Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,979)

Search Parameters:
Keywords = production system engineering

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
55 pages, 1631 KB  
Review
Opportunities for Supplementary Cementitious Materials from Natural Sources and Industrial Byproducts: Literature Insights and Supply Assessment
by Somayeh Nassiri, Ali Azhar Butt, Ali Zarei, Souvik Roy, Iyanuoluwa Filani, Gandhar Abhay Pandit, Angel Mateos, Md Mostofa Haider and John T. Harvey
Buildings 2025, 15(17), 3099; https://doi.org/10.3390/buildings15173099 (registering DOI) - 28 Aug 2025
Abstract
This paper reviews various emerging alternative SCMs derived from minerals and biomass sources, industrial byproducts, and underutilized waste streams. The paper compiles and evaluates physicochemical properties, reaction mechanisms in cementitious systems, resource availability, supply chain dynamics, technology readiness, the impact on concrete performance, [...] Read more.
This paper reviews various emerging alternative SCMs derived from minerals and biomass sources, industrial byproducts, and underutilized waste streams. The paper compiles and evaluates physicochemical properties, reaction mechanisms in cementitious systems, resource availability, supply chain dynamics, technology readiness, the impact on concrete performance, and environmental and cost factors for each candidate SCM. Specifically, the review examines wood ash from bioenergy plants, volcanic and sedimentary natural pozzolans, and construction and demolition waste. This includes recycled concrete fines, asphalt plants’ rock dust (baghouse fines), aggregate production fines, and post-consumer waste, particularly municipal solid waste incinerator ash and wastewater sludge ash. Additionally, the paper explores innovative additives such as cellulose and chitin nanomaterials and calcium–silicate–hydrate nanoseeds to address challenges of slower strength development and rheological changes. The key contribution of this review is a multifactor framework for assessing alternative SCMs, emphasizing availability, supply chain, market readiness, and environmental performance, combined with an engineering performance review. Full article
(This article belongs to the Special Issue Innovative Composite Materials in Construction)
98 pages, 3978 KB  
Review
Pathologic and Therapeutic Schwann Cells
by Michael R. Shurin, Sarah E. Wheeler, Hua Zhong and Yan Zhou
Cells 2025, 14(17), 1336; https://doi.org/10.3390/cells14171336 (registering DOI) - 28 Aug 2025
Abstract
Schwann cells (SCs) are the primary glial cells of the Peripheral Nervous System (PNS), which insulate and provide protection and nutrients to the axons. Technological and experimental advances in neuroscience, focusing on the biology of SCs, their interactions with other cells, and their [...] Read more.
Schwann cells (SCs) are the primary glial cells of the Peripheral Nervous System (PNS), which insulate and provide protection and nutrients to the axons. Technological and experimental advances in neuroscience, focusing on the biology of SCs, their interactions with other cells, and their role in the pathogenesis of various diseases, have paved the way for exploring new treatment strategies that aim to harness the direct protective or causative properties of SCs in neurological disorders. SCs express cytokines, chemokines, neurotrophic growth factors, matrix metalloproteinases, extracellular matrix proteins, and extracellular vesicles, which promote the inherent potential of the injured neurons to survive and accelerate axonal elongation. The ability of SCs to support the development and functioning of neurons is lost in certain hereditary, autoimmune, metabolic, traumatic, and toxic conditions, suggesting their role in specific neurological diseases. Thus, targeting, modifying, and replacing SC strategies, as well as utilizing SC-derived factors and exosomes, have been considered novel therapeutic opportunities for neuropathological conditions. Preclinical and clinical data have demonstrated that SCs and SC-derived factors can serve as viable cell therapy for reconstructing the local tissue microenvironment and promoting nerve anatomical and functional recovery in both peripheral and central nerve injury repair, as well as in peripheral neuropathies. However, despite the promising successes of genetic engineering of SCs, which are now in preclinical and clinical trials, improving tactics to obtain ‘repair’ SCs and their products from different sources is the key goal for future clinical success. Finally, further development of innovative therapeutic approaches to target and modify SC survival and function in vivo is also urgently needed. Full article
