Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (172)

Search Parameters:
Keywords = pyrimidine molecule

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2544 KB  
Review
Aryl-Substituted Dihydro-Pyrimidines Effecting Kinesin Eg5 as Novel Approach for Cancer Treatment
by Dialekti Chlorou and Eleni Pontiki
Molecules 2025, 30(15), 3256; https://doi.org/10.3390/molecules30153256 - 3 Aug 2025
Viewed by 500
Abstract
Cancer is one of the most lethal diseases of this century. Unfortunately, many anticancer agents have harsh side effects or fail to work against cancer any longer due to tolerance. Dihydropyrimidinones are promising structures containing a pyrimidine ring. Targeting Eg5 is their most [...] Read more.
Cancer is one of the most lethal diseases of this century. Unfortunately, many anticancer agents have harsh side effects or fail to work against cancer any longer due to tolerance. Dihydropyrimidinones are promising structures containing a pyrimidine ring. Targeting Eg5 is their most well-known activity. Inhibition of this enzyme gives them the privilege of strong cytotoxic activity with less side effects. Phenyl ring is a group that can be found in the majority of organic molecules and possesses preferable pharmacokinetic and pharmacodynamic characteristics. This review studies DHPM derivatives that are substituted with a phenyl ring and possess antiproliferative ability by inhibiting Eg5. The compounds are able to inhibit different cancer cell lines, and some are more potent than the standard drug. The biological results are in accordance with the docking studies. Full article
Show Figures

Figure 1

13 pages, 1147 KB  
Hypothesis
Possible Enantioseparation of Racemic Ribose on Chiral Surface Formed by Adsorption of Nucleobases
by Roman Bielski and Michal Tencer
Life 2025, 15(8), 1160; https://doi.org/10.3390/life15081160 - 23 Jul 2025
Viewed by 309
Abstract
The paper proposes a putative prebiotic scenario leading to homochirality in the RNA world. In this scenario, racemic ribose, the only chiral moiety in RNA, was enantioseparated (in its pyranose form) on a chiral surface formed by the adsorption of (prochiral) nucleobases (NBs) [...] Read more.
The paper proposes a putative prebiotic scenario leading to homochirality in the RNA world. In this scenario, racemic ribose, the only chiral moiety in RNA, was enantioseparated (in its pyranose form) on a chiral surface formed by the adsorption of (prochiral) nucleobases (NBs) on a mineral or metal. Purine bases (adenine and guanine) are more likely candidates for this process than pyrimidine bases because they have more H-bond donors and acceptors. Another possible candidate surface for the enantioseparation of ribose would be formed by the adsorption of nucleobase pairs, e.g., guanine–cytosine (GC). Interactions of ribose molecules with hydrogen bond donors and acceptors of NBs or NB pairs (located on the surface) enforced the orientation of ribose molecules in two directions perpendicular to each other and parallel to the surface. Consequently, the energy of interactions of enantiomers of the sugar with the surface was not the same. Thus, a solvent moving along the surface caused the enantiomers of ribose to move with different rates, resulting in the enantioseparation of ribose in a chromatography-like process. The same process would also separate ribose from other monosaccharides in the mix. Hydrogen bonding between nucleobases was also pivotal in the formation of large homochiral domains on the surfaces. Full article
(This article belongs to the Special Issue Origin of Life in Chemically Complex Messy Environments: 2nd Edition)
Show Figures

