Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,041)

Search Parameters:
Keywords = proteome sequencing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 770 KiB  
Review
Alternative Splicing in Tumorigenesis and Cancer Therapy
by Huiping Chen, Jingqun Tang and Juanjuan Xiang
Biomolecules 2025, 15(6), 789; https://doi.org/10.3390/biom15060789 - 29 May 2025
Viewed by 227
Abstract
Alternative splicing (AS) is a pivotal post-transcriptional mechanism that expands the functional diversity of the proteome by enabling a single gene to generate multiple mRNA and protein isoforms. This process, which involves the differential inclusion or exclusion of exons and introns, is tightly [...] Read more.
Alternative splicing (AS) is a pivotal post-transcriptional mechanism that expands the functional diversity of the proteome by enabling a single gene to generate multiple mRNA and protein isoforms. This process, which involves the differential inclusion or exclusion of exons and introns, is tightly regulated by splicing factors (SFs), such as serine/arginine-rich proteins (SRs), heterogeneous nuclear ribonucleoproteins (hnRNPs), and RNA-binding motif (RBM) proteins. These factors recognize specific sequences, including 5′ and 3′ splice sites and branch points, to ensure precise splicing. While AS is essential for normal cellular function, its dysregulation is increasingly implicated in cancer pathogenesis. Aberrant splicing can lead to the production of oncogenic isoforms that promote tumorigenesis, metastasis, and resistance to therapy. Furthermore, such abnormalities can cause the loss of tumor-suppressing activity, thereby contributing to cancer development. Importantly, abnormal AS events can generate neoantigens, which are presented on tumor cell surfaces via major histocompatibility complex (MHC) molecules, suggesting novel targets for cancer immunotherapy. Additionally, splice-switching oligonucleotides (SSOs) have shown promise as therapeutic agents because they modulate splicing patterns to restore normal gene function or induce tumor-suppressive isoforms. This review explores the mechanisms of AS dysregulation in cancer, its role in tumor progression, and its potential as a therapeutic target. We also discuss innovative technologies, such as high-throughput sequencing and computational approaches, that are revolutionizing the study of AS in cancer. Finally, we address the challenges and future prospects of targeting AS for personalized cancer therapies, emphasizing its potential in precision medicine. Full article
(This article belongs to the Section Molecular Genetics)
Show Figures

Figure 1

15 pages, 5685 KiB  
Article
Integrative Proteome and Transcriptome Analyses Reveal the Metabolic Disturbance of the Articular Cartilage in Kashin–Beck Disease, an Endemic Arthritis
by Lixin Han, Bolun Cheng, Jinyu Xia, Shiqiang Cheng, Xuena Yang and Feng Zhang
Int. J. Mol. Sci. 2025, 26(11), 5146; https://doi.org/10.3390/ijms26115146 - 27 May 2025
Viewed by 165
Abstract
The objective of this study was to elucidate the proteomic and transcriptomic alterations within the cartilage in Kashin–Beck disease (KBD) compared to a normal control. We conducted a comparison of the expression profiles of proteins, mRNAs, and lncRNAs via data-independent acquisition (DIA) proteomics [...] Read more.
The objective of this study was to elucidate the proteomic and transcriptomic alterations within the cartilage in Kashin–Beck disease (KBD) compared to a normal control. We conducted a comparison of the expression profiles of proteins, mRNAs, and lncRNAs via data-independent acquisition (DIA) proteomics and transcriptome sequencing in six KBD individuals and six normal individuals. To facilitate the functional annotation enrichment analysis of the differentially expressed (DE) proteins, DE mRNAs, and DE lncRNAs, we employed bioinformatic analysis utilizing Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). Additionally, we conducted integration analysis of multi-omics datasets using mixOmics. We revealed a distinct proteomic signature, highlighting 53 DE proteins, with notable alterations in the pathways related to tryptophan metabolism and microbial metabolism. Additionally, we identified 160 DE mRNAs, with the functional enrichment analysis uncovering pathways related to RNA metabolism and protein splicing. Furthermore, our analysis of the lncRNAs demonstrated biological processes involved in protein metabolism and cellular nitrogen compound metabolic processes. The integrative analysis uncovered significant correlations, including the positive correlation between superoxide dismutase 1 (SOD1) and mitochondrial import receptor subunit TOM6 homolog (TOMM6), and the negative correlation between C-X9-C motif-containing 1 (CMC1) and succinate–CoA ligase [GDP-forming] subunit beta, mitochondrial (SUCLG2). Our results provide novel insights into the molecular mechanisms underlying KBD. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