(This article belongs to the Special Issue Emerging Roles of Glial Cells in Human Health and Disease)
20 pages, 1792 KB  
Article
Numerical Simulation of Deep Bed Cooling Drying Process of Pellet Feed Based on Non-Equilibrium Model
by Wei Wang, Junhua Wu, Fanglei Zou, Hongying Wang and Liangju Wang
Appl. Sci. 2025, 15(17), 9445; https://doi.org/10.3390/app15179445 (registering DOI) - 28 Aug 2025
Abstract
In this study, a deep bed cooling drying model based on non-equilibrium model was established for pellet feed. The modified Verma model was used to describe the thin-layer drying rate, and the air temperature coefficient was introduced to optimize the convection heat transfer [...] Read more.
In this study, a deep bed cooling drying model based on non-equilibrium model was established for pellet feed. The modified Verma model was used to describe the thin-layer drying rate, and the air temperature coefficient was introduced to optimize the convection heat transfer coefficient. The model was verified by the enterprise production data and laboratory-scale cooling and drying test. The results show that the improved model can accurately predict the changes in feed temperature and moisture and has good applicability to the cooling and drying process under different wind speeds, air temperatures, and humidity. The model lays a foundation for the development of an intelligent control system for a pellet feed cooler and has important engineering value for achieving real-time control of cooling process parameters, improving feed quality stability and energy savings, and reducing energy consumption. Full article
23 pages, 818 KB  
Article
Integrating Circularity Micro-Indicators into Automotive Product Development to Evaluate Environmental Trade-Offs and Guide Sustainable Design Decisions
by Maria J. Simão, Joana Matos and Ricardo Simoes
Environments 2025, 12(9), 299; https://doi.org/10.3390/environments12090299 - 28 Aug 2025
Abstract
This study explores the integration of circular design principles into automotive product development, focusing on the environmental implications of design decisions related to geometry, material selection, and assembly methods. A case study approach was used to iteratively redesign a plastic automotive component, incorporating [...] Read more.
This study explores the integration of circular design principles into automotive product development, focusing on the environmental implications of design decisions related to geometry, material selection, and assembly methods. A case study approach was used to iteratively redesign a plastic automotive component, incorporating structural reinforcements and glass fiber (GF) to enhance performance. While these changes improved mechanical properties, they negatively impacted recyclability due to increased material heterogeneity and irreversible assembly using ultrasonic welding. Circularity performance was evaluated using the Recycling Desirability Index (RDI), Material Circularity Indicator (MCI), and circular design guidelines (CDGs). Despite achieving 20% recycled content, recyclability remained limited. Alternative design strategies—such as eliminating GF, replacing welding with mechanical fasteners, and enabling take-back systems—led to significant improvements in circularity scores. Notably, MCI analysis indicated that energy recovery pathways offered better circularity outcomes than landfilling. The findings highlight the importance of early-stage material standardization and assembly planning to enhance end-of-life recovery. This study underscores the environmental trade-offs inherent in current automotive design practices and calls for stronger collaboration between engineers, designers, and sustainability experts to align product development with circular economy goals. Findings emphasize the need for systemic changes in product development processes and industrial mindsets, including overcoming resistance to design modifications and fostering cross-departmental collaboration, to effectively implement circular economy principles in the automotive sector. Full article
Show Figures

