Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (261)

Search Parameters:
Keywords = quantum dot density

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1807 KB  
Article
First-Principles Study on the Microheterostructures of N-GQDs@Si3N4 Composite Ceramics
by Wei Chen, Yetong Li, Yucheng Ma, Enguang Xu, Rui Lou, Zhuohao Sun, Yu Tian and Jianjun Zhang
Coatings 2025, 15(10), 1172; https://doi.org/10.3390/coatings15101172 - 7 Oct 2025
Viewed by 269
Abstract
In the previous research that aimed to enhance the toughness and tribological properties of silicon nitride ceramics, a lignin precursor was added to the ceramic matrix, which achieved conversion through pyrolysis and sintering, resulting in a silicon nitride-based composite ceramic containing nitrogen-doped graphene [...] Read more.
In the previous research that aimed to enhance the toughness and tribological properties of silicon nitride ceramics, a lignin precursor was added to the ceramic matrix, which achieved conversion through pyrolysis and sintering, resulting in a silicon nitride-based composite ceramic containing nitrogen-doped graphene quantum dots (N-GQDs). This composite material demonstrated excellent comprehensive mechanical properties and friction-wear performance. Based on the existing experimental results, the first-principles plane wave mode conservation pseudopotential method of density functional theory was adopted in this study to build a microscopic heterostructure model of Si3N4-based composite ceramics containing N-GQDs. Meanwhile, the surface energy of Si3N4 and the system energy of the N-GQDs@Si3N4 heterostructure were calculated. The calculation results showed that when the distance between N-GQDs and Si3N4 in the heterostructure was 2.3 Å, the structural energy was the smallest and the structure was the steadiest. This is consistent with the previous experimental results and further validates the coating mechanism of N-GQDs covering the Si3N4 column-shaped crystals. Simultaneously, based on the results of the previous experiments, the stress of the heterostructure composed of Si3N4 particles coated with different numbers of layers of nitrogen quantum dots was calculated to predict the optimal lignin doping amount. It was found that when the doping amount was between 1% and 2%, the best microstructure and mechanical properties were obtained. This paper provides a new method for studying the graphene quantum dot coating structure. Full article
Show Figures

Figure 1

10 pages, 1926 KB  
Article
Transition-Metal Ni6−xCux (x = 0–6)/Hexagonal Boron Nitride Composite for CO Detection: A DFT Study
by Mayra Hernández-Oramas, Diana C. Navarro-Ibarra, Víctor A. Franco-Luján, Ramón Román-Doval, Fernando Toledo-Toledo, Reyna Ojeda-López and Fernando Montejo-Alvaro
J. Compos. Sci. 2025, 9(9), 510; https://doi.org/10.3390/jcs9090510 - 22 Sep 2025
Viewed by 657
Abstract
The development of highly selective and sensitive gas sensors is essential for detecting toxic pollutants, such as carbon monoxide (CO), which pose severe health and environmental risks. In this work, the adsorption of CO molecules on Ni6−xCux (x = 0–6) [...] Read more.
The development of highly selective and sensitive gas sensors is essential for detecting toxic pollutants, such as carbon monoxide (CO), which pose severe health and environmental risks. In this work, the adsorption of CO molecules on Ni6−xCux (x = 0–6) clusters supported on hexagonal boron nitride quantum dots with nitrogen vacancies (h-BNVQDs) is explored through density functional theory (DFT) calculations. For this purpose, the stability of the metallic clusters supported on the boron nitride sheet was calculated, and the adsorption properties of the CO molecule on the Ni6−xCux (x = 0–6)/h-BNVQDs composite were determined. The results demonstrated a high binding energy between Ni6−xCux (x = 0–6) clusters and the h-BNVQDs sheets, suggesting that Ni-Cu clusters are highly stable on h-BNVQDs sheets. For CO adsorption, adsorption energy and charge transfer calculations indicated that the Ni6 and Ni6−xCux (x = 2 and 3) clusters exhibit the strongest CO binding and highest charge transfer, suggesting them as good candidates for CO gas sensing. These findings provide theoretical insights into the rational design of bimetallic catalysts for gas-sensing applications. Full article
(This article belongs to the Special Issue Theoretical and Computational Investigation on Composite Materials)
Show Figures