16 pages, 1571 KiB  
Brief Report
Protective Effect of a Hexapeptide Derived from Rotifer-Specific SCO-Spondin Against Beta-Amyloid Toxicity
by Zsolt Datki, Rita Sinka, Brian J. Dingmann, Bence Galik, Antal Szabo, Zita Galik-Olah, Gabor K. Toth and Zsolt Bozso
Int. J. Mol. Sci. 2025, 26(11), 5109; https://doi.org/10.3390/ijms26115109 - 26 May 2025
Viewed by 212
Abstract
The Rotimer (rotifer-specific biopolymer) like SCO-spondin (R-SSPO/1), predicted as the main component of this biopolymer, is an adequate base for the design of functional small peptides. This macromolecule is interactive and protective against neurotoxic human-type beta-amyloid 1-42 aggregates (agg-Aβ). The current work presents [...] Read more.
The Rotimer (rotifer-specific biopolymer) like SCO-spondin (R-SSPO/1), predicted as the main component of this biopolymer, is an adequate base for the design of functional small peptides. This macromolecule is interactive and protective against neurotoxic human-type beta-amyloid 1-42 aggregates (agg-Aβ). The current work presents biological investigations and predictable molecular interaction analysis of DSSNDL and PNCRDGSDE peptides that were synthesized based on the sequences of R-SSPO/1. Viability assays (NADH-dependent cellular reduction capacity, intracellular esterase activity, and motility) were performed on differentiated neuro-type cell cultures (SH-SY5Y and PC12) and on Rotimer-depleted rotifers (Euchlanis dilatata and Lecane bulla). A control peptide (STTRPTGTT), not found in Rotimer, was also included in the study. All three peptides are present in both rotifer and human proteomes. Among these small molecules, DSSNDL showed a significant protective effect against the toxicity of agg-Aβ both in vitro and in vivo and presumably interacted with its aggregates. The stagogram analysis of amyloid–peptide complexes and the possible bonding competition of these small molecules against aggregation-specific dyes on agg-Aβ surface suggest that DSSNDL affects the properties of these neurotoxic macromolecules. This effective hexapeptide can serve as a promising candidate for further investigations into the inactivation of beta-amyloid toxicity. Full article
(This article belongs to the Section Molecular Toxicology)
Show Figures

Figure 1

15 pages, 2117 KiB  
Article
Familial Reclassification Within Order Lysobacterales and Proposal of Four Novel Species
by Tengfei Ma, Haijiao Liu, Yafei Chen, Juan Liu, Chungen Piao, Han Xue, Risheng Xu and Yong Li
Microorganisms 2025, 13(6), 1212; https://doi.org/10.3390/microorganisms13061212 - 26 May 2025
Viewed by 178
Abstract
The order Lysobacterales consists of three families (Rhodanobacteraceae, Lysobacteraceae and Marinicellaceae), many members of which are important pathogenic and beneficial bacteria. Previous classifications of members within order Lysobacterales have relied heavily on 16S rRNA gene sequences, leading to taxonomic ambiguities [...] Read more.
The order Lysobacterales consists of three families (Rhodanobacteraceae, Lysobacteraceae and Marinicellaceae), many members of which are important pathogenic and beneficial bacteria. Previous classifications of members within order Lysobacterales have relied heavily on 16S rRNA gene sequences, leading to taxonomic ambiguities at the familial level. With the advancement of sequencing technologies, an increasing number of whole-genome sequences have been available, providing an opportunity to revisit the taxonomy of families in Lysobacterales. In this study, we revisited the taxonomy of Lysobacterales by focusing on family-level reclassification based on phylogenomic frameworks. A total of 218 genome sequences, including 217 strains from Lysobacterales and 1 from Nevskiales (used as an outgroup), were collected for phylogenetic analysis. Phylogenetic relationships were inferred based on UBCG (up-to-date bacterial core gene) approach using 92 core genes and a concatenated protein phylogeney based on 227 single-copy orthologous proteins. Additionally, genomic similarity metrics, including average nucleotide identity (ANI), digital DNA–DNA hybridization (dDDH), average amino acid identity (AAI) and core-proteome average amino acid identity (cpAAI), were employed to assess the taxonomy of order Lysobacterales. Our results support the proposal of one novel family and the reassignment of six genera across different families within Lysobacterales, emphasizing the need for a refined family-level taxonomy. In addition, four novel species belonging to the family Lysobacteraceae were also confirmed. This study provides an updated familial framework for Lysobacterales, laying a robust foundation for future detailed taxonomic revisions at the genus and species levels. Full article
(This article belongs to the Section Molecular Microbiology and Immunology)
Show Figures