Figure 1

21 pages, 3245 KB  
Article
Interactions of Nedaplatin with Nucleobases and Purine Alkaloids: Their Role in Cancer Therapy
by Kamil Szupryczyński and Beata Szefler
Biomedicines 2025, 13(7), 1551; https://doi.org/10.3390/biomedicines13071551 - 25 Jun 2025
Viewed by 502
Abstract
Background: Nedaplatin is a platinum-based anticancer drug that combines the benefits of Cisplatin and Carboplatin, retaining Cisplatin’s anticancer activity while reducing toxicity similar to Carboplatin. After hydrolysis, Nedaplatin targets purines in DNA and forms cross-links that induce cell death via apoptosis. However, [...] Read more.
Background: Nedaplatin is a platinum-based anticancer drug that combines the benefits of Cisplatin and Carboplatin, retaining Cisplatin’s anticancer activity while reducing toxicity similar to Carboplatin. After hydrolysis, Nedaplatin targets purines in DNA and forms cross-links that induce cell death via apoptosis. However, it is important to consider how the presence of other chemical compounds with structural similarities to Adenine or Guanine, such as aromatic, purine, or pyrimidine compounds containing a nitrogen atom with a free electron pair, might influence its activity at the cellular level. Alkaloids with structures similar to DNA nucleobases are common, and their influence on Nedaplatin’s activity requires investigation. Methods: In this study, the interactions between Nedaplatin (including its hydrolyzed forms, such as [Pt(NH3)2(H2O)2]2+ and [Pt(NH3)2(H2O)(OH)]+) and nucleobases (Adenine and Guanine) and purine alkaloids (Caffeine, Theobromine and Theophylline) were thoroughly investigated using theoretical (density functional theory, DFT) and experimental (UV-Vis spectroscopy) methods. DFT calculations were performed at the B3LYP/6-31G(d,p)/LANL2DZ and MN15/def2-TZVP levels, with structure optimization and harmonic analysis in the gas phase and aqueous solution (modeled using IEF-PCM). UV-Vis spectroscopy was used to verify theoretical findings by examining changes in absorption spectra. Results: Both theoretical and experimental studies confirmed that Nedaplatin forms complexes with both nucleobases and purine alkaloids. Nedaplatin was found to exhibit a higher affinity for nucleobases than for purine alkaloids. Furthermore, this affinity was dependent on the computational method used and on the hydrolyzed form of Nedaplatin. Theoretical calculations showed the formation of stable complexes through bonding with nitrogen atoms in the ligand molecules, which was confirmed by changes in UV-Vis spectra, indicating adduct formation. Conclusions: The results indicate that Nedaplatin readily forms complexes with both nucleobases and purine alkaloids, showing a stronger affinity for nucleobases. This finding highlights the potential importance of Nedaplatin’s interactions with other compounds present in the body, which may influence its effectiveness and mechanism of action in cancer therapy. These studies provide new insights into the molecular mechanisms of Nedaplatin’s action and may contribute to a better understanding of its pharmacological interactions. However, research requires confirmation not only in in vivo studies but also in clinical trials. Full article
(This article belongs to the Special Issue Chemoprevention to Dwindle Tumor Development)
Show Figures

Graphical abstract

25 pages, 3908 KB  
Review
Hybrid Molecules with Purine and Pyrimidine Derivatives for Antitumor Therapy: News, Perspectives, and Future Directions
by Simona Iacob (Ciobotaru), Claudia-Simona Stefan, Aurel Nechita, Madalina-Nicoleta Matei, Elena-Lacramioara Lisa, Dana Tutunaru, Iuliu Fulga, Ana Fulga, Alina-Georgiana Cristea (Hohota) and Oana-Maria Dragostin
Molecules 2025, 30(13), 2707; https://doi.org/10.3390/molecules30132707 - 23 Jun 2025
Viewed by 1417
Abstract
Cancer is a leading cause of death globally, claiming millions of lives each year. Despite the availability of numerous anticancer drugs, the need for new treatment options remains essential. Many current therapies come with significant toxicity, lead to various side effects, or do [...] Read more.
Cancer is a leading cause of death globally, claiming millions of lives each year. Despite the availability of numerous anticancer drugs, the need for new treatment options remains essential. Many current therapies come with significant toxicity, lead to various side effects, or do not consistently deliver the expected therapeutic results. Purines and pyrimidines are fundamental building blocks of nucleic acids and play crucial roles in cellular metabolism and signaling. Recent advances in medicinal chemistry have led to the development and synthesis of various derivatives that exhibit selective cytotoxic effects against cancer cells while minimizing toxicity to healthy tissues. Purine and pyrimidine scaffolds, due to their well-established biological roles and structural versatility, have emerged as key pharmacophoric fragments in anticancer drug discovery. In recent years, the rational design of hybrid molecules incorporating these heterocycles has shown promise in overcoming drug resistance, improving target selectivity, and enhancing pharmacological profiles. Purine and pyrimidines scaffolds hold significant potential as foundations for novel antitumor drugs, with established representatives in cancer treatment, including 5-fluorouracil, cladribine, capecitabine, and several others. In addition, the article discusses the challenges and future developments of purine and pyrimidine derivatives and hybrid molecules as antitumor drugs and emphasizes the need for continued research to optimize their effectiveness and reduce side effects. Overall, the innovative use of these compounds represents a major advance in targeted cancer therapy and holds promise for improving the therapeutic efficacy of malignant diseases. Full article
(This article belongs to the Special Issue Small Molecule Hybrids for Anticancer and Antiviral Therapy)
Show Figures