Graphical abstract

15 pages, 4676 KB  
Article
Green Synthesis of Nitrogen-Doped Carbon Dots from Pueraria Residues for Use as a Sensitive Fluorescent Probe for Sensing Cr(VI) in Water
by Ziyuan Zheng and Zhengwei Zhou
Sensors 2025, 25(17), 5554; https://doi.org/10.3390/s25175554 - 5 Sep 2025
Viewed by 1064
Abstract
In this study, blue fluorescence carbon dots of high quantum yield (42.96%) were successfully synthesized via a one-step hydrothermal method using Pueraria residues as the precursor and urea as the nitrogen source. The preparation process was simple, was environmentally friendly, and did not [...] Read more.
In this study, blue fluorescence carbon dots of high quantum yield (42.96%) were successfully synthesized via a one-step hydrothermal method using Pueraria residues as the precursor and urea as the nitrogen source. The preparation process was simple, was environmentally friendly, and did not use toxic chemicals, with the resulting nitrogen-doped Pueraria carbon dots (N-PCDs) exhibiting excellent dispersibility, regular morphology and stable fluorescence performance. Moreover, fluorescence quenching could be induced through electron transfer between N-PCDs and hexavalent chromium (Cr(VI)) in water, which enabled the application of N-PCDs as a fluorescent probe for sensing Cr(VI) in water, with a limit of detection (LOD) and limit of quantitation (LOQ) of 0.078 μM and 0.26 μM, respectively. The effectiveness of the proposed fluorescent probe was also validated in various water matrices, achieving stable recovery rates ranging from 98.7% to 101.5%. Furthermore, experimental investigations and theoretical calculations through density functional theory (DFT) confirmed that the underlying reaction mechanism was photoinduced electron transfer (PET). Above all, this study not only demonstrated the potential of N-PCDs as sensitive probes to sense toxic elements in the environment, but also promotes the green and scalable production of high-value carbon-based products from waste biomass. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Figure 1

10 pages, 653 KB  
Article
A Novel QCA Design of Energy-Efficient Three-Input AND/OR Circuit
by Amjad Almatrood
Quantum Rep. 2025, 7(3), 38; https://doi.org/10.3390/quantum7030038 - 31 Aug 2025
Viewed by 620
Abstract
One of the nanoscale technologies that shows its capability of implementing integrated digital circuits with low power, high speed, and high density is quantum-dot cellular automata (QCA). The fundamental device for designing and implementing circuits in QCA is majority logic. In this paper, [...] Read more.
One of the nanoscale technologies that shows its capability of implementing integrated digital circuits with low power, high speed, and high density is quantum-dot cellular automata (QCA). The fundamental device for designing and implementing circuits in QCA is majority logic. In this paper, a novel energy-efficient QCA design of three-input AND/OR logic functions is proposed. This design can perform both AND and OR logic operations using the same structure with an achievement of 58% and 64% approximate reductions in power consumption compared to majority-based structures, and 31% and 32% approximate reductions in power consumption compared to the best available circuits, respectively. In addition, other physical constraints such as area and latency are improved and have better or similar results compared to the best existing circuits. The proposed circuit can be considered as a fundamental and better alternative to the majority gate for energy-efficient circuit design in QCA. This will pave the way for developing efficient large-scale QCA-based sequential and combinational circuits. Full article
Show Figures

