines the global optimization capability of DP with the real-time adaptability of ANFIS to achieve efficient power distribution. A high-fidelity simulation model of the hybrid system was developed using methanol engine bench test data and integrated with models of other powertrain components. The DP algorithm was used offline to generate an optimal control sequence, which was then learned online by ANFIS to enable real-time energy allocation. Simulation results demonstrate that the DP-ANFIS strategy reduces total energy consumption by 78.53%, increases battery state of charge (SOC) by 3.24%, decreases methanol consumption by 64.95%, and significantly reduces emissions of CO, HC, NOx, and CO2 compared to a rule-based strategy. Hardware-in-the-loop tests confirm the practical feasibility of the proposed approach, offering a promising solution for intelligent energy management in marine hybrid propulsion systems. Full article
Show Figures

Figure 1

15 pages, 3299 KB  
Article
Towards Sustainable Airport Operations: Emission Analysis of Taxiing Solutions
by Marta Maciejewska and Paula Kurzawska-Pietrowicz
Sustainability 2025, 17(18), 8242; https://doi.org/10.3390/su17188242 - 13 Sep 2025
Viewed by 354
Abstract
Airport operations significantly contribute to air pollution in their vicinity through various sources, including aircraft activities—particularly taxiing and take-off—as well as ground support equipment, service vehicles, and maintenance work. Since emissions from aircraft engines represent the primary pollution source at airports, it is [...] Read more.
Airport operations significantly contribute to air pollution in their vicinity through various sources, including aircraft activities—particularly taxiing and take-off—as well as ground support equipment, service vehicles, and maintenance work. Since emissions from aircraft engines represent the primary pollution source at airports, it is essential to reduce emissions at every phase of the LTO (landing and take-off) cycle to improve local air quality and promote environmental sustainability. Given the research gap in emission analysis, a comprehensive LCA framework for airport pushback and taxi operations is proposed, integrating tow truck propulsion, a taxiing strategy, and fleet management. Given the complexity of the issue, the authors first decided to investigate emissions from taxiing operations using tow trucks with different powertrains. The analyses performed were considered preliminary and a starting point for exploring emissions during taxiing operations at airports. Typically, aircraft are pushed back from the apron and then taxi under their own power using both engines at approximately 7% of maximum thrust. To substantially reduce exhaust emissions, external towing vehicles can be employed to move aircrafts from the apron to the runway. This study evaluates the potential for emission reductions in CO2 and other harmful compounds such as CO, HC, NOx, and PM by using electric towing vehicles (ETVs). It also compares emissions from different taxiing methods: full-engine taxiing, single-engine taxiing, ETV-assisted taxiing, and taxiing using diesel and petrol-powered tow vehicles. The analysis was conducted for Warsaw and Poznań airports. Three aircraft types—the most commonly operating at these airports—were selected to assess emissions under various taxiing scenarios. The results show that using electric towing vehicles can reduce CO and NOx emissions to nearly zero compared to other methods. Interestingly, CO emissions from full-engine taxiing were lower than those from petrol-powered towing, although the Embraer 195 showed the highest CO emissions among the selected aircrafts. HC emissions were lowest for the A321neo and also relatively low for the diesel towing vehicle. The use of electric tow trucks significantly reduces CO2 emissions: only 2.8–4.4 kg compared to 380–450 kg when taxiing with engines. This research highlights the critical role of sustainable ground operations in reducing harmful emissions and underscores the importance of integrating sustainability into airport taxiing practices. Full article
(This article belongs to the Special Issue Control of Traffic-Related Emissions to Improve Air Quality)
Show Figures