Figure 1

22 pages, 3090 KiB  
Article
Genomic and Pangenomic Insights into Aeromonas salmonicida subsp. oncorhynchi subsp. nov.
by Nihed Ajmi, Muhammed Duman, Hilal Ay and Izzet Burcin Saticioglu
Pathogens 2025, 14(6), 523; https://doi.org/10.3390/pathogens14060523 - 23 May 2025
Viewed by 325
Abstract
The strain A-9T, isolated from Oncorhynchus mykiss (rainbow trout) in a Turkish aquaculture facility, was characterized through integrated phenotypic, phylogenetic, and genomic analyses. Whole-genome sequencing revealed a 5.21 Mb circular chromosome (GC content: 58.16%) and three plasmids encoding proteins for mobilization [...] Read more.
The strain A-9T, isolated from Oncorhynchus mykiss (rainbow trout) in a Turkish aquaculture facility, was characterized through integrated phenotypic, phylogenetic, and genomic analyses. Whole-genome sequencing revealed a 5.21 Mb circular chromosome (GC content: 58.16%) and three plasmids encoding proteins for mobilization and toxin–antitoxin systems. Multilocus phylogenetic analysis (MLPA) using seven housekeeping genes supported the distinct lineage of A-9T. Digital DNA–DNA hybridization (77.6–78.6%) and average nucleotide identity values (96.59–97.58%) confirmed taxonomic divergence from all currently recognized A. salmonicida subspecies. Comparative proteomic and pangenomic analyses identified 328 strain-specific genes, including virulence factors, secretion system components (Type II and Type VI), and efflux-related proteins. Although genes encoding Type III secretion systems and biofilm formation were absent, A-9T harbored a broad virulence gene repertoire and resistance determinants, including OXA-956, cphA5, and FOX-20, supporting a multidrug-resistant phenotype. Based on its genomic, phenotypic, and functional distinctiveness, we propose the novel taxon Aeromonas salmonicida subsp. oncorhynchi subsp. nov. (type strain A-9T = LMG 33538T = DSM 117494T), expanding the taxonomic landscape of the A. salmonicida complex and offering insights into fish-associated bacterial evolution. Full article
(This article belongs to the Special Issue Aeromonas: Genome, Transmission, Pathogenesis, and Treatment)
Show Figures

Figure 1

22 pages, 965 KiB  
Review
Integrating Proteomics into Personalized Medicine for Inflammatory Bowel Disease—Reality or Challenge?
by Horia Minea, Ana-Maria Singeap, Manuela Minea, Simona Juncu, Stefan Andrei Chiriac, Catalin Victor Sfarti, Carol Stanciu and Anca Trifan
Int. J. Mol. Sci. 2025, 26(11), 4993; https://doi.org/10.3390/ijms26114993 - 22 May 2025
Viewed by 313
Abstract
Inflammatory bowel diseases (IBD) represent chronic conditions with etiopathogenic mechanisms incompletely elucidated despite extensive research efforts. Therefore, it is essential for clinical monitoring of the implementation of personalized medicine, enabling risk stratification and the selection of therapies with the highest likelihood of a [...] Read more.
Inflammatory bowel diseases (IBD) represent chronic conditions with etiopathogenic mechanisms incompletely elucidated despite extensive research efforts. Therefore, it is essential for clinical monitoring of the implementation of personalized medicine, enabling risk stratification and the selection of therapies with the highest likelihood of a favorable response. Multi-omics approaches have emerged as an excellent opportunity for the prevention, clinical phenotype differentiation, and prediction of IBD development. Proteomics has gained significant enthusiasm in medical practice, primarily due to its focus on studying the composition and dynamic expression of various cellular and tissue structures. This approach provides critical insights into their impact on signaling pathways, post-translational modifications, and the development of sequence variations. Hence, it could provide the foundation for developing biomarkers with the potential to assess mucosal healing and predict prognostic variability among patients, facilitating the implementation of a personalized therapeutic approach. This review focuses on the recent research regarding the possibility of implementing proteomics technologies into clinical practice, given the challenges and limitations, and the advantages of increasing the quality of life in patients with IBD. Full article
(This article belongs to the Special Issue New Research on Anti-Inflammatory Molecules in Diseases)
Show Figures