Figure 1

19 pages, 1401 KB  
Article
Design and Synthesis of Pyridine-Based Pyrrolo[2,3-d]pyrimidine Analogs as CSF1R Inhibitors: Molecular Hybridization and Scaffold Hopping Approach
by Srinivasulu Cherukupalli, Carsten Degenhart, Peter Habenberger, Anke Unger, Jan Eickhoff, Bård Helge Hoff and Eirik Sundby
Pharmaceuticals 2025, 18(6), 814; https://doi.org/10.3390/ph18060814 - 28 May 2025
Viewed by 2113
Abstract
Background/Objectives: Colony stimulating factor 1 receptor kinase (CSF1R) is a well-validated molecular target in drug discovery for various reasons. Based on the structure of an early lead molecule identified in our lab and the marketed drug Pexidartinib (PLX3397), we merged fragments of [...] Read more.
Background/Objectives: Colony stimulating factor 1 receptor kinase (CSF1R) is a well-validated molecular target in drug discovery for various reasons. Based on the structure of an early lead molecule identified in our lab and the marketed drug Pexidartinib (PLX3397), we merged fragments of Pexidartinib with our pyrrolo[2,3-d]pyrimidine nucleus, and the idea was supported by initial molecular docking studies. Thus, several new compounds were synthesized with Pexidartinib fragments on C4, C5, and C6 on the pyrrolopyrimidine scaffold using molecular hybridization. Methods: Nine final products were synthesized using a combination of Buchwald-Hartwig and Suzuki-Miyaura cross-coupling reactions in three to four steps and in good yields. The analogues were subsequently profiled as CSF1R inhibitors in enzymatic and cellular assays, and ADME properties were evaluated for some derivatives. Results: N-Methyl-N-(3-methylbenzyl)-6-(6-((pyridin-3-ylmethyl)amino)pyridin-3-yl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine (12b) emerged as the most potent CSF1R inhibitor, showing low-nanomolar enzymatic activity, cellular efficacy, and favorable ADME properties, highlighting its promise as a lead compound for further development. Conclusions: These findings suggest that combining structural elements from previously reported CSF1R inhibitors such as Pexidartinib could guide the development of improved drug candidates targeting this kinase. Full article
(This article belongs to the Special Issue Design and Synthesis of Small Molecule Kinase Inhibitors)
Show Figures

Graphical abstract

19 pages, 6195 KB  
Article
Identification of Novel HPK1 Hit Inhibitors: From In Silico Design to In Vitro Validation
by Israa H. Isawi, Rayan M. Obeidat, Soraya Alnabulsi and Rufaida Al Zoubi
Int. J. Mol. Sci. 2025, 26(9), 4366; https://doi.org/10.3390/ijms26094366 - 4 May 2025
Viewed by 943
Abstract
Hematopoietic progenitor kinase 1 (HPK1), a negative regulator of T-cells, B-cells, and dendritic cells, has gained attention in antitumor immunotherapy research over the past decade. No HPK1 inhibitor has yet reached clinical approval, largely due to selectivity and drug-like limitations. Leveraging the available [...] Read more.
Hematopoietic progenitor kinase 1 (HPK1), a negative regulator of T-cells, B-cells, and dendritic cells, has gained attention in antitumor immunotherapy research over the past decade. No HPK1 inhibitor has yet reached clinical approval, largely due to selectivity and drug-like limitations. Leveraging the available structural insights into HPK1, we conducted a rational hit identification using a structure-based virtual screening of over 600,000 drug-like molecules from ASINEX and OTAVA databases. A series of molecular docking studies, in vitro kinase assays, and molecular dynamics simulations were conducted to identify viable HPK1 inhibitor hits. This approach resulted in two promising novel hit scaffolds, 4H-Pyrido[1,2-a] thieno[2,3-d] pyrimidin-4-one (ISR-05) and quinolin-2(1H)-one (ISR-03), neither of which has previously been reported as an HPK1 inhibitor. ISR-05 and ISR-03 exhibited IC50 values of 24.2 ± 5.07 and 43.9 ± 0.134 µM, respectively, in kinase inhibition assays. These hits constitute tractable starting points for future hit-to-lead optimization aimed at developing more effective HPK1 inhibitors for cancer therapy. Full article
(This article belongs to the Section Molecular Informatics)
Show Figures