Figure 1

27 pages, 13525 KB  
Article
Energy-Aware Optimal Reconfiguration of a Heterogeneous Connected and Automated Vehicle Cohort on a Limited-Access Highway
by Pruthwiraj Santhosh, Darrell Robinette, Daniel Knopp, Jeffrey Naber and Jungyun Bae
Vehicles 2025, 7(3), 97; https://doi.org/10.3390/vehicles7030097 - 10 Sep 2025
Viewed by 330
Abstract
This paper presents an optimized vehicular reordering methodology designed to minimize energy consumption within heterogeneous cohorts operating at constant velocity on limited-access highways. The approach addresses the challenge of optimizing vehicle sequencing by considering both aerodynamic drag reduction benefits and the energy costs [...] Read more.
This paper presents an optimized vehicular reordering methodology designed to minimize energy consumption within heterogeneous cohorts operating at constant velocity on limited-access highways. The approach addresses the challenge of optimizing vehicle sequencing by considering both aerodynamic drag reduction benefits and the energy costs of reconfiguring a cohort from a stochastic initial state. This study provides empirical validation through on-road vehicle tests, demonstrating significant energy savings, achieving up to 10% reduction in axle energy for optimally configured cohorts compared to independent operation. A System of Systems (SoS) simulation environment, integrating micro-traffic, validated powertrain, and aerodynamic drag reduction models, was developed to simulate complex reconfiguration maneuvers and quantify associated energy expenditures. The methodology examines how powertrain characteristics influence optimal arrangements and quantifies the impact of individual vehicle placement on overall cohort efficiency. Findings indicate that while reconfiguration incurs a minor energy cost (typically <0.45% of total trip energy for a 20 km trip), the net energy savings over relevant travel distances are substantial. The study also highlights the sensitivity of drag reduction estimators for heterogeneous platoons and the current limitations in available models. Ultimately, a predictive optimization framework is proposed that leverages connectivity-enabled information to select the most energy-efficient cohort configuration, considering factors such as distance to destination and reconfiguration energy, thereby offering a practical strategy for enhancing fuel economy in future connected and automated transportation systems. Full article
Show Figures

Figure 1

21 pages, 1693 KB  
Article
Calibration and Validation of a PEM Fuel Cell Hybrid Powertrain Model for Energy Management System Design
by Zihao Guo, Elia Grano, Francesco Mazzeo, Henrique de Carvalho Pinheiro and Massimiliana Carello
Designs 2025, 9(4), 94; https://doi.org/10.3390/designs9040094 - 12 Aug 2025
Viewed by 580
Abstract
This paper presents a calibrated and dynamically responsive simulation framework for hybrid energy systems that integrate Proton Exchange Membrane Fuel Cells (PEMFCs) and batteries, targeting applications in light commercial vehicles (LCVs). The aim is to support the design and assessment of energy management [...] Read more.
This paper presents a calibrated and dynamically responsive simulation framework for hybrid energy systems that integrate Proton Exchange Membrane Fuel Cells (PEMFCs) and batteries, targeting applications in light commercial vehicles (LCVs). The aim is to support the design and assessment of energy management strategies (EMS) under realistic operating conditions. A publicly available PEMFC model is used as the starting point. To improve its representativeness, calibration is performed using experimental polarization curve data, enhancing the accuracy of the stack voltage model, and the air compressor model—critical for maintaining stable fuel cell operation—is adjusted to reflect measured transient responses, ensuring realistic system behavior under varying load demands. Quantitatively, the calibration results are strong: the R2 values of both the fuel cell polarization curve and the overall system efficiency are around 0.99, indicating excellent agreement with experimental data. The calibrated model is embedded within a complete hybrid vehicle powertrain simulation, incorporating longitudinal dynamics and control strategies for power distribution between the battery and fuel cells. Simulations conducted under WLTP driving cycles confirm the model’s ability to replicate key behaviors of PEMFC-battery hybrid systems, particularly with respect to dynamic energy flow and system response. In conclusion, this work provides a reliable and high-fidelity simulation environment based on empirical calibration of key subsystems, which is well suited for the development and evaluation of advanced EMS algorithms. Full article
(This article belongs to the Section Mechanical Engineering Design)
Show Figures

Figure 1

26 pages, 3405 KB  
Article
Digital Twins for Intelligent Vehicle-to-Grid Systems: A Multi-Physics EV Model for AI-Based Energy Management
by Michela Costa and Gianluca Del Papa
Appl. Sci. 2025, 15(15), 8214; https://doi.org/10.3390/app15158214 - 23 Jul 2025
Cited by 1 | Viewed by 849
Abstract
This paper presents a high-fidelity multi-physics dynamic model for electric vehicles, serving as a fundamental building block for intelligent vehicle-to-grid (V2G) integration systems. The model accurately captures complex vehicle dynamics of the powertrain, battery, and regenerative braking, enabling precise energy consumption evaluation, including [...] Read more.
This paper presents a high-fidelity multi-physics dynamic model for electric vehicles, serving as a fundamental building block for intelligent vehicle-to-grid (V2G) integration systems. The model accurately captures complex vehicle dynamics of the powertrain, battery, and regenerative braking, enabling precise energy consumption evaluation, including in AI-driven V2G scenarios. Validated using real-world data from a Citroën Ami operating on urban routes in Naples, Italy, it achieved exceptional accuracy with a root mean square error (RMSE) of 1.28% for dynamic state of charge prediction. This robust framework provides an essential foundation for AI-driven digital twin technologies in V2G applications, significantly advancing sustainable transportation and smart grid integration through predictive simulation. Its versatility supports diverse fleet applications, from residential energy management and coordinated charging optimization to commercial car sharing operations, leveraging backup power during peak demand or grid outages, so to maximize distributed battery storage utilization. Full article
(This article belongs to the Special Issue Applications of Artificial Intelligence in the Novel Power System)
Show Figures