Figure 1

21 pages, 22656 KB  
Article
Development of a Laser Cladding Technology for Repairing First-Stage High-Pressure Turbine Blades in Gas Turbine Engines
by Stepan Tukov, Rudolf Korsmik, Grigoriy Zadykyan, Dmitrii Mukin, Ruslan Mendagaliev and Nikita Roschin
Metals 2025, 15(9), 957; https://doi.org/10.3390/met15090957 - 28 Aug 2025
Abstract
A gas turbine engine is a technological system consisting of a compressor, a combustion chamber, and other modules. All these components are subjected to dynamic and cyclic loads, which lead to fatigue cracks and mechanical damage. The aim of this work is to [...] Read more.
A gas turbine engine is a technological system consisting of a compressor, a combustion chamber, and other modules. All these components are subjected to dynamic and cyclic loads, which lead to fatigue cracks and mechanical damage. The aim of this work is to repair the worn surfaces of a series of DR-59L high-pressure turbine blades by laser powder cladding. A number of technological parameters of laser cladding were tested to obtain a defect-free structure on the witness sample. The metal powder of the cobalt alloy Stellite 21 was used as a filler material. By modeling the process of restoring rotor blades, the operating mode of laser powder cladding was determined. No defects were detected during capillary control of the restored surfaces of the rotor blades. The results of the uniaxial tension test of the restored rotor blades showed increased tensile strength and elongation. With the use of laser powder cladding technology, it was possible to restore the worn surfaces of a series of rotor blades of the DR-59L high-pressure turbine, thereby increasing the life cycle of power plant products. Full article
(This article belongs to the Section Additive Manufacturing)
Show Figures

Figure 1

25 pages, 14188 KB  
Article
Assessment of Accuracy in Geometry Reconstruction, CAD Modeling, and MEX Additive Manufacturing for Models Characterized by Axisymmetry and Primitive Geometries
by Paweł Turek, Piotr Bielarski, Alicja Czapla, Hubert Futoma, Tomasz Hajder and Jacek Misiura
Designs 2025, 9(5), 101; https://doi.org/10.3390/designs9050101 - 28 Aug 2025
Abstract
Due to the rapid advancements in coordinate measuring systems, data processing software, and additive manufacturing (AM) techniques, it has become possible to create copies of existing models through the reverse engineering (RE) process. However, the lack of precise estimates regarding the accuracy of [...] Read more.
Due to the rapid advancements in coordinate measuring systems, data processing software, and additive manufacturing (AM) techniques, it has become possible to create copies of existing models through the reverse engineering (RE) process. However, the lack of precise estimates regarding the accuracy of the RE process—particularly at the measurement, reconstruction, and computer-aided design (CAD) modeling stages—poses significant challenges. Additionally, the assessment of dimensional and geometrical errors during the manufacturing stage using AM techniques limits the practical implementation of product replicas in the industry. This paper provides an estimation of the errors encountered in the RE process and the AM stage of various models. It includes examples of an electrical box, a lampshade for a standing lamp, a cover for a vacuum unit, and a battery cover. The geometry of these models was measured using a GOM Scan 1 (Carl Zeiss AG, Jena, Germany). Following the measurement process, data processing was performed, along with CAD modeling, which involved primitive detection, profile extraction, and auto-surface methods using Siemens NX 2406 software (Siemens Digital Industries, Plano, TX, USA). The models were produced using a Fortus 360-mc 3D printer (Stratasys, Eden Prairie, MN, USA) with ABS-M30 material. After fabrication, the models were scanned using a GOM Scan 1 scanner to identify any manufacturing errors. The research findings indicated that overall, 95% of the points representing reconstruction errors are within the maximum deviation range of ±0.6 mm to ±1 mm. The highest errors in CAD modeling were attributed to the auto-surfacing method, overall, 95% of the points are within the average range of ±0.9 mm. In contrast, the lowest errors occurred with the detect primitives method, averaging ±0.6 mm. Overall, 95% of the points representing the surface of a model made using the additive manufacturing technology fall within the deviation range ±0.2 mm on average. The findings provide crucial insights for designers utilizing RE and AM techniques in creating functional model replicas. Full article
(This article belongs to the Special Issue Design Process for Additive Manufacturing)
Show Figures

