Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (387)

Search Parameters:
Keywords = quantum phase transitions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 306 KB  
Article
Description of the Condensed Phases of Water in Terms of Quantum Condensates
by François Fillaux
Entropy 2025, 27(8), 885; https://doi.org/10.3390/e27080885 - 21 Aug 2025
Viewed by 177
Abstract
The “abnormal” properties of ice and liquid water can be explained by a hybrid quantum/classical framework based on objective facts. Internal decoherence due to the low dissociation energy of the H-bond and the strong electric dipole moment lead to a quantum condensate of [...] Read more.
The “abnormal” properties of ice and liquid water can be explained by a hybrid quantum/classical framework based on objective facts. Internal decoherence due to the low dissociation energy of the H-bond and the strong electric dipole moment lead to a quantum condensate of O atoms dressed with classical oscillators and a degenerate electric field. These classical oscillators are either subject to equipartition in the liquid or enslaved to the field interference in the ice. A set of four observables and the degeneracy entropy explain the heat capacities, temperatures, and latent heats of the quantum phase transition; the super-thermal-insulator state of the ice; the transition between high- and low-density liquids by supercooling; AND the temperature of the liquid’s maximum density. The condensate also describes an aerosol of water droplets. In conclusion, quantum condensates turn out to be an essential part of our everyday environment. Full article
(This article belongs to the Special Issue Entanglement Entropy and Quantum Phase Transition)
Show Figures

Figure 1

16 pages, 25326 KB  
Article
Influence of Carbon Quantum Dots on the Orientational Order and Rotational Viscosity of 8CB
by Alfredos Schinas, Stefanos Basim Atata, Dimitris Tsiourvas and Ioannis Lelidis
Nanomaterials 2025, 15(16), 1278; https://doi.org/10.3390/nano15161278 - 19 Aug 2025
Viewed by 247
Abstract
Soft nanocomposites were prepared by dispersing lipophilic carbon quantum dots (CQDs) in the liquid crystal compound 8CB. The quality of the dispersion was evaluated using fluorescence microscopy, while the microstructure of the samples was examined via polarized optical microscopy. We investigated the influence [...] Read more.
Soft nanocomposites were prepared by dispersing lipophilic carbon quantum dots (CQDs) in the liquid crystal compound 8CB. The quality of the dispersion was evaluated using fluorescence microscopy, while the microstructure of the samples was examined via polarized optical microscopy. We investigated the influence of CQDs on the orientational order parameter S as a function of temperature and sample composition by measuring birefringence. Additionally, the Fréedericksz transition threshold, along with the characteristic response and relaxation times, was measured for each sample as a function of temperature and applied voltage amplitude. The extracted rotational viscosity γ1 exhibits a pretransitional divergence upon cooling toward the smectic-A phase. Its temperature dependence was analyzed using established models from the literature, and the corresponding activation energy was determined. Notably, our analysis suggests that the presence of CQDs alters the power-law dependence of γ1 on the orientational order parameter S. The influence of CQDs on the elastic constants has been investigated. Full article
(This article belongs to the Section Nanophotonics Materials and Devices)
Show Figures

