Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,962)

Search Parameters:
Keywords = quantum wells

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2479 KB  
Article
Comparison of Quantum Transition Characteristics of Group II–VI (ZnO), Group III–V (GaN) Compound Semiconductors, and Intrinsic (Si) Semiconductors in Response to Externally Applied Energy
by Herie Park and Su-Ho Lee
Materials 2025, 18(20), 4709; https://doi.org/10.3390/ma18204709 (registering DOI) - 14 Oct 2025
Abstract
In this paper, we study the line-shape (LS), which indicates the amount of absorbed energy, and the line-width (LW), which indicates the scattering factor, according to the vibrational direction of the externally applied energy in the electron–phonon potential interaction system of representative semiconductor [...] Read more.
In this paper, we study the line-shape (LS), which indicates the amount of absorbed energy, and the line-width (LW), which indicates the scattering factor, according to the vibrational direction of the externally applied energy in the electron–phonon potential interaction system of representative semiconductor bonding types, group II–VI (ZnO) and group III–V (GaN) bonded compound semiconductors and pure group IV (Si) bonded semiconductors. One of the two systems receives the externally applied energy of right-handed circular polarization vibration, and the other receives the externally applied energy of left-handed circular polarization vibration. To analyze the quantum transport, we first employ quantum transport theory (QTR) for an electron system confined within a square-well potential, where the projected Liouville equation is addressed using the balanced-average projection method. In analyzing quantum transitions, phonon emission is linked to the transition line-width (LW), whereas phonon absorption is evaluated through the transition line-shape (LS), highlighting its sensitivity to temperature and magnetic field variations. As a result of analyzing the line-width (LW), which is a quantum scattering coefficient, and the line-shape (LS), which represents the absorbed power, the absorbed power and scattering coefficient were higher for the left circularly polarized vibration under the influence of the external magnetic field. In contrast, the right polarization produced smaller values. In addition, the scattering coefficient (LW) and the absorbed power according to the bonding type of the semiconductor were the largest in Si, a group IV bonded semiconductor, followed by group III–V (GaN) and group II–VI (ZnO) bonded semiconductors. Full article
(This article belongs to the Special Issue Feature Papers in Materials Physics (2nd Edition))
Show Figures

Figure 1

12 pages, 1523 KB  
Article
Methodological Approach to the Characterization of Single-Photon Sources Using a Hanbury Brown–Twiss Interferometer in a Laser-Excited Fluorescence Microscope
by Sergey Mikushev and Aleksei Kalinichev
Quantum Beam Sci. 2025, 9(4), 30; https://doi.org/10.3390/qubs9040030 - 13 Oct 2025
Abstract
The development of quantum-enhanced technologies requires single-photon sources, as well as methods for their characterization and verification. Here, we describe a methodology for measuring the correlation function of a single-photon source using an experimental setup that comprises a laser-excited fluorescence microscope equipped with [...] Read more.
The development of quantum-enhanced technologies requires single-photon sources, as well as methods for their characterization and verification. Here, we describe a methodology for measuring the correlation function of a single-photon source using an experimental setup that comprises a laser-excited fluorescence microscope equipped with a Hanbury Brown–Twiss intensity interferometer as one of the detection systems. Measurements of the response function of the device and the reference samples are performed. The second-order autocorrelation function of the exciton state of GaAs quantum dots in AlGaAs nanowires is obtained and reveals a single-photon emission. Full article
(This article belongs to the Section Spectroscopy Technique)
Show Figures