Graphical abstract

18 pages, 3054 KB  
Article
Probing Redox Responses and DNA Interactions in Drug Discovery
by Hüseyin Oğuzhan Kaya, Ceylin Bozdemir, Hüseyin İstanbullu and Seda Nur Topkaya
Drugs Drug Candidates 2025, 4(2), 20; https://doi.org/10.3390/ddc4020020 - 29 Apr 2025
Viewed by 1220
Abstract
Background/Objectives: The thiazolo [5,4-d]pyrimidine scaffold is a class of drugs known for its anticancer, antitumor, anti-inflammatory, and antimicrobial properties. In this study, the electrochemical properties of novel thiazolo [5,4-d]pyrimidine derivatives and their interactions with DNA were characterized for the first time using voltammetric [...] Read more.
Background/Objectives: The thiazolo [5,4-d]pyrimidine scaffold is a class of drugs known for its anticancer, antitumor, anti-inflammatory, and antimicrobial properties. In this study, the electrochemical properties of novel thiazolo [5,4-d]pyrimidine derivatives and their interactions with DNA were characterized for the first time using voltammetric methods. Determining the interactions of new drug candidate molecules with DNA is crucial for drug development studies and is the main objective of this research. Methods: Both molecules were immobilized on the surface of the electrodes by passive adsorption, and their electrochemical properties were determined by voltammetric methods through reduction currents. Their interactions with DNA were carried out in the solution phase and examined by the changes in the oxidation peak potential and current of the guanine base. Results: For both molecules, it was determined that the electrochemical reduction processes are diffusion-controlled and irreversible, with an equal number of protons and electrons being transferred during this process. The detection limits for TP-NB (4-chloro-N-(5-chlorothiazolo [5,4-d]pyrimidin-2-yl)-3-nitrobenzamide) and TP-PC (1-(2-(4-(4-carbamoylpiperidin-1-yl)-3-nitrobenzamido)thiazolo [5,4-d]pyrimidin-5-yl)piperidine-4-carboxamide) were determined to be 12 µg/mL and 16 µg/mL, respectively. As a result of the interaction between both molecules with DNA, the guanine oxidation current decreased. It was found that TP-NB could act as an intercalator, while TP-PC could affect DNA electrostatically, both showing toxic effects on DNA. Conclusions: An electrochemical method was developed for the rapid, cost-effective, and sensitive detection of both molecules and their DNA interactions. Both compounds exhibited notable affinity towards DNA, as evidenced by significant changes in oxidation peak currents, shifts in peak potentials, and calculated toxicity values. These findings suggest their potential use as DNA-interacting drugs, such as anticancer and antimicrobial agents. Our study offers a quick, cost-effective, and reliable electrochemical approach for the evaluation of drug–DNA interactions. Full article
(This article belongs to the Section Medicinal Chemistry and Preliminary Screening)
Show Figures