Figure 1

33 pages, 5982 KB  
Review
Sol–Gel-Synthesized Metal Oxide Nanostructures: Advancements and Prospects for Spintronic Applications—A Comprehensive Review
by Kais Iben Nassar, Sílvia Soreto Teixeira and Manuel P. F. Graça
Gels 2025, 11(8), 657; https://doi.org/10.3390/gels11080657 - 19 Aug 2025
Viewed by 383
Abstract
Spintronics, an interdisciplinary field merging magnetism and electronics, has attracted considerable interest due to its potential to transform data storage, logic devices, and emerging quantum technologies. Among the materials explored for spintronic applications, metal oxide nanostructures synthesized via sol–gel methods offer a unique [...] Read more.
Spintronics, an interdisciplinary field merging magnetism and electronics, has attracted considerable interest due to its potential to transform data storage, logic devices, and emerging quantum technologies. Among the materials explored for spintronic applications, metal oxide nanostructures synthesized via sol–gel methods offer a unique combination of low-cost processing, structural tunability, and defect-mediated magnetic control. This comprehensive review presents a critical overview of recent advances in sol–gel-derived magnetic oxides, such as Co-doped ZnO, La1−xSrxMnO3, Fe3O4, NiFe2O4, and transition-metal-doped TiO2, with emphasis on synthesis strategies, the dopant distribution, and room-temperature ferromagnetic behavior. Key spintronic functionalities, including magnetoresistance, spin polarization, and magnetodielectric effects, are systematically examined. Importantly, this review differentiates itself from the prior literature by explicitly connecting sol–gel chemistry parameters to spin-dependent properties and by offering a comparative analysis of multiple oxide systems. Critical challenges such as phase purity, reproducibility, and defect control are also addressed. This paper concludes by outlining future research directions, including green synthesis, the integration with 2D materials, and machine-learning-assisted optimization. Overall, this work bridges sol–gel synthesis and spintronic material design, offering a roadmap for advancing next-generation oxide-based spintronic devices. Full article
Show Figures

Figure 1

18 pages, 4003 KB  
Article
Understanding the Paradigm of Molecular-Network Conformations in Nanostructured Se-Rich Arsenoselenides AsxSe100−x (x < 10)
by Oleh Shpotyuk, Zdenka Lukáčová Bujňáková, Yaroslav Shpotyuk and Andriy Kovalskiy
Molecules 2025, 30(16), 3380; https://doi.org/10.3390/molecules30163380 - 14 Aug 2025
Viewed by 314
Abstract
The paradigm of molecular-network conformations in Se-rich glassy arsenoselenides AsxSe100−x compositionally approaching pure Se (x < 10) is considered, employing comprehensive XRD analysis of diffuse peak-halos and nanocrystalline reflections from the known Se polymorphs in their XRD patterns. Within a [...] Read more.
The paradigm of molecular-network conformations in Se-rich glassy arsenoselenides AsxSe100−x compositionally approaching pure Se (x < 10) is considered, employing comprehensive XRD analysis of diffuse peak-halos and nanocrystalline reflections from the known Se polymorphs in their XRD patterns. Within a modified microcrystalline model, the changes with growing Se content in these alloys are interpreted in terms of suppression in intermediate range ordering due to shifting to high diffraction angles and a narrowed FSDP (first sharp diffraction peak)-related diffuse peak-halo, accompanied by enhancement in extended range ordering due to a shift to low diffraction angles and a broadened SSDP (second sharp diffraction peak)-related peak-halo. Overlapping of these peak-halos is enhanced in Se-rich alloys, tending towards unified FSDP-SSDP-related halos with characteristic doublet asymmetry due to the remnants of nanocrystalline trigonal t-Se. Drastic enhancement of the crystallization processes related to the trigonal t-Se phase is a principal feature of nanostructurization effects in Se-rich glassy arsenoselenides driven by nanomilling. The nanostructurization response in these alloys is revealed as a fragmentation impact on the correlation length of the FSDP-responsible entities, accompanied by an agglomeration impact on the correlation length of the SSDP-responsible entities. The FSDP- and SSDP-related diffuse peak-halos become more distinguishable in the XRD patterning of nanostructured arsenoselenides, being associated with other contributions from crystalline remnants, such as those expected in transition to glassy arsenoselenides with higher Se content. An irregular sequence of randomly distributed cis- and trans-configurated multiatomic Se linkages is visualized by ab initio quantum-chemical modeling of Sen chain- and ring-like conformations. The most critical point of molecular-network disproportionality analysis in the examined arsenoselenide AsxSe100−x glassy alloys obeying the chain-crossing model corresponds to x = 7 (equivalent to 93 at. % of Se in the binary As-Se system), as an equilibrium point between mixed cis-trans-configurated Se7 chains and exceptionally cis-configurated molecular Se8 rings. At the basis of developed models, the paradigm of thermodynamically stable molecular-network conformations in the nanostructured Se-rich arsenoselenides AsxSe100−x (x < 10) is surely resolved in favor of chain-like network-forming conformations composed of mixed cis-trans-configurated network-forming multiatomic Se fragments. Full article
(This article belongs to the Special Issue Exclusive Feature Papers in Physical Chemistry, 3nd Edition)
Show Figures

