Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = propeller-driven aircraft

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 6049 KB  
Article
Goals and Strategies for Open Fan Design
by Carola Rovira Sala, Thomas Dygutsch, Christian Frey, Rainer Schnell and Raul Martinez Luque
Int. J. Turbomach. Propuls. Power 2025, 10(3), 28; https://doi.org/10.3390/ijtpp10030028 - 4 Sep 2025
Viewed by 402
Abstract
This paper highlights recent activities associated with the design of an uninstalled open fan propulsor for next-generation civil aircraft in the high-subsonic flight regime. The concept comprises a transonic propeller–rotor and a subsequent guide vane, which are both subject to pitch-variability in order [...] Read more.
This paper highlights recent activities associated with the design of an uninstalled open fan propulsor for next-generation civil aircraft in the high-subsonic flight regime. The concept comprises a transonic propeller–rotor and a subsequent guide vane, which are both subject to pitch-variability in order to account for the strong variations in flight conditions over the entire mission profile. The engine-scale design aimed for high technological maturity and to comply with a high number of industrially relevant requirements to ensure a competitive design, meeting performance requirements in terms of high efficiency levels at cruise and maximum climb conditions, operability in terms of stability margins, good acoustic characteristics, and structural integrity. During the design iterations, rapid 3D-RANS-based optimisations were only used as a conceptual design tool to derive sensitivities, which were used to support and justify major design choices in addition to established relations from propeller theory and common design practice. These design-driven optimisation efforts were complemented with more sophisticated CFD analysis focusing on rotor tip vortex trajectories and resulting in unsteady blade row interaction to optimise the guide vane clipping, as well as investigations of the entire propulsor under angle-of-attack conditions. The resulting open fan design will be the very basis for wind tunnel experiments of a downscaled version at low and high speed. Full article
Show Figures

Figure 1

20 pages, 3610 KB  
Article
TORKF: A Dual-Driven Kalman Filter for Outlier-Robust State Estimation and Application to Aircraft Tracking
by Li Liu, Wenhao Bi, Baichuan Zhang, Zhanjun Huang, An Zhang and Shuangfei Xu
Aerospace 2025, 12(8), 660; https://doi.org/10.3390/aerospace12080660 - 25 Jul 2025
Cited by 1 | Viewed by 376
Abstract
This study addresses the limitations of conventional filtering methods in handling irregular outliers and missing observations, which can compromise filter robustness and accuracy. We propose the Transformer-based Outlier-Robust Kalman Filter (TORKF), a hybrid data and knowledge hybrid-driven framework for stochastic discrete-time systems. Initially, [...] Read more.
This study addresses the limitations of conventional filtering methods in handling irregular outliers and missing observations, which can compromise filter robustness and accuracy. We propose the Transformer-based Outlier-Robust Kalman Filter (TORKF), a hybrid data and knowledge hybrid-driven framework for stochastic discrete-time systems. Initially, this study derives the filtering formulas applicable when outliers exist in observation vectors and, based on these formulations, proposes a novel method capable of accurately identifying observation vectors containing outliers. In addition, a transformer-based prediction compensation approach is employed to compute the prediction vector compensation value in scenarios involving outliers. This method utilizes a specially designed data structure to ensure the transformer encoder fully extracts the input features. Furthermore, to address outlier-induced inaccuracy in prediction error covariance, a compensation method aggregating all prediction outcomes is proposed, leading to enhanced filtering accuracy. Aircraft tracking presents challenges from complex motion models and outlier-prone observations, making it an ideal testbed for robust filtering algorithms. TORKF demonstrates superior performance, with a 12.7% lower RMSE than state-of-the-art methods across both propeller and jet datasets, while maintaining sub-90 ms single-frame processing to meet real-time requirements. Ablation studies confirm that all three proposed methods enhance accuracy and demonstrate synergistic improvements. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