Figure 1

22 pages, 1734 KB  
Review
Green Solutions for Food Safety: The Emerging Applications of Zearalenone-Degrading Enzymes
by Yawei Zhang, Xianfeng Ren, Baocheng Xu, Lixia Fan, Changying Guo, Bingchun Zhang and Mingxiao Ning
Foods 2025, 14(17), 3010; https://doi.org/10.3390/foods14173010 - 28 Aug 2025
Abstract
Zearalenone (ZEN), a mycotoxin produced by Fusarium species, widely contaminates grains and feed, posing a serious threat to animal and human health. Traditional physical and chemical detoxification methods face challenges, including low efficiency, high costs, and nutrient loss. In contrast, enzymatic biodegradation has [...] Read more.
Zearalenone (ZEN), a mycotoxin produced by Fusarium species, widely contaminates grains and feed, posing a serious threat to animal and human health. Traditional physical and chemical detoxification methods face challenges, including low efficiency, high costs, and nutrient loss. In contrast, enzymatic biodegradation has emerged as a research hotspot due to its high efficiency, specificity, and environmental friendliness. Lactone hydrolase can specifically hydrolyze the lactone ring of ZEN, converting it into a low-toxicity or non-toxic degradation product, thereby demonstrating significant potential for application in ensuring the safety of food, feed, and agricultural products. In recent years, with advancements in enzyme engineering and various biological technologies, remarkable progress has been made in ZEN-degrading enzyme research. Novel and highly efficient enzyme genes have been discovered through gene mining, while directed evolution and rational design have improved catalytic efficiency and stability. Additionally, immobilization techniques and formulation optimization have enhanced industrial applicability. This review, based on practical application needs, establishes a comprehensive evaluation system integrating enzyme characteristics, modification technologies, and process applicability, aiming to provide actionable theoretical guidance for the large-scale application of biological detoxification technologies. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Figure 1

44 pages, 2299 KB  
Review
A Comprehensive Review on Hydrogen Production via Catalytic Ammonia Decomposition
by Domenico Maccarrone, Cristina Italiano, Gianfranco Giorgianni, Gabriele Centi, Siglinda Perathoner, Antonio Vita and Salvatore Abate
Catalysts 2025, 15(9), 811; https://doi.org/10.3390/catal15090811 - 26 Aug 2025
Abstract
A comprehensive literature review highlights how the nature of active metals, support materials, promoters, and synthesis methods influences catalytic performance, with particular attention to ruthenium-based catalysts as the current benchmark. Kinetic models are presented to describe the reaction pathway and predict catalyst behavior. [...] Read more.
A comprehensive literature review highlights how the nature of active metals, support materials, promoters, and synthesis methods influences catalytic performance, with particular attention to ruthenium-based catalysts as the current benchmark. Kinetic models are presented to describe the reaction pathway and predict catalyst behavior. Various reactor configurations, including fixed-bed, membrane, catalytic membrane, perovskite-based, and microreactors, are evaluated in terms of their suitability for ammonia decomposition. While ruthenium remains the benchmark catalyst, alternative transition metals such as iron, nickel, and cobalt have also been investigated, although they typically require higher operating temperatures (≥500 °C) to achieve comparable conversion levels. At the industrial scale, catalyst development must balance performance with cost. Inexpensive and scalable materials (e.g., MgO, Al2O3, CaO, K, Na) and simple preparation techniques (e.g., wet impregnation, incipient wetness) may offer lower performance than more advanced systems but are often favored for practical implementation. From a reactor engineering standpoint, membrane reactors emerge as the most promising technology for combining catalytic reaction and product separation in a single unit operation. This review provides a critical overview of current advances in ammonia decomposition for hydrogen production, offering insights into both catalytic materials and reactor design strategies for sustainable energy applications. Full article
(This article belongs to the Special Issue Feature Review Papers in Catalysis for Sustainable Energy)
Show Figures

Graphical abstract

29 pages, 3757 KB  
Article
Shared Product Architectures for Engineering-to-Order Buyers and Suppliers: Insights from a Case Study
by Mikkel Sohrt, Willads Blinkenberg and Niels Henrik Mortensen
Appl. Sci. 2025, 15(17), 9357; https://doi.org/10.3390/app15179357 - 26 Aug 2025
Abstract
This paper explores the potential for engineer-to-order (ETO) companies to capitalise financially on their modular product architectures by sharing them with their suppliers. Few scholars have studied product architectures being shared across buyers (ETO companies) and suppliers. While the topic’s relevance has previously [...] Read more.
This paper explores the potential for engineer-to-order (ETO) companies to capitalise financially on their modular product architectures by sharing them with their suppliers. Few scholars have studied product architectures being shared across buyers (ETO companies) and suppliers. While the topic’s relevance has previously been demonstrated, scholars tend to leave out details on how the shared elements of architectures, respectively, benefit the company and with what financial effect. The study aims to develop a framework for describing a shared architecture and to test it in a case study of an ETO company and two of its tier-one suppliers. The framework is built on existing research and the case work of this paper. The study identifies three key aspects of a shared product architecture: a common system decomposition, modules and interfaces that are financially driven by interorganisational alignment of key design characteristics, and a series of coordinated activities that are consistent and mutually beneficial for both organisations. The results show that the ETO company saw 10–35% cost saving on supplier scope after developing the shared architecture. The study contributes to the literature on product architectures and provides insights for ETO companies aiming to enhance financial performance through modular architectures. Full article
Show Figures