Figure 1

24 pages, 12086 KiB  
Article
Integrative Spatial Proteomics and Single-Cell RNA Sequencing Unveil Molecular Complexity in Rheumatoid Arthritis for Novel Therapeutic Targeting
by Xue Wang, Fei Wang, Archana S. Iyer, Heather Knight, Lori J. Duggan, Yingli Yang, Liang Jin, Baoliang Cui, Yupeng He, Jan Schejbal, Lucy A. Phillips, Bohdan P. Harvey, Sílvia Sisó and Yu Tian
Proteomes 2025, 13(2), 17; https://doi.org/10.3390/proteomes13020017 - 22 May 2025
Viewed by 246
Abstract
Understanding the heterogeneity of Rheumatoid Arthritis (RA) and identifying therapeutic targets remain challenging using traditional bulk transcriptomics alone, as it lacks the spatial and protein-level resolution needed to fully capture disease and tissue complexities. In this study, we applied Laser Capture Microdissection (LCM) [...] Read more.
Understanding the heterogeneity of Rheumatoid Arthritis (RA) and identifying therapeutic targets remain challenging using traditional bulk transcriptomics alone, as it lacks the spatial and protein-level resolution needed to fully capture disease and tissue complexities. In this study, we applied Laser Capture Microdissection (LCM) coupled with mass spectrometry-based proteomics to analyze histopathological niches of the RA synovium, enabling the identification of protein expression profiles of the diseased synovial lining and sublining microenvironments compared to their healthy counterparts. In this respect, key pathogenetic RA proteins like membrane proteins (TYROBP, AOC3, SLC16A3, TCIRG1, and NCEH1), and extracellular matrix (ECM) proteins (PLOD2, OGN, and LUM) showed different expression patterns in diseased synovium compartments. To enhance our understanding of cellular dynamics within the dissected regions, we further integrated the proteomic dataset with single-cell RNA sequencing (scRNA-seq), and deduced cell type enrichment, including T cells, fibroblasts, NK cells, myeloid cells, B cells, and synovial endothelial cells. By combining high-resolution spatial proteomics and transcriptomic analyses, we provide novel insights into the molecular mechanisms driving RA, and highlight potential protein targets for therapeutic intervention. This integrative approach offers a more comprehensive view of RA synovial pathology, and mitigates the limitations of traditional bulk transcriptomics in target discovery. Full article
Show Figures

Figure 1

15 pages, 1281 KiB  
Review
Noninvasive Biomarkers of Human Embryo Developmental Potential
by Jan Tesarik
Int. J. Mol. Sci. 2025, 26(10), 4928; https://doi.org/10.3390/ijms26104928 - 21 May 2025
Viewed by 163
Abstract
There are two types of noninvasive biomarkers of human embryo developmental potential: those based on a direct assessment of embryo morphology over time and those using spent media after embryo in vitro culture as source of information. Both are derived from previously acquired [...] Read more.
There are two types of noninvasive biomarkers of human embryo developmental potential: those based on a direct assessment of embryo morphology over time and those using spent media after embryo in vitro culture as source of information. Both are derived from previously acquired knowledge on different aspects of pre-implantation embryo development. These aspects include embryo morphology and kinetics, chromosomal ploidy status, metabolism, and embryonic gene transcription, translation, and expression. As to the direct assessment of morphology and kinetics, pertinent data can be obtained by analyzing sequential microscopic images of in vitro cultured embryos. Spent media can serve a source of genomic, metabolomic, transcriptomic and proteomic markers. Methods used in the early pioneering studies, such as microscopy, fluorescence in situ hybridization, autoradiography, electrophoresis and immunoblotting, or enzyme-linked immunosorbent assay, are too subjective, invasive, and/or time-consuming. As such, they are unsuitable for the current in vitro fertilization (IVF) practice, which needs objective, rapid, and noninvasive selection of the best embryo for uterine transfer or cryopreservation. This has been made possible by the use of high-throughput techniques such as time-lapse (for direct embryo evaluation), next-generation sequencing, quantitative real-time polymerase chain reaction, high-performance liquid chromatography, nanoparticle tracking analysis, flow cytometry, mass spectroscopy, Raman spectroscopy, near-infrared spectroscopy, and nuclear magnetic resonance spectroscopy (for spent culture media analysis). In this review, individual markers are presented systematically, with each marker’s history and current status, including available methodologies, strengths, and limitations, so as to make the essential information accessible to all health professionals, even those whose expertise in the matter is limited. Full article
(This article belongs to the Special Issue Molecular Research on Embryo Developmental Potential)
Show Figures