51 pages, 9150 KB  
Review
A Comprehensive Review of Propeller Design and Propulsion Systems for High-Altitude Pseudo-Satellites
by Eleonora Riccio, Filippo Alifano, Vincenzo Rosario Baraniello and Domenico Coiro
Appl. Sci. 2025, 15(14), 8013; https://doi.org/10.3390/app15148013 - 18 Jul 2025
Viewed by 1851
Abstract
In both scientific and industrial fields, there has been a notable increase in attention toward High-Altitude Pseudo-Satellites (HAPSs) in recent years. This surge is driven by their distinct advantages over traditional satellites and Remotely Piloted Aircraft Systems (RPASs). These benefits are particularly evident [...] Read more.
In both scientific and industrial fields, there has been a notable increase in attention toward High-Altitude Pseudo-Satellites (HAPSs) in recent years. This surge is driven by their distinct advantages over traditional satellites and Remotely Piloted Aircraft Systems (RPASs). These benefits are particularly evident in critical areas such as intelligent transportation systems, surveillance, remote sensing, traffic and environmental monitoring, emergency communications, disaster relief efforts, and the facilitation of large-scale temporary events. This review provides an overview of key aspects related to the propellers and propulsion systems of HAPSs. To date, propellers remain the most efficient means of propulsion for high-altitude applications. However, due to the unique operational conditions at stratospheric altitudes, propeller design necessitates specific approaches that differ from those applied in conventional applications. After a brief overview of the propulsion systems proposed in the literature or employed by HAPSs, focusing on both the technical challenges and advancements in this emerging field, this review integrates theoretical foundations, historical design approaches, and the latest multi-fidelity optimization techniques to provide a comprehensive comparison of propeller design methods for HAPSs. It identifies key trends, including the growing use of CFD-based simulations methodologies, which contribute to notable performance improvements. Additionally, the review includes a critical assessment of experimental methods for performance evaluation. These developments have enabled the design of propellers with efficiencies exceeding 85%, offering valuable insights for the next generation of high-endurance, high-altitude platforms. Full article
Show Figures

Figure 1

23 pages, 4317 KB  
Article
Innovative Aircraft Propulsive Configurations: Technology Evaluation and Operations in the SIENA Project
by Gabriele Sirtori, Benedikt Aigner, Erich Wehrle, Carlo E. D. Riboldi and Lorenzo Trainelli
Aerospace 2025, 12(3), 240; https://doi.org/10.3390/aerospace12030240 - 15 Mar 2025
Cited by 1 | Viewed by 1393
Abstract
In this paper, developed in the context of the Clean Sky 2 project SIENA (Scalability Investigation of hybrid-Electric concepts for Next-generation Aircraft), an extensive analysis is carried out to identify and accelerate the development of innovative propulsion technologies and architectures that can be [...] Read more.
In this paper, developed in the context of the Clean Sky 2 project SIENA (Scalability Investigation of hybrid-Electric concepts for Next-generation Aircraft), an extensive analysis is carried out to identify and accelerate the development of innovative propulsion technologies and architectures that can be scaled across five aircraft categories, from small General Aviation airplanes to long-range airliners. The assessed propulsive architectures consider various components such as batteries and fuel cells to provide electricity as well as electric motors and jet engines to provide thrust, combined to find feasible aircraft architectures that satisfy certification constraints and deliver the required performance. The results provide a comprehensive analysis of the impact of key technology performance indicators on aircraft performance. They also highlight technology switching points as well as the potential for scaling up technologies from smaller to larger aircraft based on different hypotheses and assumptions concerning the upcoming technological advancements of components crucial for the decarbonization of aviation. Given the considered scenarios, the common denominator of the obtained results is hydrogen as the main energy source. The presented work shows that for the underlying models and technology assumptions, hydrogen can be efficiently used by fuel cells for propulsive and system power for smaller aircraft (General Aviation, commuter and regional), typically driven by propellers. For short- to long-range jet aircraft, direct combustion of hydrogen combined with a fuel cell to power the on-board subsystems appears favorable. The results are obtained for two different temporal scenarios, 2030 and 2050, and are assessed using Payload-Range Energy Efficiency as the key performance indicator. Naturally, introducing such innovative architectures will face a lack of applicable regulation, which could hamper a smooth entry into service. These regulatory gaps are assessed, detailing the level of maturity in current regulations for the different technologies and aircraft categories. Full article
Show Figures