Figure 1

26 pages, 505 KB  
Article
Cost Modeling for Pickup and Delivery Outsourcing in CEP Operations: A Multidimensional Approach
by Ermin Muharemović, Amel Kosovac, Muhamed Begović, Snežana Tadić and Mladen Krstić
Logistics 2025, 9(3), 96; https://doi.org/10.3390/logistics9030096 - 17 Jul 2025
Viewed by 847
Abstract
Background: The growth of parcel volumes in urban areas, largely driven by e-commerce, has increased the complexity of pickup and delivery operations. To meet demands for cost efficiency, flexibility, and sustainability, CEP (Courier, Express, and Parcel) operators increasingly outsource segments of their [...] Read more.
Background: The growth of parcel volumes in urban areas, largely driven by e-commerce, has increased the complexity of pickup and delivery operations. To meet demands for cost efficiency, flexibility, and sustainability, CEP (Courier, Express, and Parcel) operators increasingly outsource segments of their last-mile networks. Methods: This study proposes a novel multidimensional cost model for outsourcing, integrating five key variables: transport unit type (parcel/pallet), service phase (pickup/delivery), vehicle category, powertrain type, and delivery point type. The model applies correction coefficients based on internal operational costs, further adjusted for location and service quality using a bonus/malus mechanism. Results: Each cost component is calculated independently, enabling full transparency and route-level cost tracking. A real-world case study was conducted using operational data from a CEP operator in Bosnia and Herzegovina. The model demonstrated improved accuracy and fairness in cost allocation, with measurable savings of up to 7% compared to existing fixed-price models. Conclusions: The proposed model supports data-driven outsourcing decisions, allows tailored cost structuring based on operational realities, and aligns with sustainable last-mile delivery strategies. It offers a scalable and adaptable tool for CEP operators seeking to enhance cost control and service efficiency in complex urban environments. Full article
Show Figures

Figure 1

26 pages, 2207 KB  
Article
Enhancing Electric Vehicle Battery Charging Efficiency Using an Improved Parrot Optimizer and Photovoltaic Systems
by Ebrahim Sheykhi and Mutlu Yilmaz
Energies 2025, 18(14), 3808; https://doi.org/10.3390/en18143808 - 17 Jul 2025
Cited by 1 | Viewed by 419
Abstract
There has been a great need for replacing combustion-powered vehicles with electric vehicles (EV), and fully electric cars are meant to replace combustion engine cars. This has led to considerable research into improving the performance of EVs, especially via electric motor voltage control. [...] Read more.
There has been a great need for replacing combustion-powered vehicles with electric vehicles (EV), and fully electric cars are meant to replace combustion engine cars. This has led to considerable research into improving the performance of EVs, especially via electric motor voltage control. A wide range of optimization algorithms have been used as traditional approaches, but the dynamic parameters of electric motors, impacted by temperature and different driving cycles, continue to be a problem. This study introduces an improved version of the Parrot Optimizer (IPO) aimed at enhancing voltage regulation in EVs. The algorithm can intelligently adjust certain motor parameters for adaptive management to maintain performance based on different situations. To ensure a stable and sustainable power supply for the powertrain of the EV, a photovoltaic (PV) system is used with energy storage batteries. Such an arrangement seeks to deliver permanent electric energy, a solution to traditional grid electricity reliance. This demonstrates the effectiveness of IPO, with the resultant motor performance remaining optimal despite parameter changes. It is also illustrated that energy production, by integrating PV systems, prevents excessive voltage line drops and thus voltage imbalances. The proposed intelligent controller is verified based on multiple simulations, demonstrating and ensuring significant improvements in EV efficiency and reliability. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