Graphical abstract

21 pages, 590 KB  
Article
Empirical Rules in Thermochemistry: Overlooked Overestimations of the Liquid- and Crystal-Phase Heat Capacities of α,ω-Alkanediols and Their Consequences
by Riko Siewert, Vladimir V. Emelyanov, Artemiy A. Samarov, Matthis Richter, Karsten Müller and Sergey P. Verevkin
Liquids 2025, 5(3), 20; https://doi.org/10.3390/liquids5030020 - 13 Aug 2025
Viewed by 200
Abstract
The utilisation of empirical correlations for the estimation of thermodynamic functions is a valuable approach for reducing experimental effort and for validating existing data. Established correlations and group contribution methods provide reliable heat capacity estimates for simple organic compounds. The present work assesses [...] Read more.
The utilisation of empirical correlations for the estimation of thermodynamic functions is a valuable approach for reducing experimental effort and for validating existing data. Established correlations and group contribution methods provide reliable heat capacity estimates for simple organic compounds. The present work assesses the extent of deviations introduced by employing conventional heat capacity correlations for diols. For this purpose, heat capacity differences between the solid, liquid and gas phases are evaluated based on experimentally determined vapour pressures, enthalpies of vaporisation, heat capacities in the solid and liquid phases, and quantum chemical calculations. It is demonstrated that the structural characteristics of diols result in a significant overestimation of heat capacities when conventional empirical methods are applied. Deviations in the range of 30–50 J·K−1·mol−1 were observed when compared to consistent experimental data. As part of the evaluation, new group contribution parameters were developed for calculating heat capacities in the solid and liquid phases. Based on these improved data, inconsistencies in literature values for enthalpies of vaporisation (on the order of 10–15 kJ mol−1) could be resolved. Furthermore, a new correlation was derived that allows for the reliable prediction of enthalpies of vaporisation for α,ω-alkanediols from pentanediol to decanediol. The resulting data provide significant advantages for the design of technical processes involving diols as renewable sources and for the accurate modelling of their phase behaviour. Full article
Show Figures

Figure 1

13 pages, 662 KB  
Article
Phase-Space Approach for Topological Phase Transitions in Silicene
by Maciej Kalka, Piotr Pigoń and Bartłomiej J. Spisak
Entropy 2025, 27(8), 857; https://doi.org/10.3390/e27080857 - 12 Aug 2025
Viewed by 301
Abstract
Silicene is a two-dimensional silicon monolayer with a band gap caused by relatively strong spin–orbit coupling. This band gap can be steered using a vertical electric field. In turn, the change in this electric field value leads to a transition from a topological [...] Read more.
Silicene is a two-dimensional silicon monolayer with a band gap caused by relatively strong spin–orbit coupling. This band gap can be steered using a vertical electric field. In turn, the change in this electric field value leads to a transition from a topological insulator to a bulk insulator regime. This study aims to develop a phase-space approach to detecting the topological phase transitions in silicene induced by the presence of parallel magnetic and electric fields with the aid of the concept of topological quantum number based on the Wigner–Rényi entropy. A reinterpreted definition of the Wigner distribution function is employed to determine this indicator. The topological phase transition in silicene as a function of the electric field in the presence of the magnetic field is confirmed through the use of the topological quantum number determined for the one-half, Shannon and collision entropies. Full article
(This article belongs to the Section Statistical Physics)
Show Figures