Figure 1

13 pages, 1889 KB  
Article
Dimension Tailoring of Quasi-2D Perovskite Films Based on Atmosphere Control Toward Enhanced Amplified Spontaneous Emission
by Zijia Wang, Xuexuan Huang, Zixuan Song, Chiyu Guo, Liang Tao, Shibo Wei, Ke Ren, Yuze Wu, Xuejiao Sun and Chenghao Bi
Materials 2025, 18(19), 4628; https://doi.org/10.3390/ma18194628 - 7 Oct 2025
Viewed by 308
Abstract
Quasi-two-dimensional (Q2D) perovskite films have garnered significant attention as novel gain media for lasers due to their tunable bandgap, narrow linewidth, and solution processability. Q2D perovskites endowed with intrinsic quantum well structures demonstrate remarkable potential as gain media for cost-effective miniaturized lasers, owing [...] Read more.
Quasi-two-dimensional (Q2D) perovskite films have garnered significant attention as novel gain media for lasers due to their tunable bandgap, narrow linewidth, and solution processability. Q2D perovskites endowed with intrinsic quantum well structures demonstrate remarkable potential as gain media for cost-effective miniaturized lasers, owing to their superior ambient stability and enhanced photon confinement capabilities. However, the mixed-phase distribution within Q2D films constitutes a critical determinant of their optical properties, exhibiting pronounced sensitivity to specific fabrication protocols and processing parameters, including annealing temperature, duration, antisolvent volume, injection timing, and dosing rate. These factors frequently lead to broad phase distribution in Q2D perovskite films, thereby inducing incomplete exciton energy transfer and multiple emission peaks, while simultaneously making the fabrication processes intricate and reducing reproducibility. Here, we report a novel annealing-free and antisolvent-free method for the preparation of Q2D perovskite films fabricated in ambient atmosphere. By constructing a tailored mixed-solvent vapor atmosphere and systematically investigating its regulatory effects on the nucleation and growth processes of film via in situ photoluminescence spectra, we successfully achieved the fabrication of Q2D perovskite films with large n narrow phase distribution characteristics. Due to the reduced content of small n domains, the incomplete energy transfer from small n to large n phases and the carriers’ accumulation in small n can be greatly suppressed, thereby suppressing the trap-assistant nonradiative recombination and Auger recombination. Ultimately, the Q2D perovskite film showed a single emission peak at 519 nm with the narrow full width at half maximum (FWHM) of 21.5 nm and high photoluminescence quantum yield (PLQY) of 83%. And based on the optimized Q2D film, we achieved an amplified spontaneous emission (ASE) with a low threshold of 29 μJ·cm−2, which was approximately 60% lower than the 69 μJ·cm−2 of the control film. Full article
Show Figures

Figure 1

58 pages, 4361 KB  
Review
Non-Perturbative Approaches to Linear and Nonlinear Responses of Atoms, Molecules, and Molecular Aggregates: A Theoretical Approach to Molecular Quantum Information and Quantum Biology
by Satoru Yamada, Takao Kobayashi, Masahiro Takahata, Hiroya Nitta, Hiroshi Isobe, Takashi Kawakami, Shusuke Yamanaka, Mitsutaka Okumura and Kizashi Yamaguchi
Chemistry 2025, 7(5), 164; https://doi.org/10.3390/chemistry7050164 - 7 Oct 2025
Viewed by 220
Abstract
Non-perturbative approaches to linear and nonlinear responses (NLR) of atoms, molecules, and molecular aggregates are reviewed in relation to low and high harmonic generations (HG) by laser fields. These response properties are effective for the generation of entangled light pairs for quantum information [...] Read more.
Non-perturbative approaches to linear and nonlinear responses (NLR) of atoms, molecules, and molecular aggregates are reviewed in relation to low and high harmonic generations (HG) by laser fields. These response properties are effective for the generation of entangled light pairs for quantum information processing by spontaneous parametric downconversion (SPDC) and stimulated four-wave mixing (SFWM). Quasi-energy derivative (QED) methods, such as QED Møller–Plesset (MP) perturbation, are reviewed as time-dependent variational methods (TDVP), providing analytical expressions of time-dependent linear and nonlinear responses of open-shell atoms, molecules, and molecular aggregates. Numerical Liouville methods for the low HG (LHG) and high HG (HHG) regimes are reviewed to elucidate the NLR of molecules in both LHG and HHG regimes. Three-step models for the generation of HHG in the latter regime are reviewed in relation to developments of attosecond science and spectroscopy. Orbital tomography is also reviewed in relation to the theoretical and experimental studies of the amplitudes and phases of wave functions of open-shell atoms and molecules, such as molecular oxygen, providing the Dyson orbital explanation. Interactions between quantum lights and molecules are theoretically examined in relation to derivations of several distribution functions for quantum information processing, quantum dynamics of molecular aggregates, and future developments of quantum molecular devices such as measurement-based quantum computation (MBQC). Quantum dynamics for energy transfer in dendrimer and related light-harvesting antenna systems are reviewed to examine the classical and quantum dynamics behaviors of photosynthesis. It is shown that quantum coherence plays an important role in the well-organized arrays of chromophores. Finally, applications of quantum optics to molecular quantum information and quantum biology are examined in relation to emerging interdisciplinary frontiers. Full article
Show Figures