Graphical abstract

35 pages, 18237 KiB  
Article
Effect of Corticosterone on Gene Expression in the Context of Global Hippocampal Transcription
by Grzegorz R. Juszczak, Adrian M. Stankiewicz, Rafał R. Starzyński, Magdalena Ogłuszka and Aneta Jaszczyk
Int. J. Mol. Sci. 2025, 26(10), 4889; https://doi.org/10.3390/ijms26104889 - 21 May 2025
Viewed by 114
Abstract
The composition of genomic mediators of glucocorticoid actions in the brain remains elusive because of low-statistical-power experiments and the associated transcriptomic data with very low consistency. The problem is further exaggerated by the underrepresentation of chronic experiments and the interpretation of differentially expressed [...] Read more.
The composition of genomic mediators of glucocorticoid actions in the brain remains elusive because of low-statistical-power experiments and the associated transcriptomic data with very low consistency. The problem is further exaggerated by the underrepresentation of chronic experiments and the interpretation of differentially expressed genes without understanding their contribution to the total transcriptomic activity. To fill existing gaps in knowledge, we have performed a large transcriptomic experiment, testing the effects of prolonged treatment with corticosterone on the hippocampal transcriptome (RNA sequencing). The experiment showed that prolonged treatment with corticosterone induced a set of transcriptomic effects that were replicable across treatment durations, including genes relevant for human PTSD (Opalin, Pllp, Ttyh2, Lpar1) and prolonged stress in animals (Cnp, Fam163a, Fcrls, Tmem125). Some of the affected genes are specific for oligodendrocytes, neurons, astrocytes, immune cells, the vascular system, and brain ventricles, indicating that glucocorticoids may affect all central nervous system components. The data also showed that the largest changes in expression of corticosterone-responsive genes are restricted to genes with a relatively low expression level and small contribution to the overall pool of mRNAs in the hippocampus. As a result, even a large change in the number of affected genes leads to a small change in the number of newly synthesized mRNA copies. This means, in turn, that the transcriptomic changes induced by corticosterone have low-cost effects on the brain. This specificity of transcriptomic responses also poses a challenge for the interpretation of data and constitutes a potential source of reporting bias in past studies. Therefore, there is a need for further research on products of gene expression, both at the transcriptomic and proteomic levels, during stress conditions. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

18 pages, 8336 KiB  
Article
Metformin-Enhanced Secretome from Periodontal Ligament Stem Cells Promotes Functional Recovery in an Inflamed Periodontal Model: In Vitro Study
by Han Na Suh, Ju Young Ji and Jung Sun Heo
J. Funct. Biomater. 2025, 16(5), 177; https://doi.org/10.3390/jfb16050177 - 13 May 2025
Viewed by 463
Abstract
Objective: Secretory factors, termed the secretome, in the conditioned medium (CM) from dental mesenchymal stem cells (MSCs) have shown anti-inflammatory, anti-apoptotic, and tissue regenerative potential. This cell-free product could be further developed by preconditioning cells with various biochemical agents, which lead to a [...] Read more.
Objective: Secretory factors, termed the secretome, in the conditioned medium (CM) from dental mesenchymal stem cells (MSCs) have shown anti-inflammatory, anti-apoptotic, and tissue regenerative potential. This cell-free product could be further developed by preconditioning cells with various biochemical agents, which lead to a change in secretome and CM profiles. Among the favorable candidates for CM production, metformin as an anti-diabetic medication is currently considered a potential agent for dental hard tissue and periodontal regeneration. Here, we aimed to assess the composition of CM from periodontal ligament stem cells (PDLSCs) grown in metformin-preconditioned media (Met-CM) compared to normal PDLSC-CM and assess the ability of Met-CM to recover the function of inflamed PDLSCs. Methods: Met-CM and normal CM were collected from PDLSCs grown with or without 50 µM metformin, respectively, under healthy culture conditions. Mass spectrometry and liquid chromatography–tandem mass spectrometry (LC–MS/MS) were performed to comparatively evaluate the proteomic profiles in PDLSC-CM versus Met-CM. We then treated the PDLSC cultures with lipopolysaccharide (LPS) from Porphyromonas gingivalis to induce inflammation and evaluated the osteogenic/cementogenic differentiation in the presence of Met-CM or normal PDLSC-CM by assessing alkaline phosphatase activity, intracellular calcium levels, and mRNA expression of osteogenic and cementogenic factors, including RUNX2, OCN, OSX, and CEMP-1. Subsequently, we performed RNA sequencing to identify transcriptomic changes in the treated cells. Results: We identified 202 differentially expressed proteins, 175 of which were significant, in Met-CM versus normal PDLSC-CM. Among the analyzed groups, the top three protein classes were protein-binding activity modulator, cytoskeletal protein, and extracellular matrix (ECM) protein. Treatment of PDLSCs with LPS significantly attenuated ALP activity, [Ca2+]i, and the mRNA expression levels of RUNX2, OCN, OSX, and CEMP-1, whereas treatment with Met-CM alone markedly enhanced PDLSC differentiation activity compared with the control. Moreover, osteogenic/cementogenic differentiation of the LPS-treated PDLSCs was recovered through incubation in Met-CM. Transcriptomic analysis identified 511 and 3591 differentially expressed genes in the control versus Met-CM and LPS versus LPS + Met-CM groups, respectively. The enrichment of biological processes includes positive regulation of DNA-templated transcription and skeletal system morphogenesis in the control versus Met-CM comparison, as well as positive regulation of transcription from the RNA polymerase II promoter and negative regulation of the apoptotic process in the LPS versus LPS + Met-CM comparison. Molecular function analysis demonstrated the enrichment of protein-binding terms among the DEGs from each comparison. Conclusions: Metformin preconditioning enhanced the recovery effect of PDLSC-CM on LPS-induced inflamed PDLSCs. These findings suggest that metformin preconditioning could represent a practical formula for PDLSC-secretome, which may contribute to the development of future cell-free periodontal regenerative strategies. Full article
(This article belongs to the Special Issue Natural Biomaterials for Biomedical Applications)
Show Figures