Figure 1

30 pages, 4753 KB  
Review
Review on Melt Electrowriting Modelling and Applications
by Hongli Ju, Wajira Mirihanage, Weiguang Wang and Zekai Murat Kilic
Machines 2025, 13(9), 763; https://doi.org/10.3390/machines13090763 - 25 Aug 2025
Viewed by 135
Abstract
Melt electrowriting (MEW) is an advanced additive manufacturing technology that can produce micro- or nano-scale fibres, achieving accurate fibre deposition, and is suitable for manufacturing high-precision, miniature products. This review introduces the key principles and parameters that influence the performance of melt electrowriting [...] Read more.
Melt electrowriting (MEW) is an advanced additive manufacturing technology that can produce micro- or nano-scale fibres, achieving accurate fibre deposition, and is suitable for manufacturing high-precision, miniature products. This review introduces the key principles and parameters that influence the performance of melt electrowriting and explores the current mathematical modelling under four stages: (1) heating and extrusion system, (2) formation of the Taylor cone, (3) formation and injection of the melt jet, and (4) deposition of the melt jet. In addition, current applications of melt electrowriting in emerging areas, such as tissue engineering, energy, filtration, and bioengineering, are introduced while discussing its combination with other additive manufacturing technologies. Finally, recent challenges, including production time, cost, and precision are covered, while the future research directions are to improve technology and introduce new materials. Full article
(This article belongs to the Section Advanced Manufacturing)
Show Figures

Figure 1

30 pages, 2680 KB  
Article
What Does Modular Mean? A Systematic Review on Definitions, Ambiguities, and Terminological Gaps in Construction
by Bruno J. O. Pasello, Ricardo M. S. F. Almeida and Jorge D. M. Moura
Buildings 2025, 15(17), 3017; https://doi.org/10.3390/buildings15173017 - 25 Aug 2025
Viewed by 209
Abstract
Despite the growing adoption of modular construction (MC) to enhance productivity, sustainability and industrialization in the building sector, critical terminological inconsistencies and conceptual ambiguities persist across academic, professional and regulatory domains. This study conducts a systematic literature review to investigate how the key [...] Read more.
Despite the growing adoption of modular construction (MC) to enhance productivity, sustainability and industrialization in the building sector, critical terminological inconsistencies and conceptual ambiguities persist across academic, professional and regulatory domains. This study conducts a systematic literature review to investigate how the key terms modular, module, modularity, modularization and modular coordination are defined and applied in the recent literature. Following the PRISMA protocol, 85 peer-reviewed articles were selected from an initial pool of 4832 Scopus records. Bibliometric and thematic analyses reveal a lack of conceptual consistency in the application of key terms, most notably the frequent misuse of module to describe non-volumetric components. Beyond identifying these ambiguities, this study maps the most recurrent definitional patterns to outline potential pathways toward conceptual consensus. It clarifies the boundaries between modular (a system attribute), modularization (a design strategy), modularity (a system property), module (a prefabricated, spatially autonomous, functionally complete, and volumetric unit) and modular coordination (a dimensional grid system). Based on these insights, it proposes a conceptual hierarchy, and a set of propositions integrated into a structured glossary that contribute to terminological clarity, foster standardization, and improve communication in the Architecture, Engineering, and Construction (AEC) sector. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