31 pages, 2741 KB  
Article
Power Flow Simulation and Thermal Performance Analysis of Electric Vehicles Under Standard Driving Cycles
by Jafar Masri, Mohammad Ismail and Abdulrahman Obaid
Energies 2025, 18(14), 3737; https://doi.org/10.3390/en18143737 - 15 Jul 2025
Viewed by 942
Abstract
This paper presents a simulation framework for evaluating power flow, energy efficiency, thermal behavior, and energy consumption in electric vehicles (EVs) under standardized driving conditions. A detailed Simulink model is developed, integrating a lithium-ion battery, inverter, permanent magnet synchronous motor (PMSM), gearbox, and [...] Read more.
This paper presents a simulation framework for evaluating power flow, energy efficiency, thermal behavior, and energy consumption in electric vehicles (EVs) under standardized driving conditions. A detailed Simulink model is developed, integrating a lithium-ion battery, inverter, permanent magnet synchronous motor (PMSM), gearbox, and a field-oriented control strategy with PI-based speed and current regulation. The framework is applied to four standard driving cycles—UDDS, HWFET, WLTP, and NEDC—to assess system performance under varied load conditions. The UDDS cycle imposes the highest thermal loads, with temperature rises of 76.5 °C (motor) and 52.0 °C (inverter). The HWFET cycle yields the highest energy efficiency, with PMSM efficiency reaching 92% and minimal SOC depletion (15%) due to its steady-speed profile. The WLTP cycle shows wide power fluctuations (−30–19.3 kW), and a motor temperature rise of 73.6 °C. The NEDC results indicate a thermal increase of 75.1 °C. Model results show good agreement with published benchmarks, with deviations generally below 5%, validating the framework’s accuracy. These findings underscore the importance of cycle-sensitive analysis in optimizing energy use and thermal management in EV powertrain design. Full article
Show Figures

Figure 1

42 pages, 5715 KB  
Article
Development and Fuel Economy Optimization of Series–Parallel Hybrid Powertrain for Van-Style VW Crafter Vehicle
by Ahmed Nabil Farouk Abdelbaky, Aminu Babangida, Abdullahi Bala Kunya and Péter Tamás Szemes
Energies 2025, 18(14), 3688; https://doi.org/10.3390/en18143688 - 12 Jul 2025
Cited by 1 | Viewed by 788
Abstract
The presence of toxic gas emissions from conventional vehicles is worrisome globally. Over the past few years, there has been a broad adoption of electric vehicles (EVs) to reduce energy usage and mitigate environmental emissions. The EVs are characterized by limited range, cost, [...] Read more.
The presence of toxic gas emissions from conventional vehicles is worrisome globally. Over the past few years, there has been a broad adoption of electric vehicles (EVs) to reduce energy usage and mitigate environmental emissions. The EVs are characterized by limited range, cost, and short range. This prompts the need for hybrid electric vehicles (HEVs). This study describes the conversion of a 2022 Volkswagen Crafter (VW) 35 TDI 340 delivery van from a conventional diesel powertrain into a hybrid electric vehicle (HEV) augmented with synchronous electrical machines (motor and generator) and a BMW i3 60 Ah battery pack. A downsized 1.5 L diesel engine and an electric motor–generator unit are integrated via a planetary power split device supported by a high-voltage lithium-ion battery. A MATLAB (R2024b) Simulink model of the hybrid system is developed, and its speed tracking PID controller is optimized using genetic algorithm (GA) and particle swarm optimization (PSO) methods. The simulation results show significant efficiency gains: for example, average fuel consumption falls from 9.952 to 7.014 L/100 km (a 29.5% saving) and CO2 emissions drop from 260.8 to 186.0 g/km (a 74.8 g reduction), while the vehicle range on a 75 L tank grows by ~40.7% (from 785.7 to 1105.5 km). The optimized series–parallel powertrain design significantly improves urban driving economy and reduces emissions without compromising performance. Full article
Show Figures