Figure 1

14 pages, 1955 KB  
Article
Investigation of Photorecoordination Kinetics for Complexes of Bis(aza-18-crown-6)-Containing Dienones with Alkali and Alkaline-Earth Metal Cations via Time-Resolved Absorption Spectroscopy: Structure vs. Properties
by Oleg A. Alatortsev, Valeriy V. Volchkov, Mikhail N. Khimich, Ivan D. Sorokin, Mikhail Ya. Melnikov, Fedor E. Gostev, Ivan V. Shelaev, Victor A. Nadtochenko, Marina V. Fomina and Sergey P. Gromov
Molecules 2025, 30(19), 4005; https://doi.org/10.3390/molecules30194005 - 7 Oct 2025
Viewed by 229
Abstract
The analysis of time-resolved S1–Sn absorption spectra in the 0–500 ps range, together with quantum-chemical calculations, uncovered a photorecoordination reaction for the following complexes of CD6 (a bis(aza-18-crown-6)-containing dienone (ketocyanine dye) with a central cyclohexanone fragment): CD6·(Mn+)2 [...] Read more.
The analysis of time-resolved S1–Sn absorption spectra in the 0–500 ps range, together with quantum-chemical calculations, uncovered a photorecoordination reaction for the following complexes of CD6 (a bis(aza-18-crown-6)-containing dienone (ketocyanine dye) with a central cyclohexanone fragment): CD6·(Mn+)2 (M = Ba2+, Sr2+, Ca2+, K+). This process takes place over hundreds of fs and involves an “axial-to-equatorial” conformational change, with the solvation shell undergoing rearrangement as well. The characteristic photorecoordination times were found to correlate with the stability constants of the complexes. The lifetimes for the fluorescent states of CD6 and its complexes, namely CD6·(Mn+)2 (M = Ba2+, Sr2+, Ca2+, K+), are different; ergo, there is no photoejection of crowned cations into the solution. The calculated conformational profiles in the ground and excited states indicate the presence of an energy barrier in this process. A general photorelaxation pathway is suggested for CD6·(Mn+)2 metal complexes (M = Ba2+, Sr2+, Ca2+, K+). The coordination of cations via the carbonyl moiety in the dye molecule promotes photorecoordination of metal cations in the cavities of the azacrown ether fragment. Photorecoordination times were found to correlate with the degree of conjugation between the lone pairs in the N atoms of the aza-18-crown-6 ether and the π subsystem in the dye molecules (established for the CD4–CD6 metal–dye complex series, where CD4 and CD5 are related dyes with central cyclobutanone and cyclopentanone fragments, respectively). Full article
(This article belongs to the Section Macromolecular Chemistry)
Show Figures