Figure 1

25 pages, 2812 KiB  
Article
Dual Proteomics Strategies to Dissect and Quantify the Components of Nine Medically Important African Snake Venoms
by Damien Redureau, Fernanda Gobbi Amorim, Thomas Crasset, Imre Berger, Christiane Schaffitzel, Stefanie Kate Menzies, Nicholas R. Casewell and Loïc Quinton
Toxins 2025, 17(5), 243; https://doi.org/10.3390/toxins17050243 - 13 May 2025
Viewed by 454
Abstract
Snakebite envenoming constitutes a significant global health issue, particularly in Africa, where venomous species such as Echis vipers and Dendroaspis mambas pose substantial risks to human health. This study employs a standardized venomics workflow to comprehensively characterize and comparatively quantify the venom composition [...] Read more.
Snakebite envenoming constitutes a significant global health issue, particularly in Africa, where venomous species such as Echis vipers and Dendroaspis mambas pose substantial risks to human health. This study employs a standardized venomics workflow to comprehensively characterize and comparatively quantify the venom composition of nine medically relevant snake species chosen from among the deadliest in Africa. Utilizing shotgun venom proteomics and venom gland transcriptomics, we report detailed profiles of venom complexity, highlighting the relative abundance of dominant toxin families such as three-finger toxins and Kunitz-type proteins in Dendroaspis, and metalloproteinases and phospholipases A2 in Echis. We delineate here the relative abundance and structural diversity of venom components. Key to our proteomic approach is the implementation of Multi-Enzymatic Limited Digestion (MELD), which improved protein sequence coverage and enabled the identification of rare toxin families such as hyaluronidases and renin-like proteases, by multiplying the overlap of generated peptides and enhancing the characterization of both toxin and non-toxin components within the venoms. The culmination of these efforts resulted in the construction of a detailed toxin database, providing insights into the biological roles and potential therapeutic targets of venom proteins and peptides. The findings here compellingly validate the MELD technique, reinforcing its reproducibility as a valuable characterization approach applied to venomics. This research significantly advances our understanding of venom complexity in African snake species, including representatives of both Viperidae and Elapidae families. By elucidating venom composition and toxin profiles, our study paves the way for the development of targeted therapies aimed at mitigating the morbidity and mortality associated with snakebite envenoming globally. Full article
(This article belongs to the Special Issue Toxins: From the Wild to the Lab)
Show Figures

Graphical abstract

20 pages, 2343 KiB  
Article
Robust Single-Cell RNA-Seq Analysis Using Hyperdimensional Computing: Enhanced Clustering and Classification Methods
by Hossein Mohammadi, Maziyar Baranpouyan, Krishnaprasad Thirunarayan and Lingwei Chen
AI 2025, 6(5), 94; https://doi.org/10.3390/ai6050094 - 1 May 2025
Viewed by 531
Abstract
Background. Single-cell RNA sequencing (scRNA-seq) has transformed genomics by enabling the study of cellular heterogeneity. However, its high dimensionality, noise, and sparsity pose significant challenges for data analysis. Methods. We investigate the use of Hyperdimensional Computing (HDC), a brain-inspired computational framework recognized for [...] Read more.
Background. Single-cell RNA sequencing (scRNA-seq) has transformed genomics by enabling the study of cellular heterogeneity. However, its high dimensionality, noise, and sparsity pose significant challenges for data analysis. Methods. We investigate the use of Hyperdimensional Computing (HDC), a brain-inspired computational framework recognized for its noise robustness and hardware efficiency, to tackle the challenges in scRNA-seq data analysis. We apply HDC to both supervised classification and unsupervised clustering tasks. Results. Our experiments demonstrate that HDC consistently outperforms established methods such as XGBoost, Seurat reference mapping, and scANVI in terms of noise tolerance and scalability. HDC achieves superior accuracy in classification tasks and maintains robust clustering performance across varying noise levels. Conclusions. These results highlight HDC as a promising framework for accurate and efficient single-cell data analysis. Its potential extends to other high-dimensional biological datasets including proteomics, epigenomics, and transcriptomics, with implications for advancing bioinformatics and personalized medicine. Full article
Show Figures