Figure 1

12 pages, 2884 KB  
Article
High-Detectivity Organic Photodetector with InP Quantum Dots in PTB7-Th:PC71BM Ternary Bulk Heterojunction
by Eunki Baek, Sung-Yoon Joe, Hyunbum Kang, Chanho Jeong, Hyunjong Lee, Insung Choi, Sohee Kim, Sangjun Park, Dongwook Kim, Jaehoon Park, Jae-Hyeon Ko, Gae Hwang Lee and Youngjun Yun
Polymers 2025, 17(16), 2214; https://doi.org/10.3390/polym17162214 - 13 Aug 2025
Viewed by 951
Abstract
Organic photodetectors (OPDs) offer considerable promise for low-power, solution-processable biosensing and imaging applications; however, their performance remains limited by spectral mismatch and interfacial trap states. In this study, a highly sensitive polymer photodiode was developed via trace incorporation (0.8 wt%) of InP/ZnSe/ZnS quantum [...] Read more.
Organic photodetectors (OPDs) offer considerable promise for low-power, solution-processable biosensing and imaging applications; however, their performance remains limited by spectral mismatch and interfacial trap states. In this study, a highly sensitive polymer photodiode was developed via trace incorporation (0.8 wt%) of InP/ZnSe/ZnS quantum dots (QDs) into a PTB7-Th:PC71BM bulk heterojunction (BHJ) matrix. This QD doping approach enhanced the external quantum efficiency (EQE) across the 540–660 nm range and suppressed the dark current density at −2 V by passivating interface trap states. Despite a slight decrease in optical absorption at the optimized composition, the internal quantum efficiency (IQE) increased significantly from ~80% to nearly 95% resulting in a net EQE improvement. This suggests that QD incorporation improved charge transport without compromising charge separation efficiency. As a result, the device achieved a specific detectivity (D*) of 1.8 × 1013 Jones, representing a 93% improvement over binary BHJs, along with an ultra-low dark current density of 7.76 × 10−10 A/cm2. Excessive QD loading, however, led to optical losses and increased dark current, underscoring the need for precise compositional control. Furthermore, the enhanced detectivity led to a 4 dB improvement in the signal-to-noise ratio (SNR) of photoplethysmography (PPG) signals in the target wavelength range, enabling more reliable biophotonic sensing without increased power consumption. This work demonstrates that QD-based spectral and interfacial engineering offers an effective and scalable route for advancing the performance of OPDs, with broad applicability to low-power biosensors and high-resolution polymer–QD imaging systems. Full article
(This article belongs to the Special Issue Polymer Semiconductors for Flexible Electronics)
Show Figures

Graphical abstract

10 pages, 1346 KB  
Article
Scintillation Properties of CsPbBr3 Quantum Dot Film-Enhanced Ga:ZnO Wafer and Its Applications
by Shiyi He, Silong Zhang, Liang Chen, Yang Li, Fangbao Wang, Nan Zhang, Naizhe Zhao and Xiaoping Ouyang
Materials 2025, 18(15), 3691; https://doi.org/10.3390/ma18153691 - 6 Aug 2025
Viewed by 491
Abstract
In high energy density physics, the demand for precise detection of nanosecond-level fast physical processes is high. Ga:ZnO (GZO), GaN, and other fast scintillators are widely used in pulsed signal detection. However, many of them, especially wide-bandgap materials, still face issues of low [...] Read more.
In high energy density physics, the demand for precise detection of nanosecond-level fast physical processes is high. Ga:ZnO (GZO), GaN, and other fast scintillators are widely used in pulsed signal detection. However, many of them, especially wide-bandgap materials, still face issues of low luminous intensity and significant self-absorption. Therefore, an enhanced method was proposed to tune the wavelength of materials via coating perovskite quantum dot (QD) films. Three-layer samples based on GZO were primarily investigated and characterized. Radioluminescence (RL) spectra from each face of the samples, as well as their decay times, were obtained. Lower temperatures further enhanced the luminous intensity of the samples. Its overall luminous intensity increased by 2.7 times at 60 K compared to room temperature. The changes in the RL processes caused by perovskite QD and low temperatures were discussed using the light tuning and transporting model. In addition, an experiment under a pico-second electron beam was conducted to verify their pulse response and decay time. Accordingly, the samples were successfully applied in beam state monitoring of nanosecond pulsed proton beams, which indicates that GZO wafer coating with perovskite QD films has broad application prospects in pulsed radiation detection. Full article
(This article belongs to the Section Quantum Materials)
Show Figures