Figure 1

26 pages, 3181 KB  
Article
Cruise Range Optimization of a Propeller-Driven Light Aircraft Using a Direct Transcription Method with a Regularization Term
by Adrián Delgado, Carlos Rubio, Diego Domínguez and Alberto Escapa
Aerospace 2024, 11(10), 794; https://doi.org/10.3390/aerospace11100794 - 27 Sep 2024
Viewed by 1443
Abstract
The problem of maximizing the range of a propeller-driven aircraft in a level flight cruise is analyzed within the framework of optimal control. The specific fuel consumption and propeller efficiency of its propulsive system are characterized by functions of the velocity and engine [...] Read more.
The problem of maximizing the range of a propeller-driven aircraft in a level flight cruise is analyzed within the framework of optimal control. The specific fuel consumption and propeller efficiency of its propulsive system are characterized by functions of the velocity and engine power (full model), in contrast to previous works, where they were considered to be constant. To conduct the study, a notional Piper Cherokee PA-28 is selected as representative of light aircraft, defining both the airplane and mission features. Two simplified models are also derived: the Von Mises model, with constant specific fuel consumption and propeller efficiency, and the Parget and Ardema model, defined by constant specific fuel consumption and propeller efficiency depending on the velocity. The problem is solved numerically by means of a direct transcription method. Since the optimal problems of the Von Mises and Parget and Ardema models are singular, it is necessary to incorporate a regularization term. Such a numerical algorithm is validated against the analytical solution given by the Breguet formulation. In this context, the velocity and mass (state variables), the power throttle (control), and the best range are determined. The full model provides a maximum range of 1492 km. The differences between the Von Mises and Parget and Ardema models are about 24 km and 1 km, respectively. A non-optimal steady cruise is also analyzed, providing a significant reduction in the flight time, with a decrease of about 2% of the range. The evolution of the state variables and control in the steady cruise, however, separates from the full model. On the other hand, the Parget and Ardema model almost reproduces the full model results, leading to a clear image of the physics involved: the best range comes from maximizing the product of the propeller and aerodynamic efficiencies with respect to the velocity, which determines the optimal arc. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

19 pages, 9961 KB  
Article
Propeller Effects and Elasticity in Aerodynamic Analysis of Small Propeller-Driven Aircraft and UAVs
by Mohsen Rostami
Aerospace 2024, 11(8), 664; https://doi.org/10.3390/aerospace11080664 - 13 Aug 2024
Cited by 1 | Viewed by 2633
Abstract
The importance of propeller effects and power contribution to the aerodynamics of small aircraft and unmanned aerial vehicles (UAVs) is indispensable. The aerodynamic analysis of wings in flight varies from rigid wing analysis due to wing deflection caused by transferred aerodynamic loads. This [...] Read more.
The importance of propeller effects and power contribution to the aerodynamics of small aircraft and unmanned aerial vehicles (UAVs) is indispensable. The aerodynamic analysis of wings in flight varies from rigid wing analysis due to wing deflection caused by transferred aerodynamic loads. This paper investigates the intertwined influence of propeller effects and elasticity on the aerodynamics of small propeller-driven aircraft and UAVs. Through a detailed methodology, a twin-engine propeller-driven aircraft is analyzed as a case study, providing insights into the proposed approach. Two critical analyses are presented: an examination of propeller effects in rigid aircraft and the incorporation of elastic wing properties. The former establishes a foundational understanding of aerodynamic behavior, while the latter explores the impact of wing elasticity on performance. Validation is achieved through comparative analysis with wind tunnel test results from a similar rigid structure aircraft. Utilizing NASTRAN software V2010.1, aerodynamic analysis of the elastic aircraft is conducted, complemented by semi-empirical insights. The results highlight the importance of these factors across different angles of attack. Furthermore, deviations from the rigid aircraft configuration emphasize the considerable influence of static aeroelasticity analysis, notably increasing longitudinal characteristics by approximately 20%, while showing a lower impact of 5% in lateral-directional characteristics. This study contributes to enhanced design and operational considerations for small propeller-driven aircraft, with implications for future research and innovation, particularly for the purpose of efficient concepts in advanced air mobility. Full article
(This article belongs to the Special Issue Aerodynamic Numerical Optimization in UAV Design)
Show Figures