Graphical abstract

30 pages, 2541 KB  
Review
Methods for Conjugating Antibodies with Quantum Dots
by Pavel Sokolov, Alexander Knysh, Irina Kriukova, Pavel Samokhvalov and Yury V. Kistenev
Molecules 2025, 30(19), 3999; https://doi.org/10.3390/molecules30193999 - 6 Oct 2025
Viewed by 467
Abstract
Nanomaterials are increasingly used in the development of detection systems for various disease biomarkers as tools for reliable early diagnosis, which is a key factor in reducing mortality and increasing treatment effectiveness. The use of quantum dot–antibody conjugates allows for optical detection of [...] Read more.
Nanomaterials are increasingly used in the development of detection systems for various disease biomarkers as tools for reliable early diagnosis, which is a key factor in reducing mortality and increasing treatment effectiveness. The use of quantum dot–antibody conjugates allows for optical detection of various disease markers in biological fluids, tissues, and individual cells with high sensitivity and specificity. The sensitivity and specificity of detection are determined not only by the outstanding optical properties of fluorescent quantum dots but also by the type of antibodies used for binding target analytes and the methods of their conjugation with quantum dots. This review deals with methods of site-specific and site-nonspecific conjugation of quantum dots with antibodies, including full-length and single-domain antibodies, as well as antibody fragments, with a special focus on their structural features and active moieties used for binding to their targets. The review includes examples of successful applications of quantum dot–conjugated antibodies in diagnosis, environment monitoring, and food safety assessment. We also discuss the prospects of further research in this field, including new conjugation methods and issues related to the stability and specificity of probes. The review provides a comprehensive analysis of the current methods and achievements in antibody conjugation from the viewpoint of subsequent analyte detection, highlighting the importance of further research for improving the existing technologies. Full article
(This article belongs to the Special Issue Nanomaterials for the Detection of Biomolecules)
Show Figures

Figure 1

36 pages, 2675 KB  
Article
A Framework for Understanding the Impact of Integrating Conceptual and Quantitative Reasoning in a Quantum Optics Tutorial on Students’ Conceptual Understanding
by Paul D. Justice, Emily Marshman and Chandralekha Singh
Educ. Sci. 2025, 15(10), 1314; https://doi.org/10.3390/educsci15101314 - 3 Oct 2025
Viewed by 260
Abstract
We investigated the impact of incorporating quantitative reasoning for deeper sense-making in a Quantum Interactive Learning Tutorial (QuILT) on students’ conceptual performance using a framework emphasizing integration of conceptual and quantitative aspects of quantum optics. In this investigation, we compared two versions of [...] Read more.
We investigated the impact of incorporating quantitative reasoning for deeper sense-making in a Quantum Interactive Learning Tutorial (QuILT) on students’ conceptual performance using a framework emphasizing integration of conceptual and quantitative aspects of quantum optics. In this investigation, we compared two versions of the QuILT that were developed and validated to help students learn various aspects of quantum optics using a Mach Zehnder Interferometer with single photons and polarizers. One version of the QuILT is entirely conceptual while the other version integrates quantitative and conceptual reasoning (hybrid version). Performance on conceptual questions of upper-level undergraduate and graduate students who engaged with the hybrid QuILT was compared with that of those who utilized the conceptual QuILT emphasizing the same concepts. Both versions of the QuILT focus on the same concepts, use a scaffolded approach to learning, and take advantage of research on students’ difficulties in learning these challenging concepts as well as a cognitive task analysis from an expert perspective as a guide. The hybrid and conceptual QuILTs were used in courses for upper-level undergraduates or first-year physics graduate students in several consecutive years at the same university. The same conceptual pre-test and post-test were administered after traditional lecture-based instruction in relevant concepts and after student engaged with the QuILT, respectively. We find that the post-test performance of physics graduate students who utilized the hybrid QuILT on conceptual questions, on average, was better than those who utilized the conceptual QuILT. For undergraduates, the results showed differences for different classes. One possible interpretation of these findings that is consistent with our framework is that integrating conceptual and quantitative aspects of physics in research-based tools and pedagogies should be commensurate with students’ prior knowledge of physics and mathematics involved so that students do not experience cognitive overload while engaging with such learning tools and have appropriate opportunities for metacognition, deeper sense-making, and knowledge organization. In the undergraduate course in which many students did not derive added benefit from the integration of conceptual and quantitative aspects, their pre-test performance suggests that the traditional lecture-based instruction may not have sufficiently provided a “first coat” to help students avoid cognitive overload when engaging with the hybrid QuILT. These findings suggest that different groups of students can benefit from a research-based learning tool that integrates conceptual and quantitative aspects if cognitive overload while learning is prevented either due to students’ high mathematical facility or due to their reasonable conceptual facility before engaging with the learning tool. Full article
Show Figures