Figure 1

16 pages, 4770 KB  
Article
Developing a CeS2/ZnS Quantum Dot Composite Nanomaterial as a High-Performance Cathode Material for Supercapacitor
by Shan-Diao Xu, Li-Cheng Wu, Muhammad Adil, Lin-Feng Sheng, Zi-Yue Zhao, Kui Xu and Xin Chen
Batteries 2025, 11(8), 289; https://doi.org/10.3390/batteries11080289 - 1 Aug 2025
Viewed by 642
Abstract
To develop high-performance electrode materials for supercapacitors, in this paper, a heterostructured composite material of cerium sulfide and zinc sulfide quantum dots (CeS2/ZnS QD) was successfully prepared by hydrothermal method. Characterization through scanning electron microscopy (SEM), X-ray diffraction (XRD), and transmission [...] Read more.
To develop high-performance electrode materials for supercapacitors, in this paper, a heterostructured composite material of cerium sulfide and zinc sulfide quantum dots (CeS2/ZnS QD) was successfully prepared by hydrothermal method. Characterization through scanning electron microscopy (SEM), X-ray diffraction (XRD), and transmission electron microscopy (TEM) showed that ZnS QD nanoparticles were uniformly composited with CeS2, effectively increasing the active sites surface area and shortening the ion diffusion path. Electrochemical tests show that the specific capacitance of this composite material reaches 2054 F/g at a current density of 1 A/g (specific capacity of about 256 mAh/g), significantly outperforming the specific capacitance of pure CeS2 787 F/g at 1 A/g (specific capacity 98 mAh/g). The asymmetric supercapacitor (ASC) assembled with CeS2/ZnS QD and activated carbon (AC) retained 84% capacitance after 10,000 charge–discharge cycles. Benefited from the synergistic effect between CeS2 and ZnS QDs, the significantly improved electrochemical performance of the composite material suggests a promising strategy for designing rare-earth and QD-based advanced energy storage materials. Full article
Show Figures

Graphical abstract

10 pages, 2570 KB  
Article
Demonstration of Monolithic Integration of InAs Quantum Dot Microdisk Light Emitters and Photodetectors Directly Grown on On-Axis Silicon (001)
by Shuaicheng Liu, Hao Liu, Jihong Ye, Hao Zhai, Weihong Xiong, Yisu Yang, Jun Wang, Qi Wang, Yongqing Huang and Xiaomin Ren
Micromachines 2025, 16(8), 897; https://doi.org/10.3390/mi16080897 - 31 Jul 2025
Viewed by 886
Abstract
Silicon-based microcavity quantum dot lasers are attractive candidates for on-chip light sources in photonic integrated circuits due to their small size, low power consumption, and compatibility with silicon photonic platforms. However, integrating components like quantum dot lasers and photodetectors on a single chip [...] Read more.
Silicon-based microcavity quantum dot lasers are attractive candidates for on-chip light sources in photonic integrated circuits due to their small size, low power consumption, and compatibility with silicon photonic platforms. However, integrating components like quantum dot lasers and photodetectors on a single chip remains challenging due to material compatibility issues and mode field mismatch problems. In this work, we have demonstrated monolithic integration of an InAs quantum dot microdisk light emitter, waveguide, and photodetector on a silicon platform using a shared epitaxial structure. The photodetector successfully monitored variations in light emitter output power, experimentally proving the feasibility of this integrated scheme. This work represents a key step toward multifunctional integrated photonic systems. Future efforts will focus on enhancing the light emitter output power, improving waveguide efficiency, and scaling up the integration density for advanced applications in optical communication. Full article
(This article belongs to the Special Issue Silicon-Based Photonic Technology and Devices)
Show Figures