Figure 1

13 pages, 7048 KB  
Article
Control of Helicopter Using Virtual Swashplate
by Jonathan Flores, Sergio Salazar, Ivan Gonzalez-Hernandez, Yukio Rosales, Rogelio Lozano, Eduardo Salazar and Benjamin Nicolas
Drones 2024, 8(7), 327; https://doi.org/10.3390/drones8070327 - 16 Jul 2024
Cited by 2 | Viewed by 2363
Abstract
This article presents a virtual swashplate mechanism for a mini helicopter in classic configuration. The propeller bases are part of a passive mechanism driven by main rotor torque modulaton, this mechanism generates a synchronous and opposite change in the propellers angle of attack, [...] Read more.
This article presents a virtual swashplate mechanism for a mini helicopter in classic configuration. The propeller bases are part of a passive mechanism driven by main rotor torque modulaton, this mechanism generates a synchronous and opposite change in the propellers angle of attack, then the thrust vector tilts. This approach proposes to control the 6 degrees of freedom of the aircraft using two rotors. The main rotor controls vertical displacement and uses torque modulation and swing-hinged propellers to generate pitch and roll moments and the horizontal displacement while the yaw moment is controlled by the tail rotor. The dynamic model is obtained using the Newton-Euler approach and robust control algorithms are proposed. Experimental results are presented to show the performance of the proposed virtual swashplate in real-time outdoor hover flights. Full article
(This article belongs to the Section Drone Design and Development)
Show Figures

Figure 1

20 pages, 3720 KB  
Article
The Possibility of Powering a Light Aircraft by Releasing the Energy Stored in Hydrogen within a Fuel Cell Stack
by John Olsen
Aerospace 2024, 11(6), 469; https://doi.org/10.3390/aerospace11060469 - 12 Jun 2024
Cited by 6 | Viewed by 1467
Abstract
In this work, we examine the possibility of converting a light propeller-driven aircraft, powered by a spark-ignition, reciprocating piston, and internal combustion engine running on AVGAS, into one powered by an electric motor driven by a proton exchange membrane fuel cell stack running [...] Read more.
In this work, we examine the possibility of converting a light propeller-driven aircraft, powered by a spark-ignition, reciprocating piston, and internal combustion engine running on AVGAS, into one powered by an electric motor driven by a proton exchange membrane fuel cell stack running on hydrogen. Our studies suggest that storing hydrogen cryogenically is a better option than storing hydrogen under pressure. In comparison to cryogenic tanks, high-pressure tanks are extremely heavy and unacceptable for light aircraft. We show that the modified aircraft (including batteries) is no heavier than the original, and that the layout of the major components results in lower movement of the aircraft center-of-gravity as the aircraft consumes hydrogen. However, we acknowledge that our fuel cell aircraft cannot store the same amount of energy as the original running on AVGAS. Therefore, despite the fact that the fuel cell stack is markedly more efficient than an internal combustion engine, there is a reduction in the range of the fuel cell aircraft. One of our most important findings is that the quantity of energy that we need to dissipate to the surroundings via heat transfer is significantly greater from a fuel cell stack than from an internal combustion engine. This is particularly the case when we attempt to run the fuel cell stack at high current densities. To control this problem, our strategy during the cruise phase is to run the fuel cell stack at its maximum efficiency, where the current density is low. We size the fuel cell stack to produce at least enough power for cruise, and when we require excess power, we add the energy stored in batteries to make up the difference. Full article
(This article belongs to the Special Issue Electric Power Systems and Components for All-Electric Aircraft)
Show Figures