Figure 1

21 pages, 524 KB  
Article
Emergence and Localization of Exceptional Points in an Exactly Solvable Toy Model
by Miloslav Znojil
Symmetry 2025, 17(10), 1630; https://doi.org/10.3390/sym17101630 - 2 Oct 2025
Viewed by 324
Abstract
In contrast to classical physics, there are not too many mathematical tools facilitating the study of singularities in quantum systems. One of the exceptions is Kato’s notion of exceptional points (EPs). Their emergence and localization are analyzed here via a family of schematic [...] Read more.
In contrast to classical physics, there are not too many mathematical tools facilitating the study of singularities in quantum systems. One of the exceptions is Kato’s notion of exceptional points (EPs). Their emergence and localization are analyzed here via a family of schematic toy models. Full article
(This article belongs to the Section Physics)
Show Figures

Figure 1

22 pages, 3094 KB  
Article
Enhanced NO2 Detection in ZnO-Based FET Sensor: Charge Carrier Confinement in a Quantum Well for Superior Sensitivity and Selectivity
by Hicham Helal, Marwa Ben Arbia, Hakimeh Pakdel, Dario Zappa, Zineb Benamara and Elisabetta Comini
Chemosensors 2025, 13(10), 358; https://doi.org/10.3390/chemosensors13100358 - 1 Oct 2025
Viewed by 376
Abstract
NO2 is a toxic gas mainly generated by combustion processes, such as vehicle emissions and industrial activities. It is a key contributor to smog, acid rain, ground-level ozone, and particulate matter, all of which pose serious risks to human health and the [...] Read more.
NO2 is a toxic gas mainly generated by combustion processes, such as vehicle emissions and industrial activities. It is a key contributor to smog, acid rain, ground-level ozone, and particulate matter, all of which pose serious risks to human health and the environment. Conventional resistive gas sensors, typically based on metal oxide semiconductors, detect NO2 by resistance modulation through surface interactions with the gas. However, they often suffer from low responsiveness and poor selectivity. This study investigates NO2 detection using nanoporous zinc oxide thin films integrated into a resistor structure and floating-gate field-effect transistor (FGFET). Both Silvaco-Atlas simulations and experimental fabrication were employed to evaluate sensor behavior under NO2 exposure. The results show that FGFET provides higher sensitivity, faster response times, and improved selectivity compared to resistor-based devices. In particular, FGFET achieves a detection limit as low as 89 ppb, with optimal performance around 400 °C, and maintains stability under varying humidity levels. The enhanced performance arises from quantum well effects at the floating-gate Schottky contact, combined with NO2 adsorption on the ZnO surface. These interactions extend the depletion region and confine charge carriers, amplifying conductivity modulation in the channel. Overall, the findings demonstrate that FGFET is a promising platform for NO2 sensors, with strong potential for environmental monitoring and industrial safety applications. Full article
(This article belongs to the Special Issue Functionalized Material-Based Gas Sensing)
Show Figures