12 pages, 1630 KB  
Article
Development of a Method for Producing Recombinant Human Granulocyte-Macrophage Colony-Stimulating Factor Using Fusion Protein Technology
by Ekaterina A. Volosnikova, Tatiana I. Esina, Natalia V. Volkova, Svetlana V. Belenkaya, Yana S. Gogina, Galina G. Shimina, Elena A. Vyazovaya, Svetlana G. Gamaley, Elena D. Danilenko and Dmitriy N. Shcherbakov
Curr. Issues Mol. Biol. 2025, 47(9), 681; https://doi.org/10.3390/cimb47090681 - 25 Aug 2025
Viewed by 150
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a multifunctional cytokine with therapeutic applications in oncology and neurodegenerative diseases. However, its clinical use is limited by the high cost of eukaryotic production systems. Here, we developed a cost-effective Escherichia coli-based platform for high-yield production of [...] Read more.
Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a multifunctional cytokine with therapeutic applications in oncology and neurodegenerative diseases. However, its clinical use is limited by the high cost of eukaryotic production systems. Here, we developed a cost-effective Escherichia coli-based platform for high-yield production of biologically active recombinant human GM-CSF (rhGM-CSF) using SUMO fusion technology. The engineered pET-SUMO-GM plasmid enabled expression of a 33 kDa fusion protein, accounting for 23–25% of total cellular protein, though it primarily accumulated in inclusion bodies. A multi-step purification strategy—including nickel affinity chromatography, Ulp protease cleavage, and hydrophobic chromatography—yielded >99.5% pure rhGM-CSF. In vitro functional assays demonstrated equivalent activity to the WHO international standard (ED50: 0.045 vs. 0.043 ng/mL in TF-1 cell proliferation). In vivo, the preparation significantly restored neutrophil counts (3.4-fold increase, p ≤ 0.05) in a murine cyclophosphamide-induced myelosuppression model. Our results establish a scalable, prokaryotic-based method to produce functional rhGM-CSF, overcoming solubility and folding challenges while maintaining therapeutic efficacy. This approach could facilitate broader clinical and research applications of GM-CSF, particularly in resource-limited settings. Full article
Show Figures

Figure 1

25 pages, 2662 KB  
Review
Recent Progress in Cellulose Nanofibril Hydrogels for Biomedical Applications
by Taeyen Won, MeeiChyn Goh, Chaewon Lim, Jieun Moon, Kyueui Lee, Jaehyeung Park, Kyeongwoon Chung, Younghee Kim, Seonhwa Lee, Hye Jin Hong and Kihak Gwon
Polymers 2025, 17(17), 2272; https://doi.org/10.3390/polym17172272 - 22 Aug 2025
Viewed by 607
Abstract
Cellulose nanofibril (CNF)-based hydrogels, owing to their sustainability, biocompatibility, and versatile mechanical properties, are promising for biomedical applications. This review analyzes the recent advances and biomedical applications of CNF hydrogels. CNF hydrogels can be prepared via physical and chemical crosslinking. Physical crosslinking involves [...] Read more.
Cellulose nanofibril (CNF)-based hydrogels, owing to their sustainability, biocompatibility, and versatile mechanical properties, are promising for biomedical applications. This review analyzes the recent advances and biomedical applications of CNF hydrogels. CNF hydrogels can be prepared via physical and chemical crosslinking. Physical crosslinking involves surface charge density control, pH manipulation, and flow-based processing to generate stable networks, whereas chemical crosslinking employs agents such as epichlorohydrin and citric acid to form permanent covalent bonds. These approaches enable precise control over hydrogel properties, including mechanical strength, porosity, and stimuli responsiveness. CNF hydrogels are particularly promising in drug delivery systems and tissue engineering. CNFs as drug delivery vehicles offer enhanced bioavailability and drug loading capacity owing to their open pore structure and large surface area. Recent developments in stimuli-responsive and injectable CNF hydrogels have enabled controlled drug release and improved targeting capabilities. Moreover, CNF hydrogels serve as effective scaffolds for cell growth and tissue regeneration, with applications in cartilage engineering and wound healing. Integrating CNF hydrogels with 3D bioprinting technology has generated complex tissue structures. However, several challenges remain, including the need for the standardization of toxicology assessments, optimization of large-scale production processes, and development of sophisticated control mechanisms for drug delivery. Future research should advance manufacturing technologies, improve long-term stability, and develop standardized testing protocols for regulatory compliance. Full article
Show Figures