Figure 1

17 pages, 1441 KB  
Article
A New Range Equation for Hybrid Aircraft Design
by Enrico Cestino, Davide Pisu, Vito Sapienza, Lorenzo Chesta and Valentina Martilla
Aerospace 2023, 10(11), 955; https://doi.org/10.3390/aerospace10110955 - 13 Nov 2023
Cited by 3 | Viewed by 2701
Abstract
A new Range Equation for a hybrid-electric propeller-driven aircraft was formulated by an original derivation based on the comparison of Virtual Electrical Aircraft (VEA) and Virtual Thermal Aircraft (VTA) range equations. The new formulation makes it possible to study the range of a [...] Read more.
A new Range Equation for a hybrid-electric propeller-driven aircraft was formulated by an original derivation based on the comparison of Virtual Electrical Aircraft (VEA) and Virtual Thermal Aircraft (VTA) range equations. The new formulation makes it possible to study the range of a hybrid aircraft with pre-established values of electric motor usage rate. The fuel and battery mass are defined "a priori", and do not depend on the power split, so even the aircraft’s total mass is constant. The comparison with the typical range formulas available for hybrid aircraft was made on the basis of a reference composite VLA category aircraft manufactured by the CFM Air company. The analysis carried out shows that there is an optimum hybridization level as a function of the pre-set specific energy of the batteries system. Full article
(This article belongs to the Special Issue Advanced Aircraft Technology)
Show Figures

Figure 1

22 pages, 2359 KB  
Article
Extreme Learning Machine-Based Diagnostics for Component Degradation in a Microturbine
by Nicola Menga, Akhila Mothakani, Maria Grazia De Giorgi, Radoslaw Przysowa and Antonio Ficarella
Energies 2022, 15(19), 7304; https://doi.org/10.3390/en15197304 - 4 Oct 2022
Cited by 13 | Viewed by 2247
Abstract
Micro turbojets are used for propelling radio-controlled aircraft, aerial targets, and personal air vehicles. When compared to full-scale engines, they are characterized by relatively low efficiency and durability. In this context, the degraded performance of gas path components could lead to an unacceptable [...] Read more.
Micro turbojets are used for propelling radio-controlled aircraft, aerial targets, and personal air vehicles. When compared to full-scale engines, they are characterized by relatively low efficiency and durability. In this context, the degraded performance of gas path components could lead to an unacceptable reduction in the overall engine performance. In this work, a data-driven model based on a conventional artificial neural network (ANN) and an extreme learning machine (ELM) was used for estimating the performance degradation of the micro turbojet. The training datasets containing the performance data of the engine with degraded components were generated using the validated GSP model and the Monte Carlo approach. In particular, compressor and turbine performance degradation were simulated for three different flight regimes. It was confirmed that component degradation had a similar impact in flight than at sea level. Finally, the datasets were used in the training and testing process of the ELM algorithm with four different input vectors. Two vectors had an extensive number of virtual sensors, and the other two were reduced to just fuel flow and exhaust gas temperature. Even with the small number of sensors, the high prediction accuracy of ELM was maintained for takeoff and cruise but was slightly worse for variable flight conditions. Full article
Show Figures

Figure 1

27 pages, 7651 KB  
Article
A Multidisciplinary Possibilistic Approach to Size the Empennage of Multi-Engine Propeller-Driven Light Aircraft
by Mohsen Rostami, Julian Bardin, Daniel Neufeld and Joon Chung
Aerospace 2022, 9(3), 160; https://doi.org/10.3390/aerospace9030160 - 15 Mar 2022
Cited by 8 | Viewed by 4481
Abstract
In considering aircraft design, it is very important to effectively size the tail configuration for stability and control. Multidisciplinary design optimization (MDO) focuses on the use of numerical optimization in the design of systems with multiple subsystems or disciplines of consideration. However, MDO [...] Read more.
In considering aircraft design, it is very important to effectively size the tail configuration for stability and control. Multidisciplinary design optimization (MDO) focuses on the use of numerical optimization in the design of systems with multiple subsystems or disciplines of consideration. However, MDO uses deterministic calculations, and does not consider the uncertainties that arise from the employed analyses, including errors due to linearization and simplification. For problems with inadequate input data, the possibility-based design optimization (PBDO) scheme can be implemented in its stead to achieve reliable designs using membership functions for epistemic uncertainties. A multidisciplinary, possibilistic approach is presented to define the sizing of the empennage configuration of a twin-engine propeller-driven aircraft by changing shape parameters while satisfying the design requirements given the tailless aircraft configuration, the flight conditions, and various uncertainties. The corresponding disciplines are aerodynamics, stability and control, propulsion and weight and balance. Herein, different design requirements are considered including longitudinal/lateral/directional trim and stability characteristics, manufacturing and controllability criteria, handling qualities, operational requirements, airworthiness and survivability. The resulting aerodynamic characteristics and flight dynamic stability outcomes show that the optimized tail configuration for the proposed aircraft fully complied with airworthiness requirements and predefined constraints while considering several uncertainties due to the use of early-stage statistical estimations. The proposed approach can be used to enhance the preliminary design of multi-engine propeller-driven light aircraft where only low-fidelity, statistical estimations are available. The resulting output is not only an optimized aircraft configuration, but one where the stability of the design has been ensured. In this work, the aerodynamic characteristics have been determined using a validated semi-empirical program called MAPLA, developed for light aircraft designs and development in the preliminary design phase. Furthermore, the optimization framework consists of a deterministic optimizer that runs sequentially with a possibility assessment algorithm. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