Figure 1

18 pages, 11713 KiB  
Article
Compound 3d Attenuates Metabolic Dysfunction-Associated Steatohepatitis via Peroxisome Proliferator-Activated Receptor Pathway Activation and Inhibition of Inflammatory and Apoptotic Signaling
by Shouqing Zhang, Jiajia Yu, Sule Bai, Shuhan Li, Quanyuan Qiu, Xiangshun Kong, Cen Xiang, Zhen Liu, Peng Yu and Yuou Teng
Metabolites 2025, 15(5), 296; https://doi.org/10.3390/metabo15050296 - 29 Apr 2025
Viewed by 381
Abstract
Objectives: Metabolic dysfunction-associated steatohepatitis (MASH) lacks effective therapies. This study aimed to evaluate the therapeutic potential of compound 3d, a novel elafibranor derivative, focusing on its dual mechanisms of PPAR pathway activation and p38 MAPK signaling inhibition. Methods: Integrated in vitro and [...] Read more.
Objectives: Metabolic dysfunction-associated steatohepatitis (MASH) lacks effective therapies. This study aimed to evaluate the therapeutic potential of compound 3d, a novel elafibranor derivative, focusing on its dual mechanisms of PPAR pathway activation and p38 MAPK signaling inhibition. Methods: Integrated in vitro and in vivo approaches were employed. In vitro, free fatty acid (FFA)-induced lipid accumulation in L02 hepatocytes and lipopolysaccharides (LPSs)-stimulated inflammatory responses in RAW264.7 macrophages were used to evaluate lipid metabolism and anti-inflammatory effects. In vivo, a high-fat diet (HFD)-induced MASH model in C57BL/6 mice assessed serum biochemical parameters (triglycerides (TGs), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), alanine aminotransferase (ALT), aspartate transaminase (AST), tumor necrosis factor-α (TNF-α), nitric oxide (NO), and interleukin-6 (IL-6)), liver histopathology (H&E, Oil Red O, Masson staining), and proteomic profiling. Gut microbiota composition was analyzed via 16S rRNA sequencing. Western blotting quantified PPAR isoforms (γ/δ), downstream targets (Acox1, EHHADH, Acaa1), and p38 MAPK pathway proteins (p-p38, caspase-8, Bcl-2). Results: In vitro, 3d significantly reduced lipid accumulation (reduction in TG, p < 0.01) and inflammation (decrease in ALT activity, p < 0.05) in hepatocytes, while suppressing LPSs-induced TNF-α (63% reduction), NO (51% decrease), and IL-6 (48% reduction) in macrophages (p < 0.01). In vivo, 3d (30 mg/kg) lowered serum TG (39% decrease), TC (32% reduction), LDL-C (45% decline), and TNF-α (57% reduction) in HFD-fed mice (p < 0.05 vs. model), normalized AST/ALT levels, and ameliorated hepatic steatosis, ballooning, and fibrosis. Proteomics demonstrated PPARγ/δ activation (2.3–3.1-fold upregulation of Acox1, EHHADH, Acaa1; p < 0.001) and p38 MAPK pathway inhibition (54% reduction in p-p38, 61% decrease in caspase-8; 1.8-fold increase in Bcl-2; p < 0.01). Gut microbiota analysis revealed enrichment of beneficial taxa (Lactobacillus: 2.7-fold increase; Bifidobacterium: 1.9-fold rise) and reduced pathogenic Proteobacteria (68% decrease, p < 0.05). Conclusions: Compound 3d alleviates MASH via PPAR-mediated lipid metabolism enhancement and p38 MAPK-driven inflammation/apoptosis suppression, with additional gut microbiota modulation. These findings highlight 3d as a multi-target therapeutic candidate for MASH. Full article
Show Figures