Figure 1

24 pages, 2615 KB  
Review
Modulation of Enzymatic Activity by Moderate Electric Fields: Perspectives for Prebiotic Epilactose Production via Cellobiose-2-Epimerase
by Tiago Lima de Albuquerque, Ricardo N. Pereira, Sara C. Silvério and Lígia R. Rodrigues
Processes 2025, 13(9), 2671; https://doi.org/10.3390/pr13092671 - 22 Aug 2025
Viewed by 281
Abstract
Modulating enzymatic activity through physical strategies is increasingly recognized as a powerful approach to optimizing biocatalytic processes in food and biotechnology applications. Cellobiose 2-epimerase (C2E), a key enzyme for synthesizing epilactose, a non-digestible disaccharide with established prebiotic effects, is gaining relevance in functional [...] Read more.
Modulating enzymatic activity through physical strategies is increasingly recognized as a powerful approach to optimizing biocatalytic processes in food and biotechnology applications. Cellobiose 2-epimerase (C2E), a key enzyme for synthesizing epilactose, a non-digestible disaccharide with established prebiotic effects, is gaining relevance in functional foods. Emerging strategies, such as the application of moderate electric fields (MEFs), have attracted attention due to their non-thermal, non-invasive nature and their capacity to influence the structural and functional properties of proteins. This review assesses the potential of MEFs to modulate C2E activity and provides an overview of the physicochemical principles governing MEF–protein interactions and summarizes findings from various enzymatic systems, highlighting changes in activity, stability, and substrate affinity under electric field conditions. Particular attention is given to the mechanistic plausibility and processing implications of applying MEFs to C2E-catalyzed reactions. The integration of biochemical, structural, and engineering perspectives suggests that MEF-assisted modulation could overcome current bottlenecks in epilactose production. This approach may enable the sustainable valorization of lactose-rich byproducts and support the development of non-thermal, clean-label technologies for producing functional ingredients. Full article
(This article belongs to the Special Issue Advances in Organic Food Processing and Probiotic Fermentation)
Show Figures

Figure 1

17 pages, 4223 KB  
Article
Space–Bandwidth Product Extension for Holographic Displays Through Cascaded Wavefront Modulation
by Shenao Zhang, Wenjia Li, Bo Dai, Qi Wang, Songlin Zhuang, Dawei Zhang and Chenliang Chang
Appl. Sci. 2025, 15(17), 9237; https://doi.org/10.3390/app15179237 - 22 Aug 2025
Viewed by 144
Abstract
The immersive experience of holographic displays is fundamentally limited by their space–bandwidth product (SBP), which imposes an inherent trade-off between the field of view (FOV) and eyebox size. This paper proposes a method to extend the SBP by employing cascaded modulation with a [...] Read more.
The immersive experience of holographic displays is fundamentally limited by their space–bandwidth product (SBP), which imposes an inherent trade-off between the field of view (FOV) and eyebox size. This paper proposes a method to extend the SBP by employing cascaded modulation with a dynamic spatial light modulator (SLM) and a passive high-resolution binary random phase mask (BRPM). We find that the key to unlocking this extension of SBP lies in a sophisticated algorithmic optimization, grounded in a physically accurate model of the system. We identify and correct the Nyquist undersampling problem caused by high-frequency scattering in standard diffraction models. Based on this physically accurate model, we employ a gradient descent optimization framework to achieve efficient, end-to-end solving for complex light fields. Simulation and experimental results demonstrate that our method achieves an approximately 16-fold SBP extension (4-fold FOV) while delivering significantly superior reconstructed image quality compared to the traditional Gerchberg–Saxton (GS) algorithm. Furthermore, this study quantitatively reveals the system’s extreme sensitivity to sub-pixel level alignment accuracy, providing critical guidance for the engineering and implementation of our proposed method. Full article
Show Figures

Figure 1

Back to TopTop