Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (35)

Search Parameters:
Keywords = quantum-sized small particles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
48 pages, 7053 KB  
Review
Recent Advances in Carbon Dots-Based Photocatalysts for Water Treatment Applications
by Adamantia Zourou, Afrodite Ntziouni, Alexandra Karagianni, Niyaz Alizadeh, Nikolaos Argirusis, Maria Antoniadou, Georgia Sourkouni, Konstantinos V. Kordatos and Christos Argirusis
Inorganics 2025, 13(9), 286; https://doi.org/10.3390/inorganics13090286 - 26 Aug 2025
Viewed by 299
Abstract
Carbon dots (CDs), a rapidly emerging class of zero-dimensional (0-D) nanomaterials with small particle sizes (<10 nm), have garnered significant scientific interest owing to their exceptional physicochemical properties, non-toxicity, low-cost synthesis, and versatile applications. In recent years, the combination of various inorganic photocatalysts [...] Read more.
Carbon dots (CDs), a rapidly emerging class of zero-dimensional (0-D) nanomaterials with small particle sizes (<10 nm), have garnered significant scientific interest owing to their exceptional physicochemical properties, non-toxicity, low-cost synthesis, and versatile applications. In recent years, the combination of various inorganic photocatalysts (e.g., metal oxides, metal chalcogenides, metal oxyhalides, MXenes, non-metallic semiconductors) with CDs has gained momentum as a promising strategy to enhance their photocatalytic efficiency. By incorporating CDs, researchers have addressed fundamental challenges in photocatalytic systems, including limited light absorption range, rapid electron–hole recombination rate, low quantum efficiency, etc. The present review is focused on the most recent developments in CDs-based heterostructures for advanced photocatalytic applications, particularly in the field of environmental remediation, providing a comprehensive overview of emerging strategies, synthesis approaches, and the resulting enhancements in photocatalytic water treatment applications. Full article
(This article belongs to the Special Issue Inorganic Photocatalysts for Environmental Applications)
Show Figures

Figure 1

46 pages, 7993 KB  
Review
Quantum Dot-Based Luminescent Sensors: Review from Analytical Perspective
by Alissa Loskutova, Ansar Seitkali, Dinmukhamed Aliyev and Rostislav Bukasov
Int. J. Mol. Sci. 2025, 26(14), 6674; https://doi.org/10.3390/ijms26146674 - 11 Jul 2025
Viewed by 1371
Abstract
Quantum Dots (QDs) are small semiconductor nanoparticles (<10 nm) with strong, relatively stable, and tunable luminescent properties, which are increasingly applied in the sensing and detection of various analytes, including metal ions, biomarkers, explosives, proteins, RNA/DNA fragments, pesticides, drugs, and pollutants. In this [...] Read more.
Quantum Dots (QDs) are small semiconductor nanoparticles (<10 nm) with strong, relatively stable, and tunable luminescent properties, which are increasingly applied in the sensing and detection of various analytes, including metal ions, biomarkers, explosives, proteins, RNA/DNA fragments, pesticides, drugs, and pollutants. In this review, we critically assess recent developments and advancements in luminescent QD-based sensors from an analytical perspective. We collected, tabulated, and analyzed relevant data reported in 124 peer-reviewed articles. The key analytical figures of merit, including the limit of detection (LOD), excitation and emission wavelengths, and size of the particles were extracted, tabulated, and analyzed with graphical representations. We calculated the geometric mean and median LODs from those tabulated publications. We found the following geometric mean LODs: 38 nM for QD-fluorescent-based sensors, 26 nM for QD-phosphorescent-based sensors, and an impressively low 0.109 pM for QD-chemiluminescent-based sensors, which demonstrate by far the best sensitivity in QD-based detection. Moreover, AI-based sensing methods, including the ATTBeadNet model, optimized principal component analysis(OPCA) model, and Support Vector Machine (SVM)-based system, were reviewed as they enhance the analytical performance of the detection. Despite these advances, there are still challenges that include improvements in recovery values, biocompatibility, stability, and overall performance. This review highlights trends to guide the future design of robust, high-performance, QD-based luminescent sensors. Full article
Show Figures

Figure 1

25 pages, 1985 KB  
Review
Synthesis, Application and Prospects of Carbon Dots as A Medicine Food Homology
by Siqi Huang, Huili Ren, Hongyue Chen, Nuan Wen, Libo Du, Chaoyu Song and Yuguang Lv
Nanomaterials 2025, 15(12), 906; https://doi.org/10.3390/nano15120906 - 11 Jun 2025
Viewed by 805
Abstract
Against the background of the vigorous development of materials science and the deep cross-infiltration in many fields, a new medicine food homology, carbon dots (herein combined and abbreviated as MFH-CDs), has sprung up, showing great potential. This review used ChatGPT 4.0 to collect [...] Read more.
Against the background of the vigorous development of materials science and the deep cross-infiltration in many fields, a new medicine food homology, carbon dots (herein combined and abbreviated as MFH-CDs), has sprung up, showing great potential. This review used ChatGPT 4.0 to collect background information related to carbon dots, focusing on the common rich medicinal and food resources such as Lycium barbarum, Chinese yam, honeysuckle, and Ganoderma lucidum. These carbon dots are synthesized by hydrothermal synthesis, microwave radiation, and pyrolysis, which have the advantages of small particle size, high quantum yield, and low cytotoxicity. Recent studies have found that MFH-CDs have great application potential in biosensors, biological imaging, and drug delivery. In this paper, the characteristics of preparing carbon dots from different medicinal and edible resources and their applications in biology in recent years are reviewed, which provides in-depth guidance for the research and application of carbon dots from medicinal and edible biomass, helps it shine in multidisciplinary fields, and opens a brand-new journey from traditional medicinal and edible culture to cutting-edge technology application. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