23 pages, 16926 KB  
Article
Aircraft Propeller Design through Constrained Aero-Structural Particle Swarm Optimization
by José D. Hoyos, Jesús H. Jiménez, Camilo Echavarría, Juan P. Alvarado and Germán Urrea
Aerospace 2022, 9(3), 153; https://doi.org/10.3390/aerospace9030153 - 9 Mar 2022
Cited by 16 | Viewed by 9648
Abstract
An aero-structural algorithm to reduce the energy consumption of a propeller-driven aircraft is developed through a propeller design method coupled with a Particle Swarm Optimization (PSO). A wide range of propeller parameters is considered in the optimization, including the geometry of the airfoil [...] Read more.
An aero-structural algorithm to reduce the energy consumption of a propeller-driven aircraft is developed through a propeller design method coupled with a Particle Swarm Optimization (PSO). A wide range of propeller parameters is considered in the optimization, including the geometry of the airfoil at each propeller section. The propeller performance prediction tool employs a convergence improved Blade Element Momentum Theory fed by airfoil aerodynamic characteristics obtained from XFOIL and a validated OpenFOAM. A stall angle correction is estimated from experimental NACA 4-digits data and employed where convergence issues emerge. The aerodynamic data are corrected to account for compressibility, three-dimensional, viscous, and Reynolds number effects. The coefficients for the rotational corrections are proposed from experimental data fitting. A structural model based on Euler-Bernoulli beam theory is employed and validated against Finite Element Analysis, while the impact of centrifugal forces is discussed. A case of study is carried out where the chord and pitch distributions are compared to minimal losses distribution from vortex theory. Wind tunnel tests were performed with printed propellers to conclude the feasibility of the entire routine and the differences between XFOIL and CFD optimal propellers. Finally, the optimal CFD propeller is compared against a commercial propeller with the same diameter, pitch, and operational conditions, showing higher thrust and efficiency. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

16 pages, 10141 KB  
Article
In-flight Lift and Drag Estimation of an Unmanned Propeller-Driven Aircraft
by Dominique Paul Bergmann, Jan Denzel, Ole Pfeifle, Stefan Notter, Walter Fichter and Andreas Strohmayer
Aerospace 2021, 8(2), 43; https://doi.org/10.3390/aerospace8020043 - 6 Feb 2021
Cited by 22 | Viewed by 6653
Abstract
The high-power density and good scaling properties of electric motors enable new propulsion arrangements and aircraft configurations. This results in distributed propulsion systems allowing to make use of aerodynamic interaction effects between individual propellers and the wing of the aircraft, improving flight performance [...] Read more.
The high-power density and good scaling properties of electric motors enable new propulsion arrangements and aircraft configurations. This results in distributed propulsion systems allowing to make use of aerodynamic interaction effects between individual propellers and the wing of the aircraft, improving flight performance and thus reducing in-flight emissions. In order to systematically analyze these effects, an unmanned research platform was designed and built at the University of Stuttgart. As the aircraft is being used as a testbed for various flight performance studies in the field of distributed electric propulsion, a methodology for precise identification of its performance characteristics is required. One of the main challenges is the determination of the total drag of the aircraft to be able to identify an exact drag and lift polar in flight. For this purpose, an on-board measurement system was developed which allows for precise determination of the thrust of the aircraft which equals the total aerodynamic drag in steady, horizontal flight. The system has been tested and validated in flight using the unmanned free-flight test platform. The article provides an overview of the measuring system installed, discusses its functionality and shows results of the flight tests carried out. Full article
Show Figures