Figure 1

15 pages, 2808 KB  
Article
Extracellular Polymeric Substances Protect Chlorella sp. Against the Cadmium Stress
by Fangyuan Liu, Xingye Han, Zhengyang Wang, Xuefeng Zhao, Yibo Zhang and Hongmei Ge
Ecologies 2025, 6(4), 65; https://doi.org/10.3390/ecologies6040065 - 29 Sep 2025
Viewed by 251
Abstract
Extracellular polymeric substances (EPS) are secreted by microalgae and contribute to protecting cells from damage induced by cadmium (Cd) exposure. However, the response mechanism of Chlorella sp. to Cd(II) stress as well as associated changes in the chemical properties (including functional groups and [...] Read more.
Extracellular polymeric substances (EPS) are secreted by microalgae and contribute to protecting cells from damage induced by cadmium (Cd) exposure. However, the response mechanism of Chlorella sp. to Cd(II) stress as well as associated changes in the chemical properties (including functional groups and composition) of soluble EPS (SL-EPS), loosely bound EPS (LB-EPS), and tightly bound EPS (TB- EPS) in this microalga, remain unclear. This study aimed to investigate the role of EPS in enabling Chlorella sp. to resist Cd(II) stress. The results demonstrated that Cd(II) stress resulted in a significant inhibition of algal, chlorophyll a (Chl a) contents, and maximum photochemical quantum yield (Fv/Fm) of Chlorella sp., with 7 d EC30 of 6 mg/L. Nevertheless, Cd(II) exposure significantly increased both superoxide dismutase (SOD) activity and EPS content. Fourier transform infrared (FTIR) spectroscopic analysis revealed that differences existed in the functional groups involved in Cd(II) binding across algal cell density, SL-EPS, LB-EPS, and TB-EPS. The carboxyl group was identified as the most prominent functional group and were found to play a crucial role in the adsorption of Cd(II). Additionally, Tryptophan-like protein substance in EPS may be the main component binding with Cd(II) in Chlorella sp. This study indicated that Chlorella sp. resisted Cd(II) stress by increasing SOD activity and EPS content, with protein-like substance containing tryptophan proteins in EPS which could also contribute to protection against Cd stress. Full article
Show Figures

Figure 1

14 pages, 3556 KB  
Article
Multi-Layer Molecular Quantum-Dot Cellular Automata Multiplexing Structure with Physical Verification for Secure Quantum RAM
by Jun-Cheol Jeon
Int. J. Mol. Sci. 2025, 26(19), 9480; https://doi.org/10.3390/ijms26199480 - 27 Sep 2025
Viewed by 484
Abstract
Molecular quantum-dot cellular automata (QCA) are attracting much attention as an alternative that can improve the problems of digital circuit design technology represented by existing CMOS technology. In particular, they are well suited to the upcoming nanoquantum environment era with their small size, [...] Read more.
Molecular quantum-dot cellular automata (QCA) are attracting much attention as an alternative that can improve the problems of digital circuit design technology represented by existing CMOS technology. In particular, they are well suited to the upcoming nanoquantum environment era with their small size, fast switching speed, and low power consumption. In this study, we propose a 5 × 5 × 1 ultra-slim vertical panel type multi-layer 2-to-1 multiplexer (Mux) using molecular QCA, departing from conventional multi-layer formats, and show its expansion to 4-to-1 Mux and application to vertical panel type D-latch and RAM cells. In addition, the polarization phenomenon of cells is physically proven using the potential energy, distance among electrons, and the relative positions of cells, and the secure RAM design takes noise elimination and polarization of the output signal into consideration. The circuits are simulated in terms of operation and performance using QCADesigner 2.0.3 and QCADesignerE, and the proposed multi-layer 2-to-1 Mux shows a significant improvement of at least 1473% and 277% in two representative standard design costs compared to the state-of-the-art multi-layer Muxes. Full article
(This article belongs to the Section Molecular Biophysics)
Show Figures