Figure 1

10 pages, 262 KB  
Entry
Wigner Functions
by Michael te Vrugt
Encyclopedia 2025, 5(3), 118; https://doi.org/10.3390/encyclopedia5030118 - 11 Aug 2025
Viewed by 353
Definition
Wigner functions are a distribution function on phase space that allow to represent the state of a quantum-mechanical system. They are in many ways similar to classical phase space probability distributions, but can, in contrast to these, be negative. A description of a [...] Read more.
Wigner functions are a distribution function on phase space that allow to represent the state of a quantum-mechanical system. They are in many ways similar to classical phase space probability distributions, but can, in contrast to these, be negative. A description of a quantum system in terms of Wigner functions is equivalent to the more widely used one in terms of density operators or wave functions, but has advantages in visualizing properties of a quantum state and in studying the quantum–classical transition. Full article
(This article belongs to the Collection Applications of Quantum Mechanics)
27 pages, 5776 KB  
Review
From “Information” to Configuration and Meaning: In Living Systems, the Structure Is the Function
by Paolo Renati and Pierre Madl
Int. J. Mol. Sci. 2025, 26(15), 7319; https://doi.org/10.3390/ijms26157319 - 29 Jul 2025
Viewed by 421
Abstract
In this position paper, we argue that the conventional understanding of ‘information’ (as generally conceived in science, in a digital fashion) is overly simplistic and not consistently applicable to living systems, which are open systems that cannot be reduced to any kind of [...] Read more.
In this position paper, we argue that the conventional understanding of ‘information’ (as generally conceived in science, in a digital fashion) is overly simplistic and not consistently applicable to living systems, which are open systems that cannot be reduced to any kind of ‘portion’ (building block) ascribed to the category of quantity. Instead, it is a matter of relationships and qualities in an indivisible analogical (and ontological) relationship between any presumed ‘software’ and ‘hardware’ (information/matter, psyche/soma). Furthermore, in biological systems, contrary to Shannon’s definition, which is well-suited to telecommunications and informatics, any kind of ‘information’ is the opposite of internal entropy, as it depends directly on order: it is associated with distinction and differentiation, rather than flattening and homogenisation. Moreover, the high degree of structural compartmentalisation of living matter prevents its energetics from being thermodynamically described by using a macroscopic, bulk state function. This requires the Second Principle of Thermodynamics to be redefined in order to make it applicable to living systems. For these reasons, any static, bit-related concept of ‘information’ is inadequate, as it fails to consider the system’s evolution, it being, in essence, the organized coupling to its own environment. From the perspective of quantum field theory (QFT), where many vacuum levels, symmetry breaking, dissipation, coherence and phase transitions can be described, a consistent picture emerges that portrays any living system as a relational process that exists as a flux of context-dependent meanings. This epistemological shift is also associated with a transition away from the ‘particle view’ (first quantisation) characteristic of quantum mechanics (QM) towards the ‘field view’ possible only in QFT (second quantisation). This crucial transition must take place in life sciences, particularly regarding the methodological approaches. Foremost because biological systems cannot be conceived as ‘objects’, but rather as non-confinable processes and relationships. Full article
Show Figures

Figure 1

13 pages, 4956 KB  
Article
The Influence of Crystal Anisotropy in Femtosecond Laser Processing of Single-Crystal Diamond
by Guolong Wang, Ji Wang, Kaijie Cheng, Kun Yang, Bojie Xu, Wenbo Wang and Wenwu Zhang
Nanomaterials 2025, 15(15), 1160; https://doi.org/10.3390/nano15151160 - 28 Jul 2025
Viewed by 447
Abstract
The single-crystal diamond (SCD), owing to its extreme physical and chemical properties, serves as an ideal substrate for quantum sensing and high-frequency devices. However, crystal anisotropy imposes significant challenges on fabricating high-quality micro-nano structures, directly impacting device performance. This work investigates the effects [...] Read more.
The single-crystal diamond (SCD), owing to its extreme physical and chemical properties, serves as an ideal substrate for quantum sensing and high-frequency devices. However, crystal anisotropy imposes significant challenges on fabricating high-quality micro-nano structures, directly impacting device performance. This work investigates the effects of femtosecond laser processing on the SCD under two distinct crystallographic orientations via single-pulse ablation. The results reveal that ablation craters along the <100> orientation exhibit an elliptical shape with the major axis parallel to the laser polarization, whereas those along the <110> orientation form near-circular craters with the major axis at a 45° angle to the polarization. The single-pulse ablation threshold of the SCD along <110> is 9.56 J/cm2, representing a 7.8% decrease compared to 10.32 J/cm2 for <100>. The graphitization threshold shows a more pronounced reduction, dropping from 4.79 J/cm2 to 3.31 J/cm2 (31% decrease), accompanied by enhanced sp2 carbon order evidenced by the significantly intensified G-band in the Raman spectra. In addition, a phase transition layer of amorphous carbon at the nanoscale in the surface layer (thickness of ~40 nm) and a narrow lattice spacing of 0.36 nm are observed under TEM, corresponding to the interlayer (002) plane of graphite. These observations are attributed to the orientation-dependent energy deposition efficiency. Based on these findings, an optimized crystallographic orientation selection strategy for femtosecond laser processing is proposed to improve the quality of functional micro-nano structures in the SCD. Full article
(This article belongs to the Special Issue Trends and Prospects in Laser Nanofabrication)
Show Figures