Figure 1

16 pages, 500 KB  
Article
Cross-Section Calculations for Electron-Impact Ionization of Pyrimidine Molecule and Its Halogenated Derivatives: 2-Chloropyrimidine, 5-Chloropyrimidine, 2-Bromopyrimidine and 5-Bromopyrimidine
by Bożena Żywicka and Paweł Możejko
Molecules 2025, 30(1), 6; https://doi.org/10.3390/molecules30010006 - 24 Dec 2024
Cited by 1 | Viewed by 993
Abstract
The total cross-sections for the single electron-impact ionization of pyrimidine (C4H4N2), 2-chloropyrimidine (2-C4H3ClN2), 5-chloropyrimidine (5-C4H3ClN2), 2-bromopyrimidine (2-C4H3BrN2) and 5-bromopyrimidine [...] Read more.
The total cross-sections for the single electron-impact ionization of pyrimidine (C4H4N2), 2-chloropyrimidine (2-C4H3ClN2), 5-chloropyrimidine (5-C4H3ClN2), 2-bromopyrimidine (2-C4H3BrN2) and 5-bromopyrimidine (5-C4H3BrN2) molecules have been calculated with the binary-encounter-Bethe model from the ionization threshold up to 5 keV. The input data for the BEB calculations concerning electronic structure of the studied targets have been obtained with quantum chemical methods including the Hartree–Fock (H-F) and the outer valence Green function (OVGF) methods. The calculated cross-section for the ionization of the pyrimidine molecules due to electron impact is compared with available experimental and theoretical data. The question of the magnitude the pyrimidine ionization cross-section is also discussed, as is the efficiency of the ionization process of studied halogenated derivatives of pyrimidine. Full article
(This article belongs to the Section Physical Chemistry)
Show Figures

Graphical abstract

17 pages, 3518 KB  
Review
Small Molecule with Big Impact: Metarrestin Targets the Perinucleolar Compartment in Cancer Metastasis
by Vivek K. Kashyap, Bhuvnesh P. Sharma, Divya Pandey, Ajay K. Singh, Godwin Peasah-Darkwah, Bhupesh Singh, Kuldeep K. Roy, Murali M. Yallapu and Subhash C. Chauhan
Cells 2024, 13(24), 2053; https://doi.org/10.3390/cells13242053 - 12 Dec 2024
Cited by 2 | Viewed by 2016
Abstract
Metarrestin (ML246) is a first-in-class pyrrole–pyrimidine-derived small molecule that selectively targets the perinucleolar compartment (PNC). PNC is a distinct subnuclear structure predominantly found in solid tumor cells. The occurrence of PNC demonstrates a positive correlation with malignancy, serving as an indicator of tumor [...] Read more.
Metarrestin (ML246) is a first-in-class pyrrole–pyrimidine-derived small molecule that selectively targets the perinucleolar compartment (PNC). PNC is a distinct subnuclear structure predominantly found in solid tumor cells. The occurrence of PNC demonstrates a positive correlation with malignancy, serving as an indicator of tumor aggressiveness, progression, and metastasis. Various promising preclinical results have led to the clinical translation of metarrestin into a first-in-human trial. This review aims to summarize (i) the current understanding of the structure and function of PNC and its role in cancer progression and metastasis, (ii) key findings from studies examining the effect of metarrestin on various cancers across the translational spectrum, including in vitro, in vivo, and human clinical trial studies, and (iii) the pharmaceutical relevance of metarrestin as a promising anticancer candidate. Furthermore, our molecular docking and MD simulation studies show that metarrestin binds to eEF1A1 and eEF1A2 with a strong and stable affinity and inhibits eEF1A2 more efficiently compared to eEF1A1. The promising results from preclinical studies suggest that metarrestin has the potential to revolutionize the treatment of cancer, heralding a paradigm shift in its therapeutic management. Full article
Show Figures

Figure 1

19 pages, 2233 KB  
Article
Structure–Activity Relationship Studies in a Series of 2-Aryloxy-N-(pyrimidin-5-yl)acetamide Inhibitors of SLACK Potassium Channels
by Nigam M. Mishra, Brittany D. Spitznagel, Yu Du, Yasmeen K. Mohamed, Ying Qin, C. David Weaver and Kyle A. Emmitte
Molecules 2024, 29(23), 5494; https://doi.org/10.3390/molecules29235494 - 21 Nov 2024
Cited by 3 | Viewed by 2121
Abstract
Epilepsy of infancy with migrating focal seizures (EIMFS) is a rare, serious, and pharmacoresistant epileptic disorder often linked to gain-of-function mutations in the KCNT1 gene. KCNT1 encodes the sodium-activated potassium channel known as SLACK, making small molecule inhibitors of SLACK channels a compelling [...] Read more.
Epilepsy of infancy with migrating focal seizures (EIMFS) is a rare, serious, and pharmacoresistant epileptic disorder often linked to gain-of-function mutations in the KCNT1 gene. KCNT1 encodes the sodium-activated potassium channel known as SLACK, making small molecule inhibitors of SLACK channels a compelling approach to the treatment of EIMFS and other epilepsies associated with KCNT1 mutations. In this manuscript, we describe a hit optimization effort executed within a series of 2-aryloxy-N-(pyrimidin-5-yl)acetamides that were identified via a high-throughput screen. We systematically prepared analogs in four distinct regions of the scaffold and evaluated their functional activity in a whole-cell, automated patch clamp (APC) assay to establish structure-activity relationships for wild-type (WT) SLACK inhibition. Two selected analogs were also profiled for selectivity versus other members of the Slo family of potassium channels, of which SLACK is a member, and versus a panel of structurally diverse ion channels. The same two analogs were evaluated for activity versus the WT mouse channel as well as two clinically relevant mutant human channels. Full article
Show Figures