Figure 1

19 pages, 6048 KB  
Article
Application of the HPCMP CREATETM-AV Kestrel to an Integrated Propeller Prediction
by Pooneh Aref, Mehdi Ghoreyshi, Adam Jirasek and Jürgen Seidel
Aerospace 2020, 7(12), 177; https://doi.org/10.3390/aerospace7120177 - 11 Dec 2020
Cited by 5 | Viewed by 4006
Abstract
This article presents the results of a computational investigation of an integrated propeller test case using the HPCMP CREATETM-AV Kestrel simulation tools. There is a renewed interest in propeller-driven aircraft for unmanned aerial vehicles, electric aircraft, and flying taxies. Computational resources [...] Read more.
This article presents the results of a computational investigation of an integrated propeller test case using the HPCMP CREATETM-AV Kestrel simulation tools. There is a renewed interest in propeller-driven aircraft for unmanned aerial vehicles, electric aircraft, and flying taxies. Computational resources can significantly accelerate the generation of aerodynamic models for these vehicles and reduce the development cost if the prediction tools can accurately predict the aircraft/propeller aerodynamic interactions. Unfortunately, limited propeller experimental data are available to validate computational methods. An American Institute of Aeronautics and Astronautics (AIAA) workshop was therefore established to address this problem. The objective of this workshop was to generate an open access-powered wind tunnel test database for computational validation of propeller effects on the wing aerodynamics, specifically for wing-tip-mounted propellers. The propeller selected for the workshop has four blades and a diameter of 16.2 in. The wing has a root and tip chord of 11.6 and 8.6 in, respectively. Two different simulation approaches were used: one using a single grid including wind tunnel walls and the second using a subset grid overset to an adaptive Cartesian grid that fills the space between the near-body grid and wind tunnel walls. The predictions of both approaches have been compared with available experimental data from the Lockheed Martin low-speed wind tunnel to investigate the grid resolution required for accurate prediction of flowfield data. The results show a good agreement for all tested conditions. The measured and predicted data show that wing aerodynamic performance is improved by the spinning tip-mounted propeller. Full article
(This article belongs to the Special Issue Computational Aerodynamic Modeling of Aerospace Vehicles (Volume II))
Show Figures

Graphical abstract

17 pages, 10929 KB  
Article
Aircraft Propellers—Is There a Future?
by Pedro Alves, Miguel Silvestre and Pedro Gamboa
Energies 2020, 13(16), 4157; https://doi.org/10.3390/en13164157 - 11 Aug 2020
Cited by 21 | Viewed by 9626
Abstract
The race for speed ruled the early Jet Age on aviation. Aircraft manufacturers chased faster and faster planes in a fight for pride and capability. In the early 1970s, dreams were that the future would be supersonic, but fuel economy and unacceptable noise [...] Read more.
The race for speed ruled the early Jet Age on aviation. Aircraft manufacturers chased faster and faster planes in a fight for pride and capability. In the early 1970s, dreams were that the future would be supersonic, but fuel economy and unacceptable noise levels made that era never happen. After the 1973 oil crisis, the paradigm changed. The average cruise speed on newly developed aircraft started to decrease in exchange for improvements in many other performance parameters. At the same pace, the airliner’s power-plants are evolving to look more like a ducted turboprop, and less like a pure jet engine as the pursuit for the higher bypass ratios continues. However, since the birth of jet aircraft, the propeller-driven plane has lost its dominant place, associated with the idea that going back to propeller-driven airplanes, and what it represents in terms of modernity and security, has started a propeller avoidance phenomenon with travelers and thus with airlines. Today, even with the modest research effort since the 1980s, advanced propellers are getting efficiencies closer to jet-powered engines at their contemporary typical cruise speeds. This paper gives a brief overview of the performance trends in aviation since the last century. Comparison examples between aircraft designed on different paradigms are presented. The use of propellers as a reborn propulsive device is discussed. Full article
Show Figures

Figure 1

Back to TopTop