Figure 1

27 pages, 608 KB  
Review
Temperature Dependence of the Response Functions of Graphene: Impact on Casimir and Casimir–Polder Forces in and out of Thermal Equilibrium
by Galina L. Klimchitskaya and Vladimir M. Mostepanenko
Physics 2025, 7(4), 44; https://doi.org/10.3390/physics7040044 - 26 Sep 2025
Viewed by 250
Abstract
We review and as well obtain some new results on the temperature dependence of spatially nonlocal response functions of graphene and their applications to the calculation of both the equilibrium and nonequilibrium Casimir and Casimir–Polder forces. After a brief summary of the properties [...] Read more.
We review and as well obtain some new results on the temperature dependence of spatially nonlocal response functions of graphene and their applications to the calculation of both the equilibrium and nonequilibrium Casimir and Casimir–Polder forces. After a brief summary of the properties of the polarization tensor of graphene obtained within the Dirac model in the framework of quantum field theory, we derive the expressions for the longitudinal and transverse dielectric functions. The behavior of these functions at different temperatures is investigated in the regions below and above the threshold. Special attention is paid to the double pole at zero frequency, which is present in the transverse response function of graphene. An application of the response functions of graphene to the calculation of the equilibrium Casimir force between two graphene sheets and the Casimir–Polder forces between an atom (nanoparticle) and a graphene sheet is considered with due attention to the role of a nonzero energy gap, chemical potential and a material substrate underlying the graphene sheet. The same subject is discussed for out-of-thermal-equilibrium Casimir and Casimir–Polder forces. The role of the obtained and presented results for fundamental science and nanotechnology is outlined. Full article
(This article belongs to the Section Condensed Matter Physics)
Show Figures

Figure 1

15 pages, 2035 KB  
Article
Real-Time Technique for Semiconductor Material Parameter Measurement Under Continuous Neutron Irradiation with High Integral Fluence
by Ivan S. Vasil’evskii, Aleksey N. Klochkov, Pavel V. Nekrasov, Aleksander N. Vinichenko, Nikolay I. Kargin, Almas Yskakov, Maksim V. Bulavin, Aleksey V. Galushko, Askhat Bekbayev, Bagdaulet Mukhametuly, Elmira Myrzabekova, Nurdaulet Shegebayev, Dana Kulikbayeva, Rassim Nurulin, Aru Nurkasova and Ruslan Baitugulov
Electronics 2025, 14(19), 3802; https://doi.org/10.3390/electronics14193802 - 25 Sep 2025
Viewed by 303
Abstract
The degradation of the electronic properties of semiconductor materials and electronic devices under neutron irradiation is a critical issue for the development of electronic systems intended for use in nuclear and thermonuclear energy facilities. This study presents a methodology for real-time measurement of [...] Read more.
The degradation of the electronic properties of semiconductor materials and electronic devices under neutron irradiation is a critical issue for the development of electronic systems intended for use in nuclear and thermonuclear energy facilities. This study presents a methodology for real-time measurement of the electrical parameters of semiconductor structures during neutron irradiation in a high-flux reactor environment. A specially designed irradiation fixture with an electrical measurement system was developed and implemented at the WWR-K research reactor. The system enables simultaneous measurement of electrical conductivity and the Hall effect, with automatic temperature control and remote data acquisition. The sealed fixture, equipped with radiation-resistant wiring and a temperature control, allows for continuous measurement of remote material properties at neutron fluences exceeding 1018 cm−2, eliminating the limitations associated with post-irradiation handling of radioactive samples. The technique was successfully applied to the two different InGaAs-based heterostructures, revealing distinct mechanisms of radiation-induced modification: degradation of mobility and carrier concentration in the InGaAs quantum well structure on GaAs substrate, and transmutation-induced doping effects in the heterostructure on InP substrate. The developed methodology provides a reliable platform for evaluating radiation resistance and optimizing materials for magnetic sensors and electronic components designed for high-radiation environments. Full article
(This article belongs to the Special Issue Radiation Effects on Advanced Electronic Devices and Circuits)
Show Figures