Figure 1

10 pages, 1855 KB  
Article
TCAD Design and Optimization of In0.20Ga0.80N/In0.35Ga0.65N Quantum-Dot Intermediate-Band Solar Cells
by Salaheddine Amezzoug, Haddou El Ghazi and Walid Belaid
Crystals 2025, 15(8), 693; https://doi.org/10.3390/cryst15080693 - 30 Jul 2025
Viewed by 608
Abstract
Intermediate-band photovoltaics promise single-junction efficiencies that exceed the Shockley and Queisser limit, yet viable material platforms and device geometries remain under debate. Here, we perform comprehensive two-dimensional device-scale simulations using Silvaco Atlas TCAD to analyze p-i-n In0.20Ga0.80N solar cells [...] Read more.
Intermediate-band photovoltaics promise single-junction efficiencies that exceed the Shockley and Queisser limit, yet viable material platforms and device geometries remain under debate. Here, we perform comprehensive two-dimensional device-scale simulations using Silvaco Atlas TCAD to analyze p-i-n In0.20Ga0.80N solar cells in which the intermediate band is supplied by In0.35Ga0.65N quantum dots located inside the intrinsic layer. Quantum-dot diameters from 1 nm to 10 nm and areal densities up to 116 dots per period are evaluated under AM 1.5G, one-sun illumination at 300 K. The baseline pn junction achieves a simulated power-conversion efficiency of 33.9%. The incorporation of a single 1 nm quantum-dot layer dramatically increases efficiency to 48.1%, driven by a 35% enhancement in short-circuit current density while maintaining open-circuit voltage stability. Further increases in dot density continue to boost current but with diminishing benefit; the highest efficiency recorded, 49.4% at 116 dots, is only 1.4 percentage points above the 40-dot configuration. The improvements originate from two-step sub-band-gap absorption mediated by the quantum dots and from enhanced carrier collection in a widened depletion region. These results define a practical design window centred on approximately 1 nm dots and about 40 dots per period, balancing substantial efficiency gains with manageable structural complexity and providing concrete targets for epitaxial implementation. Full article
(This article belongs to the Section Materials for Energy Applications)
Show Figures

Figure 1

8 pages, 1324 KB  
Proceeding Paper
Single-Layer Parity Generator and Checker Design Using XOR Gate in Quantum-Dot Cellular Automata (QCA)
by Rohit Kumar Shaw and Angshuman Khan
Eng. Proc. 2025, 87(1), 94; https://doi.org/10.3390/engproc2025087094 - 15 Jul 2025
Viewed by 411
Abstract
Quantum-dot cellular automata (QCA) offer a high-performance, low-power alternative to traditional VLSI technology for nanocomputing. However, the existing metal-dot QCA-based parity generators and checker circuits suffer from increased energy dissipation, larger area consumption, and complex multilayered layouts, limiting their practical feasibility. This work [...] Read more.
Quantum-dot cellular automata (QCA) offer a high-performance, low-power alternative to traditional VLSI technology for nanocomputing. However, the existing metal-dot QCA-based parity generators and checker circuits suffer from increased energy dissipation, larger area consumption, and complex multilayered layouts, limiting their practical feasibility. This work designs a 3-bit parity generator and 4-bit checker to address these challenges using an optimized modified majority voter-based Ex-OR gate in QCA. A single-layered layout was simulated in QCADesigner 2.0.3, avoiding crossovers to reduce fabrication complexity. Energy analysis using QCADesigner-E reveals 34.4 meV energy consumption, achieving 31% energy efficiency and 75% area efficiency in the context of QCA costs compared to recent designs. The proposed circuit highlights the unique potential of QCA as a scalable, energy-efficient solution for high-density next-generation computing systems. Full article
(This article belongs to the Proceedings of The 5th International Electronic Conference on Applied Sciences)
Show Figures