23 pages, 4075 KB  
Article
CD44 Receptor-Mediated Ferroptosis Induction by Hyaluronic Acid Carbon Quantum Dots in Triple-Negative Breast Cancer Cells Through Downregulation of SLC7A11 Pathway
by Karthikeyan Chandrasekaran, Chae Eun Lee, Seojeong Yun, Ashok Kumar Jangid, Sungjun Kim and Kyobum Kim
Materials 2025, 18(9), 2139; https://doi.org/10.3390/ma18092139 - 6 May 2025
Cited by 2 | Viewed by 1254
Abstract
The field of cancer therapy is actively pursuing highly effective self-targeted drug delivery materials endowed with exceptional properties. Recently, hyaluronic acid (HA), a naturally occurring polysaccharide, has been recognized as a potential target ligand for CD44 receptors, which are frequently expressed on various [...] Read more.
The field of cancer therapy is actively pursuing highly effective self-targeted drug delivery materials endowed with exceptional properties. Recently, hyaluronic acid (HA), a naturally occurring polysaccharide, has been recognized as a potential target ligand for CD44 receptors, which are frequently expressed on various solid tumor cells targeted in cancer therapy. HA carbon quantum dots (CQDs) exhibit several advantageous properties, including a high surface area-to-volume ratio, small particle size, biocompatibility, and low cytotoxicity, making them ideal for biomedical applications, such as CD44-targeted drug delivery in ferroptosis-based cancer therapy. In this study, we synthesized HA-CQDs to enhance CD44-mediated ligand–receptor interactions targeting triple-negative breast cancer (TNBC). CQDs facilitate the intracellular generation of reactive oxygen species (ROS), leading to glutathione depletion. These processes result in crucial actions such as the downregulation of glutathione peroxidase 4, downregulation of solute carrier family 7 member 11, and inhibition of cystine intake. The subsequent intracellular ROS, originating from lipid peroxidation, induces ferroptosis. Our HA-CQDs engage CD44 receptors, selectively targeting TNBCs and enhancing cancer recognition. This interaction potentially enhances the nanoplatform-based CD44 targeted therapeutic effects in inducing ferroptosis. Full article
Show Figures

Figure 1

33 pages, 5990 KB  
Review
Comparison of Single Atoms vs. Sub-Nanoclusters as Co-Catalysts in Perovskites and Metal Oxides for Photocatalytic Technologies
by Anastasia V. Spyrou, Konstantinos Zodhiates and Yiannis Deligiannakis
Nanomaterials 2025, 15(3), 226; https://doi.org/10.3390/nano15030226 - 30 Jan 2025
Cited by 3 | Viewed by 2369
Abstract
Adatoms as co-catalysts may play a key role in photocatalysis, yet control of their exact configuration remains challenging. Specifically, there is converging evidence that ultra-small structures may be optimal as co-catalysts; however, a comprehensive distinction between single atoms (SAs), sub-nanoclusters (SNCs), and quantum-sized [...] Read more.
Adatoms as co-catalysts may play a key role in photocatalysis, yet control of their exact configuration remains challenging. Specifically, there is converging evidence that ultra-small structures may be optimal as co-catalysts; however, a comprehensive distinction between single atoms (SAs), sub-nanoclusters (SNCs), and quantum-sized small particles (QSSPs) has yet to be established. Herein, we present a critical review addressing these distinctions, along with challenges related to the controlled synthesis of SAs, SNCs, and QSSPs; their detection methods; and their functional benefits in photocatalysis. Our discussion focuses on perovskite oxides (e.g., such as ABO3, where A and B are cations) and metal oxides (MxOy, where M is a metal) decorated with adatoms, which demonstrate superior photocatalytic performance compared to their unmodified counterparts. Finally, we highlight cases of misinterpretation between SA, SNC, and QSSP configurations emerging from limitations in high-resolution detection techniques and synthesis methods. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Figure 1