Graphical abstract

15 pages, 3969 KiB  
Article
Transcriptome and Proteome Reveal Heat Shock Promotes Haploid Induction Rate via Activating ABA Signal Transduction in Watermelon
by Shiqi Gong, Bingqian Tang, Yujuan Dai, Xiangyu Sun, Huijuan Song, Cheng Xiong, Tian Zou, Longjun Sun, Guang Liu, Hongbo Yang, Shengxiu Zhu, Sihui Dai and Xiaowu Sun
Agronomy 2025, 15(5), 1063; https://doi.org/10.3390/agronomy15051063 - 27 Apr 2025
Viewed by 283
Abstract
Haploid breeding technology has advantages in terms of saving time and reducing labor intensity and costs. However, the low induction rate limits the application of this technology. Previous researchers found that heat shock can increase the rate of Embryo-like structures (ELSs) induction. However, [...] Read more.
Haploid breeding technology has advantages in terms of saving time and reducing labor intensity and costs. However, the low induction rate limits the application of this technology. Previous researchers found that heat shock can increase the rate of Embryo-like structures (ELSs) induction. However, molecular mechanisms underlying heat-shocked haploid induction remain poorly understood. In the current study, unfertilized ovules of watermelon were subjected to heat shock for 0–5 days and conducted transcriptomics sequencing and DIA-based proteomics sequencing. Results indicated that, in contrast to the non-heat-shock condition, the expression level of protein phosphatase 2C (PP2C), a negative regulator in abscisic acid (ABA) signal transduction pathway, was repressed, and the expression level of Sucrose-non-fermenting 1-related protein kinases (SnRK2) was activated. The activated SnRK2s are enabled to promote the accumulation of storage substances in ovules. Through analysis, the expression of many genes involved in the biosynthesis of unsaturated fatty acids and amino acids has indeed been upregulated. In conclusion, our findings demonstrate that heat shock promotes the accumulation of storage substances in unfertilized ovules by activating the signal transduction process of ABA, which correspondingly increases ELSs induction rate. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

31 pages, 16368 KiB  
Article
Bioinformatics-Based Management of Vitellogenin-like Protein’s Role in Pathogen Defense in Nicotiana tabacum L.
by Hanan Maoz, Amir Elalouf and Amit Yaniv Rosenfeld
Appl. Sci. 2025, 15(8), 4463; https://doi.org/10.3390/app15084463 - 18 Apr 2025
Viewed by 413
Abstract
The primary objective of this study was to identify and characterize pathogen defense proteins in the Nicotiana tabacum L. proteome, focusing on their structural, functional, and evolutionary properties, as well as their interactions with pathogen-derived molecules. Specifically, we aimed to comprehensively analyze the [...] Read more.
The primary objective of this study was to identify and characterize pathogen defense proteins in the Nicotiana tabacum L. proteome, focusing on their structural, functional, and evolutionary properties, as well as their interactions with pathogen-derived molecules. Specifically, we aimed to comprehensively analyze the proteome to pinpoint potential uncharacterized defense-related protein that has emerging roles in immune responses and antioxidant activity across plants and animals. Through integrated computational approaches, we determined evolutionary relationships, and structural modeling of the selected protein was performed using different modeling software, followed by validation through multiple metrics, including stereochemical checks (Ramachandran plot), MolProbity analysis, and Z-scores. We further investigated the functional binding regions or interaction sites. We performed molecular docking to investigate the molecular interactions between selected proteins and pathogen-associated molecular patterns (PAMPs), specifically β-glucan and peptidoglycan (PGN), to elucidate their defensive mechanisms. Last, normal mode analysis (NMA), molecular dynamics simulation (MDS), and post-simulation analyses were employed to evaluate the stability and mobility of the protein–ligand complexes. Uncharacterized vitellogenin-like protein (VLP: ID A0A1S4CXB2) with the potential defense domain chosen because of its predicted immune-related features, stress response patterns, and unknown pathogen role at new immunity functions. Phylogenetic analysis revealed significant sequence homology with VLPs from other members of the Solanaceae family. Structural modeling showed a high-quality model, with docking studies indicating a stronger affinity for PGN (−10.16 kcal/mol) and β-glucan (−7.19 kcal/mol), highlighting its potential involvement in pathogen defense. NMA, MDS, and post-simulation analyses revealed that PGN exhibits more substantial binding stability and more extensive interactions with VLP than β-glucan. Our findings confirmed that VLPs in N. tabacum may function as pattern recognition receptors (PRRs), capable of recognizing and responding to pathogens by activating immune signaling pathways. Future experimental validation of these interactions could further elucidate the role of VLPs in plant defense and their potential application in biotechnological approaches for sustainable agriculture. Full article
(This article belongs to the Special Issue Research on Computational Biology and Bioinformatics)
Show Figures

Figure 1

Back to TopTop