Figure 1

25 pages, 1264 KB  
Article
Potential Assessment of Electrified Heavy-Duty Trailers Based on the Methods Developed for EU Legislation (VECTO Trailer)
by Stefan Present and Martin Rexeis
Future Transp. 2025, 5(3), 77; https://doi.org/10.3390/futuretransp5030077 - 1 Jul 2025
Viewed by 838
Abstract
Since 1 January 2024, newly produced heavy-duty trailers are subject to the assessment of their performance regarding CO2 and fuel consumption according to Implementing Regulation (EU) 2022/1362. The method is based on the already established approach for the CO2 and energy [...] Read more.
Since 1 January 2024, newly produced heavy-duty trailers are subject to the assessment of their performance regarding CO2 and fuel consumption according to Implementing Regulation (EU) 2022/1362. The method is based on the already established approach for the CO2 and energy consumption evaluation of trucks and buses, i.e., applying a combination of component testing and vehicle simulation using the software VECTO (Vehicle Energy Consumption calculation TOol). For the evaluation of trailers, generic conventional towing vehicles in combination with the specific CO2 and fuel consumption-relevant properties of the trailer, such as mass, aerodynamics, rolling resistance etc., are simulated in the “VECTO Trailer” software. The corresponding results are used in the European HDV CO2 standards with which manufacturers must comply to avoid penalty payments (2030: −10% for semitrailers and −7.5% for trailers compared with the baseline year 2025). Methodology and legislation are currently being extended to also cover the effects of electrified trailers (trailers with an electrified axle and/or electrically supplied auxiliaries) on CO2, electrical energy consumption, and electric range extension (special use case in combination with a battery-electric towing vehicle). This publication gives an overview of the developed regulatory framework and methods to be implemented in a future extension of VECTO Trailer as well as a comparison of different e-trailer configurations and usage scenarios regarding their impact on CO2, energy consumption, and electric range by applying the developed methods in a preliminary potential analysis. Results from this analysis indicate that e-trailers that use small batteries (5–50 kWh) to power electric refrigeration units achieve a CO2 reduction of 5–10%, depending primarily on battery capacity. In contrast, e-trailers designed for propulsion support with larger batteries (50–500 kWh) and e-axle(s) (50–500 kW) demonstrate a reduction potential of up to 40%, largely determined by battery capacity and e-axle rating. Despite their reduction potential, market acceptance of e-trailers remains uncertain as the higher number of trailers compared with towing vehicles could lead to slow adoption, especially of the more expensive configurations. Full article
Show Figures

Figure 1

28 pages, 3675 KB  
Article
Balancing Cam Mechanism for Instantaneous Torque and Velocity Stabilization in Internal Combustion Engines: Simulation and Experimental Validation
by Daniel Silva Cardoso, Paulo Oliveira Fael, Pedro Dinis Gaspar and António Espírito-Santo
Energies 2025, 18(13), 3256; https://doi.org/10.3390/en18133256 - 21 Jun 2025
Cited by 1 | Viewed by 638
Abstract
Torque and velocity fluctuations in internal combustion engines (ICEs), particularly during idle and low-speed operation, can reduce efficiency, increase vibration, and impose mechanical stress on coupled systems. This work presents the design, simulation, and experimental validation of a passive balancing cam mechanism developed [...] Read more.
Torque and velocity fluctuations in internal combustion engines (ICEs), particularly during idle and low-speed operation, can reduce efficiency, increase vibration, and impose mechanical stress on coupled systems. This work presents the design, simulation, and experimental validation of a passive balancing cam mechanism developed to mitigate fluctuations in single-cylinder internal combustion engines (ICEs). The system consists of a cam and a spring-loaded follower that synchronizes with the engine cycle to store and release energy, generating a compensatory torque that stabilizes rotational speed. The mechanism was implemented on a single-cylinder Honda® engine and evaluated through simulations and laboratory tests under idle conditions. Results demonstrate a reduction in torque ripple amplitude of approximately 54% and standard deviation of 50%, as well as a decrease in angular speed fluctuation amplitude of about 43% and standard deviation of 42%, resulting in significantly smoother engine behavior. These improvements also address longstanding limitations in traditional powertrains, which often rely on heavy flywheels or electronically controlled dampers to manage rotational irregularities. Such solutions increase system complexity, weight, and energy losses. In contrast, the proposed passive mechanism offers a simpler, more efficient alternative, requiring no external control or energy input. Its effectiveness in stabilizing engine output makes it especially suited for integration into hybrid electric systems, where consistent generator performance and low mechanical noise are critical for efficient battery charging and protection of sensitive electronic components. Full article
(This article belongs to the Special Issue Internal Combustion Engines: Research and Applications—3rd Edition)
Show Figures

Figure 1

Back to TopTop