Figure 1

10 pages, 1436 KB  
Article
Theoretical Investigation of O2 and CO2 Adsorption on Small PdNi Clusters Supported on N-Doped Graphene Quantum Dots
by Brenda García-Hilerio, Lidia Santiago-Silva, Pastor T. Matadamas-Ortiz, Alejandro Gomez-Sanchez, Víctor A. Franco-Luján and Heriberto Cruz-Martínez
C 2025, 11(3), 43; https://doi.org/10.3390/c11030043 - 27 Jun 2025
Viewed by 679
Abstract
A density functional theory (DFT) investigation was conducted to study the O2 and CO2 adsorption on very small Pd3−nNin (n = 0–2) clusters supported on N-doped graphene quantum dots (N-GQDs). The study was carried out in two stages. [...] Read more.
A density functional theory (DFT) investigation was conducted to study the O2 and CO2 adsorption on very small Pd3−nNin (n = 0–2) clusters supported on N-doped graphene quantum dots (N-GQDs). The study was carried out in two stages. First, the interaction between Pd3−nNin (n = 0–2) clusters and N-GQDs was analyzed. Subsequently, the adsorption behavior of O2 and CO2 molecules on the supported clusters was examined. The calculated interaction energies (Eint) of Pd3−nNin (n = 0–2) clusters on N-GQDs were found to be higher than those on pristine graphene, indicating enhanced cluster stability on N-GQDs. Furthermore, the adsorption energies (Eads) of the O2 molecule on the Pd3 and Pd2Ni clusters deposited on N-GQDs were similar. Meanwhile, the PdNi2 cluster deposited on N-GQDs exhibited the highest Eads (−1.740). The Eads of CO2 on Pd3−nNin (n = 0–2) clusters embedded in N-GQDs were observed to be close to or exceed 1 eV. Upon adsorption of O2 and CO2 on the Pd3−nNin (n = 0–2) clusters supported on N-GQDs, an elongation of the O–O and C–O bond lengths was observed, respectively. This structural change may facilitate the dissociation of these molecules on the supported clusters. Full article
(This article belongs to the Section Carbon Materials and Carbon Allotropes)
Show Figures

Graphical abstract

14 pages, 4844 KB  
Article
In Situ Epitaxial Quantum Dot Passivation Enables Highly Efficient and Stable Perovskite Solar Cells
by Yahya A. Alzahrani, Raghad M. Alqahtani, Raghad A. Alqarni, Jenan R. Alnakhli, Shahad A. Anezi, Ibtisam S. Almalki, Ghazal S. Yafi, Sultan M. Alenzi, Abdulaziz Aljuwayr, Abdulmalik M. Alessa, Huda Alkhaldi, Anwar Q. Alanazi, Masaud Almalki and Masfer H. Alkahtani
Nanomaterials 2025, 15(13), 978; https://doi.org/10.3390/nano15130978 - 24 Jun 2025
Viewed by 1079
Abstract
We report an advanced passivation strategy for perovskite solar cells (PSCs) by introducing core–shell structured perovskite quantum dots (PQDs), composed of methylammonium lead bromide (MAPbBr3) cores and tetraoctylammonium lead bromide (tetra-OAPbBr3) shells, during the antisolvent-assisted crystallization step. The epitaxial [...] Read more.
We report an advanced passivation strategy for perovskite solar cells (PSCs) by introducing core–shell structured perovskite quantum dots (PQDs), composed of methylammonium lead bromide (MAPbBr3) cores and tetraoctylammonium lead bromide (tetra-OAPbBr3) shells, during the antisolvent-assisted crystallization step. The epitaxial compatibility between the PQDs and the host perovskite matrix enables effective passivation of grain boundaries and surface defects, thereby suppressing non-radiative recombination and facilitating more efficient charge transport. At an optimal PQD concentration of 15 mg/mL, the modified PSCs demonstrated a remarkable increase in power conversion efficiency (PCE) from 19.2% to 22.85%. This enhancement is accompanied by improved device metrics, including a rise in open-circuit voltage (Voc) from 1.120 V to 1.137 V, short-circuit current density (Jsc) from 24.5 mA/cm2 to 26.1 mA/cm2, and fill factor (FF) from 70.1% to 77%. Spectral response analysis via incident photon-to-current efficiency (IPCE) revealed enhanced photoresponse in the 400–750 nm wavelength range. Additionally, long-term stability assessments showed that PQD-passivated devices retained more than 92% of their initial PCE after 900 h under ambient conditions, outperforming control devices which retained ~80%. These findings underscore the potential of in situ integrated PQDs as a scalable and effective passivation strategy for next-generation high-efficiency and stable perovskite photovoltaics. Full article
(This article belongs to the Special Issue Nanomaterials for Inorganic and Organic Solar Cells)
Show Figures