Figure 1

20 pages, 2460 KB  
Article
Kinetics of Proton Transfer and String of Conformational Transformation for 4-Pyridone-3-carboxylic Acid Under External Electric Field
by Ya-Wen Li, Rui-Zhi Feng, Xiao-Jiang Li, Ai-Chuan Liu and En-Lin Wang
Molecules 2025, 30(15), 3115; https://doi.org/10.3390/molecules30153115 - 25 Jul 2025
Cited by 1 | Viewed by 272
Abstract
In order to explore the essence of the anticoccidiosis of anticoccidial drugs under bioelectric currents, the intermolecular double-proton transfer and conformational transformation of 4-pyridone-3-carboxylic acid were investigated by quantum chemistry calculations (at the M06-2X/6-311++G**, M06-2X/aug-cc-pVTZ and CCSD(T)/aug-cc-pVTZ levels) and finite temperature string (FTS) [...] Read more.
In order to explore the essence of the anticoccidiosis of anticoccidial drugs under bioelectric currents, the intermolecular double-proton transfer and conformational transformation of 4-pyridone-3-carboxylic acid were investigated by quantum chemistry calculations (at the M06-2X/6-311++G**, M06-2X/aug-cc-pVTZ and CCSD(T)/aug-cc-pVTZ levels) and finite temperature string (FTS) under external electric fields. The solvent effect of H2O on the double-proton transfer was evaluated by the integral equation formalism polarized continuum model. The results indicate that the influences of the external electric fields along the direction of the dipole moment on double-proton transfer are significant. The corresponding products are controlled by the direction of the external electric field. Due to the first-order Stark effect, some good linear relationships form between the changes of the structures, atoms in molecules (AIMs) results, surface electrostatic potentials, barriers of the transition state, and the external electric field strengths. From the gas to solvent phase, the barrier heights increased. The spatial order parameters (ϕ, ψ) of the conformational transformation could be quickly converged through the umbrella sampling and parameter averaging, and thus the free-energy landscape for the conformational transformation was obtained. Under the external electric field, there is competition between the double-proton transfer and conformational transformation. The external electric field greatly affects the cooperativity transfer, while it has little effect on the conformational transformation. This study is helpful in the selection and updating of anticoccidial drugs. Full article
(This article belongs to the Section Computational and Theoretical Chemistry)
Show Figures

Figure 1

13 pages, 3937 KB  
Article
Vanillin Quantum–Classical Photodynamics and Photostatic Optical Spectra
by Vladimir Pomogaev and Olga Tchaikovskaya
ChemEngineering 2025, 9(4), 76; https://doi.org/10.3390/chemengineering9040076 - 23 Jul 2025
Viewed by 315
Abstract
Vanillin photoinduced deprotonation was evaluated and analyzed. Vibronic states and transitions were computationally investigated. Optimizations and vertical electron transitions in the gas phase and with the continuum solvation model were computed using the time-dependent density functional theory. Static absorption and emission (photostatic optical) [...] Read more.
Vanillin photoinduced deprotonation was evaluated and analyzed. Vibronic states and transitions were computationally investigated. Optimizations and vertical electron transitions in the gas phase and with the continuum solvation model were computed using the time-dependent density functional theory. Static absorption and emission (photostatic optical) spectra were statistically averaged over the excited instantaneous molecular conformers fluctuating on quantum–classical molecular dynamic trajectories. Photostatic optical spectra were generated using the hybrid quantum–classical molecular dynamics for explicit solvent models. Conical intersection searching and nonadiabatic molecular dynamics simulations defined potential energy surface propagations, intersections, dissipations, and dissociations. The procedure included mixed-reference spin–flip excitations for both procedures and trajectory surface hopping for photodynamics. Insignificant structural deformations vs. hydroxyl bond cleavage followed by deprotonation were demonstrated starting from different initial structural conditions, which included optimized, transition state, and several other important fluctuating configurations in various environments. Vanillin electronic structure changes were illustrated and analyzed at the key points on conical intersection and nonadiabatic molecular dynamics trajectories by investigating molecular orbital symmetry and electron density difference. The hydroxyl group decomposed on transition to a σ-molecular orbital localized on the elongated O–H bond. Full article
Show Figures