Graphical abstract

21 pages, 2902 KB  
Review
Tailoring Carbon Quantum Dots via Precursor Engineering for Fluorescence-Based Biosensing of E. coli
by Maryam Nazari, Alireza Zinatizadeh, Parviz Mohammadi, Soheila Kashanian, Mandana Amiri, Nona Valipour, Yvonne Joseph and Parvaneh Rahimi
Biosensors 2025, 15(10), 635; https://doi.org/10.3390/bios15100635 - 24 Sep 2025
Viewed by 478
Abstract
Rapid and accurate bacteria identification, particularly Escherichia coli (E. coli), is essential in the monitoring of health, environment, and food safety. E. coli, a prevalent pathogenic bacterium, serves as a key indicator of food and water contamination. Carbon quantum dots [...] Read more.
Rapid and accurate bacteria identification, particularly Escherichia coli (E. coli), is essential in the monitoring of health, environment, and food safety. E. coli, a prevalent pathogenic bacterium, serves as a key indicator of food and water contamination. Carbon quantum dots (CQDs) have appeared as promising fluorescent probes because of their small size, ease of synthesis, low toxicity, and tunable fluorescence using different carbon-rich precursors. Advances in both bottom-up and top-down synthesis procedures have enabled precise control over CQD properties and surface functionalities, enhancing their capabilities in biosensing. Among the critical factors influencing CQD performance is the strategic selection of precursors, which determines the surface chemistry and recognition potential of the resulting nanodots. The integration with other nanomaterials and the surface modification of CQDs with specific functional groups or recognition elements further improves their sensitivity and selectivity toward E. coli. This review summarizes recent progress in the modification of CQDs for the fluorescent detection of E. coli, highlighting relevant sensing mechanisms and the influence of different precursors, such as antibiotics and sugars, as well as various functionalization and surface modification strategies. The aim is to provide insight into the rational design of efficient, selective, and cost-effective CQD-based biosensors for bacterial detection. Full article
(This article belongs to the Special Issue Biosensors for Environmental Monitoring and Food Safety)
Show Figures

Figure 1

18 pages, 10363 KB  
Article
Implementing Quantum Secret Sharing on Current Hardware
by Jay Graves, Mike Nelson and Eric Chitambar
Entropy 2025, 27(10), 993; https://doi.org/10.3390/e27100993 - 23 Sep 2025
Viewed by 307
Abstract
Quantum secret sharing is a cryptographic scheme that enables the secure storage and reconstruction of quantum information. While the theory of secret sharing is mature in its development, relatively few studies have explored the performance of quantum secret sharing on actual devices. In [...] Read more.
Quantum secret sharing is a cryptographic scheme that enables the secure storage and reconstruction of quantum information. While the theory of secret sharing is mature in its development, relatively few studies have explored the performance of quantum secret sharing on actual devices. In this work, we provide a pedagogical description of encoding and decoding circuits for different secret sharing codes, and we test their performance on IBM’s 127-qubit Brisbane system. We evaluate the quality of the implementation by performing a SWAP test between the decoded state and the ideal one, as well as by estimating how well the code preserves entanglement with a reference system. The results indicate that a ((3,5)) threshold secret sharing scheme and a non-threshold 7-qubit scheme perform similarly based on the SWAP test and entanglement fidelity, with both attaining a roughly 70–75% pass rate on the SWAP test for the reconstructed secret. We also investigate one implementation of a ((2,3)) qutrit threshold scheme and find that it performs the worst of all, which is expected due to the additional number of multi-qubit gate operations needed to encode and decode qutrits. A comparison is also made between schemes using mid-circuit measurement versus delayed-circuit measurement. Full article
(This article belongs to the Section Quantum Information)
Show Figures

Figure 1

Back to TopTop