Figure 1

20 pages, 2336 KB  
Article
Improvement in Heat Transfer in Hydrocarbon and Geothermal Energy Coproduction Systems Using Carbon Quantum Dots: An Experimental and Modeling Approach
by Yurany Villada, Lady J. Giraldo, Diana Estenoz, Masoud Riazi, Juan Ordoñez, Esteban A. Taborda, Marlon Bastidas, Camilo A. Franco and Farid B. Cortés
Nanomaterials 2025, 15(12), 879; https://doi.org/10.3390/nano15120879 - 7 Jun 2025
Viewed by 938
Abstract
The main objective of this study is to improve heat transfer in hydrocarbon- and geothermal-energy coproduction systems using carbon quantum dots (CQDs). Two types of 0D nanoparticles (synthesized and commercial CQDs) were used for the formulation of nanofluids to increase the heat transfer [...] Read more.
The main objective of this study is to improve heat transfer in hydrocarbon- and geothermal-energy coproduction systems using carbon quantum dots (CQDs). Two types of 0D nanoparticles (synthesized and commercial CQDs) were used for the formulation of nanofluids to increase the heat transfer from depleted wells for the coproduction of oil and electrical energy. The synthesized and commercial CQDs were characterized in terms of their morphology, zeta potential, density, size, and heat capacity. The nanofluids were prepared using brine from an oil well of interest and two types of CQDs. The effect of the CQDs on the thermophysical properties of the nanofluids was evaluated based on their thermal conductivity. In addition, a mathematical model based on heat transfer principles to predict the effect of nanofluids on the efficiency of the organic Rankine cycle (ORC) was implemented. The synthesized and commercial CQDs had particle sizes of 25 and 16 nm, respectively. Similarly, zeta potential values of 36 and 48 mV were obtained. Both CQDs have similar functional groups and UV absorption, and the fluorescence spectra show that the study CQDs have a maximum excitation–emission signal around 360–460 nm. The characterization of the nanofluids showed that the addition of 100, 300, and 500 mg/L of CQDs increased the thermal conductivity by 40, 50, and 60 %, respectively. However, the 1000 mg/L incorporated decreased the thermal conductivities of the nanofluids. The observed behavior can be attributed to the aggregate size of the nanoparticles. Furthermore, a new thermal conductivity model for CQD-based nanofluids was developed considering brine salinity, particle size distribution, and agglomeration effects. The model showed a remarkable fit with the experimental data and predicted the effect of the nanofluid concentration on the thermal conductivity and cycle efficiency. Coupled with an ORC cycle model, CQD concentrations of approximately 550 mg/L increased the cycle efficiency by approximately 13.8% and 18.6% for commercial and synthesized CQDs, respectively. Full article
(This article belongs to the Section Theory and Simulation of Nanostructures)
Show Figures