Figure 1

16 pages, 1681 KB  
Article
Thermal–Condensate Collisional Effects on Atomic Josephson Junction Dynamics
by Klejdja Xhani and Nick P. Proukakis
Atoms 2025, 13(8), 68; https://doi.org/10.3390/atoms13080068 - 22 Jul 2025
Viewed by 507
Abstract
We investigate how collisional interactions between the condensate and the thermal cloud influence the distinct dynamical regimes (Josephson plasma, phase-slip-induced dissipative regime, and macroscopic quantum self-trapping) emerging in ultracold atomic Josephson junctions at non-zero subcritical temperatures. Specifically, we discuss how the self-consistent dynamical [...] Read more.
We investigate how collisional interactions between the condensate and the thermal cloud influence the distinct dynamical regimes (Josephson plasma, phase-slip-induced dissipative regime, and macroscopic quantum self-trapping) emerging in ultracold atomic Josephson junctions at non-zero subcritical temperatures. Specifically, we discuss how the self-consistent dynamical inclusion of collisional processes facilitating the exchange of particles between the condensate and the thermal cloud impacts both the condensate and the thermal currents, demonstrating that their relative importance depends on the system’s dynamical regime. Our study is performed within the full context of the Zaremba–Nikuni–Griffin (ZNG) formalism, which couples a dissipative Gross–Pitaevskii equation for the condensate dynamics to a quantum Boltzmann equation with collisional terms for the thermal cloud. In the Josephson plasma oscillation and vortex-induced dissipative regimes, collisions markedly alter dynamics at intermediate-to-high temperatures, amplifying damping in the condensate imbalance mode and inducing measurable frequency shifts. In the self-trapping regime, collisions destabilize the system even at low temperatures, prompting a transition to Josephson-like dynamics on a temperature-dependent timescale. Our results show the interplay between coherence, dissipation, and thermal effects in a Bose–Einstein condensate at a finite temperature, providing a framework for tailoring Josephson junction dynamics in experimentally accessible regimes. Full article
(This article belongs to the Special Issue Quantum Technologies with Ultracold Atoms)
Show Figures

Figure 1

13 pages, 1294 KB  
Article
From Complex to Quaternions: Proof of the Riemann Hypothesis and Applications to Bose–Einstein Condensates
by Jau Tang
Symmetry 2025, 17(7), 1134; https://doi.org/10.3390/sym17071134 - 15 Jul 2025
Viewed by 1037
Abstract
We present novel proofs of the Riemann hypothesis by extending the standard complex Riemann zeta function into a quaternionic algebraic framework. Utilizing λ-regularization, we construct a symmetrized form that ensures analytic continuation and restores critical-line reflection symmetry, a key structural property of the [...] Read more.
We present novel proofs of the Riemann hypothesis by extending the standard complex Riemann zeta function into a quaternionic algebraic framework. Utilizing λ-regularization, we construct a symmetrized form that ensures analytic continuation and restores critical-line reflection symmetry, a key structural property of the Riemann ξ(s) function. This formulation reveals that all nontrivial zeros of the zeta function must lie along the critical line Re(s) = 1/2, offering a constructive and algebraic resolution to this fundamental conjecture. Our method is built on convexity and symmetrical principles that generalize naturally to higher-dimensional hypercomplex spaces. We also explore the broader implications of this framework in quantum statistical physics. In particular, the λ-regularized quaternionic zeta function governs thermodynamic properties and phase transitions in Bose–Einstein condensates. This quaternionic extension of the zeta function encodes oscillatory behavior and introduces critical hypersurfaces that serve as higher-dimensional analogues of the classical critical line. By linking the spectral features of the zeta function to measurable physical phenomena, our work uncovers a profound connection between analytic number theory, hypercomplex geometry, and quantum field theory, suggesting a unified structure underlying prime distributions and quantum coherence. Full article
Show Figures