Graphical abstract

5 pages, 691 KB  
Proceeding Paper
Absorption of Free Radicals of New S-Derivatives (1,2,4-Triazole-3(2H)-yl)methyl)thiopyrimidines
by Yuriy Karpenko
Chem. Proc. 2024, 16(1), 62; https://doi.org/10.3390/ecsoc-28-20181 - 14 Nov 2024
Cited by 1 | Viewed by 983
Abstract
At the current stage of organic chemistry development, various fundamental synthetic approaches have been developed for the synthesis of 1,2,4-triazole and pyrimidine scaffolds, which demonstrate diverse biological effects. The relevance of this research lies in the combination of two pharmacophore fragments in one [...] Read more.
At the current stage of organic chemistry development, various fundamental synthetic approaches have been developed for the synthesis of 1,2,4-triazole and pyrimidine scaffolds, which demonstrate diverse biological effects. The relevance of this research lies in the combination of two pharmacophore fragments in one molecule—a pyrimidine and an azole heterocycle—connected by a thiomethylene bridge, which is expected to improve solubility and enhance known biological properties, as well as introduce new ones. This study presents the synthesis of compounds and investigates their antiradical activity applying the DPPH free radical method. Three compounds demonstrate greater activity than the reference drug, the natural antioxidant ascorbic acid. Full article
Show Figures

Figure 1

7 pages, 990 KB  
Proceeding Paper
Synthesis and Evaluation of Novel 5-Arylidene-2-(7-chloroquinolin-6-yl)-3-(pyrimidin-2-yl) Thiazolidin-4-Ones as Anti-Microbial Agents
by Pritam N. Dube and Yogita B. Thombare
Chem. Proc. 2024, 16(1), 51; https://doi.org/10.3390/ecsoc-28-20120 - 14 Nov 2024
Viewed by 462
Abstract
The development of combination chemotherapeutic drugs, each with distinct mechanisms and minimal side effects, is crucial in combating antimicrobial resistance. Discovering novel drugs with diverse mechanisms is laborious and time-consuming. Alternatively, combining multiple pharmacophores into a single molecule offers a promising strategy to [...] Read more.
The development of combination chemotherapeutic drugs, each with distinct mechanisms and minimal side effects, is crucial in combating antimicrobial resistance. Discovering novel drugs with diverse mechanisms is laborious and time-consuming. Alternatively, combining multiple pharmacophores into a single molecule offers a promising strategy to develop more effective treatments. In this study, we synthesized and assessed the antimicrobial activity of novel 5-arylidene-2-(7-chloroquinolin-6-yl)-3-(pyrimidin-2-yl) thiazolidin-4-ones. Full article
Show Figures