Graphical abstract

16 pages, 2174 KB  
Article
Polyvinylpyrrolidone-Capped CuInS2 Colloidal Quantum Dots: Synthesis, Optical and Structural Assessment
by Oleg Korepanov, Olga Aleksandrova, Anna Botnar, Dmitrii Firsov, Zamir Kalazhokov, Demid Kirilenko, Polina Lemeshko, Vasilii Matveev, Dmitriy Mazing, Ivan Moskalenko, Alexander Novikov, Sviatlana Ulasevich and Vyacheslav Moshnikov
Colloids Interfaces 2025, 9(3), 33; https://doi.org/10.3390/colloids9030033 - 20 May 2025
Viewed by 1054
Abstract
Ternary metal chalcogenide quantum dots (QDs), such as CuInS2, have attracted significant attention due to their lower toxicity compared to binary counterparts containing cadmium or lead, making them promising candidates for biomedical imaging and solar energy applications. The surfactant choice is [...] Read more.
Ternary metal chalcogenide quantum dots (QDs), such as CuInS2, have attracted significant attention due to their lower toxicity compared to binary counterparts containing cadmium or lead, making them promising candidates for biomedical imaging and solar energy applications. The surfactant choice is critical for controlling nanocrystal nucleation, growth kinetics, and functionalization. This directly affects the toxicity and applications of QDs. In this work, we report a synthesis protocol for PVP-capped CuInS2 QDs in an aqueous solution. Using density functional theory (DFT) calculations, we predicted the coordination patterns of PVP on the CuInS2 QDs surface, providing insights into the stabilization mechanism. The synthesized QDs were characterized using TEM, XRD, XPS, and FTIR to assess their morphology, chemical composition, and surface chemistry. The QDs exhibited dual photoluminescence (PL) maxima at 550 nm and 680 nm, attributed to defect-related emissions, making them suitable for cell imaging applications. Cytotoxicity studies and cell imaging experiments demonstrate the excellent biocompatibility and effective staining capabilities of the PVP-capped CuInS2 QDs, highlighting their potential as fluorescent probes for long-term, multicolor cell imaging including two-photon microscopy. Full article
Show Figures

Figure 1

9 pages, 2484 KB  
Article
Processing and Characterization of High-Density Fe-Silicide/Si Core–Shell Quantum Dots for Light Emission
by Katsunori Makihara, Yuji Yamamoto, Markus Andreas Schubert, Andreas Mai and Seiichi Miyazaki
Nanomaterials 2025, 15(10), 733; https://doi.org/10.3390/nano15100733 - 14 May 2025
Viewed by 617
Abstract
Si-based photonics has garnered considerable attention as a future device for complementary metal–oxide–semiconductor (CMOS) computing. However, few studies have investigated Si-based light sources highly compatible with Si ultra large-scale integration processing. In this study, we observed stable light emission at room temperature from [...] Read more.
Si-based photonics has garnered considerable attention as a future device for complementary metal–oxide–semiconductor (CMOS) computing. However, few studies have investigated Si-based light sources highly compatible with Si ultra large-scale integration processing. In this study, we observed stable light emission at room temperature from superatom-like β–FeSi2–core/Si–shell quantum dots (QDs). The β–FeSi2–core/Si–shell QDs, with an areal density as high as ~1011 cm−2 were fabricated by self-aligned silicide process of Fe–silicide capped Si–QDs on ~3.0 nm SiO2/n–Si (100) substrates, followed by SiH4 exposure at 400 °C. From the room temperature photoluminescence characteristics, β–FeSi2 core/Si–shell QDs can be regarded as active elements in optical applications because they offer the advantages of photonic signal processing capabilities and can be combined with electronic logic control and data storage. Full article
(This article belongs to the Section Nanophotonics Materials and Devices)
Show Figures

Graphical abstract

Back to TopTop