Figure 1

26 pages, 389 KB  
Review
Recent Advancements in Millimeter-Wave Antennas and Arrays: From Compact Wearable Designs to Beam-Steering Technologies
by Faisal Mehmood and Asif Mehmood
Electronics 2025, 14(13), 2705; https://doi.org/10.3390/electronics14132705 - 4 Jul 2025
Cited by 1 | Viewed by 1807
Abstract
Millimeter-wave (mmWave) antennas and antenna arrays have gained significant attention due to their pivotal role in emerging wireless communication, sensing, and imaging technologies. With the rapid deployment of 5G and the transition toward 6G networks, the demand for compact, high-gain, and reconfigurable mmWave [...] Read more.
Millimeter-wave (mmWave) antennas and antenna arrays have gained significant attention due to their pivotal role in emerging wireless communication, sensing, and imaging technologies. With the rapid deployment of 5G and the transition toward 6G networks, the demand for compact, high-gain, and reconfigurable mmWave antennas has intensified. This article highlights recent advancements in mmWave antenna technologies, including hybrid beamforming using phased arrays, dynamic beam-steering enabled by liquid crystal and MEMS-based structures, and high-capacity MIMO architectures. We also examine the integration of metamaterials and metasurfaces for miniaturization and gain enhancement. Applications covered include wearable antennas with low-SAR textile substrates, conformal antennas for UAV-based mmWave relays, and high-resolution radar arrays for autonomous vehicles. The study further analyzes innovative fabrication methods such as inkjet and aerosol jet printing, micromachining, and laser direct structuring, along with advanced materials like Kapton, PDMS, and graphene. Numerical modeling techniques such as full-wave EM simulation and machine learning-based optimization are discussed alongside experimental validation approaches. Beyond communications, we assess mmWave systems for biomedical imaging, security screening, and industrial sensing. Key challenges addressed include efficiency degradation at high frequencies, interference mitigation in dense environments, and system-level integration. Finally, future directions, including AI-driven design automation, intelligent reconfigurable surfaces, and integration with quantum and terahertz technologies, are outlined. This comprehensive synthesis aims to serve as a valuable reference for advancing next-generation mmWave antenna systems. Full article
(This article belongs to the Special Issue Recent Advancements of Millimeter-Wave Antennas and Antenna Arrays)
Show Figures

Figure 1

11 pages, 945 KB  
Article
Waveguide Arrays: Interaction to Many Neighbors
by Marco A. Tapia-Valerdi, Irán Ramos-Prieto, Francisco Soto-Eguibar and Héctor M. Moya-Cessa
Dynamics 2025, 5(3), 25; https://doi.org/10.3390/dynamics5030025 - 1 Jul 2025
Viewed by 242
Abstract
We present an analytical framework for describing light propagation in infinite waveguide arrays, incorporating a generalized long-range coupling to achieve a more realistic model. We demonstrate that the resulting solution can be expressed in terms of generalized Bessel-like functions. Additionally, by applying the [...] Read more.
We present an analytical framework for describing light propagation in infinite waveguide arrays, incorporating a generalized long-range coupling to achieve a more realistic model. We demonstrate that the resulting solution can be expressed in terms of generalized Bessel-like functions. Additionally, by applying the concept of eigenstates, we borrow from quantum mechanics a basis given in terms of phase states that allows the analysis of the transition from the discrete to the continuum limit, obtaining a relationship between the field amplitudes and the Fourier series coefficients of a given function. We apply our findings to different coupling functions, providing new insights into the propagation dynamics of these systems. Full article
Show Figures

Figure 1

Back to TopTop