Scheme 1

6 pages, 1105 KB  
Proceeding Paper
1,3-Dipolar Cycloaddition Reactions of 2-Arylmethylidentiazolo[3,2-a]pyrimidines with Azomethinylides: Studying the Supramolecular Organization of Products in the Crystalline Phase
by Anna Nefedova, Darya Tretyakova, Dilyara Mingazhetdinova, Artem Agarkov, Alexander Ovsyannikov, Igor Litvinov, Svetlana Solovieva and Igor Antipin
Chem. Proc. 2024, 16(1), 24; https://doi.org/10.3390/ecsoc-28-20098 - 14 Nov 2024
Viewed by 550
Abstract
The [3+2]-cycloaddition of azomethinylides formed in situ to dipolarophiles is a promising approach for the synthesis of dispyroderivatives of oxindole and acenaphthenedione. In the course of our studies, it was shown that the cycloaddition of azomethinylides occurs specifically through the exocyclic double C=C [...] Read more.
The [3+2]-cycloaddition of azomethinylides formed in situ to dipolarophiles is a promising approach for the synthesis of dispyroderivatives of oxindole and acenaphthenedione. In the course of our studies, it was shown that the cycloaddition of azomethinylides occurs specifically through the exocyclic double C=C bond resulting in the formation of a new pyrrolidine cycle as part of the molecule and, consequently, a dispyroheterocycle. This work is devoted to the synthesis and structural analysis of dispyrothiazolo[3,2-a]pyrimidine in the crystalline phase. Full article
Show Figures

Figure 1

19 pages, 4753 KB  
Article
Halloysite Nanotube-Based Delivery of Pyrazolo[3,4-d]pyrimidine Derivatives for Prostate and Bladder Cancer Treatment
by Marina Massaro, Rebecca Ciani, Giancarlo Grossi, Gianfranco Cavallaro, Raquel de Melo Barbosa, Marta Falesiedi, Cosimo G. Fortuna, Anna Carbone, Silvia Schenone, Rita Sánchez-Espejo, César Viseras, Riccardo Vago and Serena Riela
Pharmaceutics 2024, 16(11), 1428; https://doi.org/10.3390/pharmaceutics16111428 - 9 Nov 2024
Cited by 2 | Viewed by 1372
Abstract
Background/Objectives: The development of therapies targeting unregulated Src signaling through selective kinase inhibition using small-molecule inhibitors presents a significant challenge for the scientific community. Among these inhibitors, pyrazolo[3,4-d]pyrimidine heterocycles have emerged as potent agents; however, their clinical application is hindered by [...] Read more.
Background/Objectives: The development of therapies targeting unregulated Src signaling through selective kinase inhibition using small-molecule inhibitors presents a significant challenge for the scientific community. Among these inhibitors, pyrazolo[3,4-d]pyrimidine heterocycles have emerged as potent agents; however, their clinical application is hindered by low solubility in water. To overcome this limitation, some carrier systems, such as halloysite nanotubes (HNTs), can be used. Methods: Herein, we report the development of HNT-based nanomaterials as carriers for pyrazolo[3,4-d]pyrimidine molecules. To achieve this objective, the clay was modified by two different approaches: supramolecular loading into the HNT lumen and covalent grafting onto the HNT external surface. The resulting nanomaterials were extensively characterized, and their morphology was imaged by high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). In addition, the kinetic release of the molecules supramolecularly loaded into the HNTs was also evaluated. QSAR studies were conducted to elucidate the physicochemical and pharmacokinetic properties of these inhibitors, and structure-based virtual screening (SBVS) was performed to analyze their binding poses in protein kinases implicated in cancer. Results: The characterization methods demonstrate successful encapsulation of the drugs and the release properties under physiological conditions. Furthermore, QSAR studies and SBVS provide valuable insights into the physicochemical, pharmacokinetic, and binding properties of these inhibitors, reinforcing their potential efficacy. Conclusions: The cytotoxicity of these halloysite-based nanomaterials, and of pure molecules for comparison, was tested on RT112, UMUC3, and PC3 cancer cell lines, demonstrating their potential as effective agents for prostate and bladder cancer treatment. Full article
(This article belongs to the Special Issue Applications of Nanomaterials in Drug Delivery and Drug Release)
Show Figures

Figure 1

3 pages, 1228 KB  
Correction
Correction: Wu et al. Synthesis of Spirooxindole-O-Naphthoquinone-Tetrazolo[1,5-a]Pyrimidine Hybrids as Potential Anticancer Agents. Molecules 2018, 23, 2330
by Liqiang Wu, Yunxia Liu and Yazhen Li
Molecules 2024, 29(22), 5257; https://doi.org/10.3390/molecules29225257 - 7 Nov 2024
Viewed by 682
Abstract
In the original publication [...] Full article
Show Figures

Figure 2

Back to TopTop