14 pages, 3709 KB  
Article
Oral Active Carbon Quantum Dots for Diabetes
by Gamze Camlik, Besa Bilakaya, Esra Küpeli Akkol, Adrian Joshua Velaro, Siddhanshu Wasnik, Adi Muradi Muhar, Ismail Tuncer Degim and Eduardo Sobarzo-Sánchez
Pharmaceuticals 2024, 17(10), 1395; https://doi.org/10.3390/ph17101395 - 19 Oct 2024
Cited by 2 | Viewed by 2600
Abstract
Background/Objectives: Metformin (Met), an oral drug used to treat type II diabetes, is known to control blood glucose levels. Metformin carbon quantum dots (MetCQDs) were prepared to enhance the bioavailability and effectiveness of metformin. Several studies have shown that carbon quantum dots (CQDs) [...] Read more.
Background/Objectives: Metformin (Met), an oral drug used to treat type II diabetes, is known to control blood glucose levels. Metformin carbon quantum dots (MetCQDs) were prepared to enhance the bioavailability and effectiveness of metformin. Several studies have shown that carbon quantum dots (CQDs) have attractive properties like small particle size, high penetrability, low cytotoxicity, and ease of synthesis. CQDs are made from a carbon source, namely, citric acid, and a heteroatom, such as nitrogen. The active molecule can be a carbon source or a heteroatom, as reported here. Methods: This study aims to produce MetCQDs from an active molecule. MetCQDs were successfully produced by microwave-based production methods and characterized. The effect of the MetCQDs was tested in Wistar albino rats following a Streptozocin-induced diabetic model. Results: The results show that the products have a particle size of 9.02 ± 0.04 nm, a zeta potential of −10.4 ± 0.214 mV, and a quantum yield of 15.1 ± 0.045%. Stability studies and spectrophotometric analyses were carried out and the effectiveness of MetCQDs evaluated in diabetic rats. The results show a significant reduction in blood sugar levels (34.1–51.1%) compared to the group receiving only metformin (37.1–55.3%) over a period of 30 to 360 min. Histopathological examinations of the liver tissue indicate improvement in the liver health indicators of the group treated with MetCQDs. Conclusions: Based on these results, the products have potential therapeutic advantages in diabetes management through their increased efficacy and may have reduced side effects compared to the control group. Full article
(This article belongs to the Special Issue Advancements in Cardiovascular and Antidiabetic Drug Therapy)
Show Figures

Graphical abstract

11 pages, 8122 KB  
Article
Using a Carbon Quantum Dot Suspension as a New Solvent for Clear Hydrophobic Surface Coating on Hydrophilic PVA Films
by Yena Oh, Kitae Park, Jamilur R. Ansari and Jongchul Seo
Polymers 2024, 16(17), 2513; https://doi.org/10.3390/polym16172513 - 4 Sep 2024
Cited by 3 | Viewed by 2473
Abstract
Polyvinyl alcohol (PVA) is a popular material used in the packaging industry. However, it is vulnerable to moisture, which can affect its performance and durability. Introducing hydrophobic substances, such as tetraethyl orthosilicate (TEOS) and hexadecyltrimethoxysilane (HDTMS), on the top layer of PVA can [...] Read more.
Polyvinyl alcohol (PVA) is a popular material used in the packaging industry. However, it is vulnerable to moisture, which can affect its performance and durability. Introducing hydrophobic substances, such as tetraethyl orthosilicate (TEOS) and hexadecyltrimethoxysilane (HDTMS), on the top layer of PVA can help maintain the excellent properties of PVA under high-humidity conditions. The low compatibility of hydrophobic materials with the hydrophilic layers allows them to aggregate more easily. To overcome these issues, we focused on the effects of particle size when increasing the coating suspension’s dispersibility. A carbon quantum dot (CQD) suspension is an appropriate novel solvent for hydrophobic TEOS/HDTMS coating suspensions because its particles are small and light and exhibit good dispersibility. The CQD suspension formed a smooth hydrophobic coating on the TEOS/HDTMS materials. Furthermore, the uniformly coated PVA with the CQD suspension exhibited a water contact angle of 110°. The water droplets remained intact without being absorbed, confirming the effectiveness of the surface coating facilitated by CQDs. These results suggested that CQDs improved the dispersibility and enhanced the coating quality of TEOS/HDTMS on PVA. Enhancing the hydrophobicity of PVA is ideal for applications in packaging and other fields. Full article
(This article belongs to the Special Issue High Performance Polymer Membranes II)
Show Figures

Graphical abstract

1 pages, 125 KB  
Abstract
A Computational Study on Gold and Silver Nanoparticles against SARS-CoV-2 Proteins
by Ilyes Zatla and Lamia Boublenza
Proceedings 2024, 103(1), 23; https://doi.org/10.3390/proceedings2024103023 - 12 Apr 2024
Cited by 1 | Viewed by 774
Abstract
Metallic nanoparticles, such as gold and silver nanoparticles, are extraordinarily small particles composed of metal atoms at the nanoscale, typically ranging in size from 1 to 100 nanometers. These nanoparticles possess a plethora of unique and invaluable properties owing to their diminutive size, [...] Read more.
Metallic nanoparticles, such as gold and silver nanoparticles, are extraordinarily small particles composed of metal atoms at the nanoscale, typically ranging in size from 1 to 100 nanometers. These nanoparticles possess a plethora of unique and invaluable properties owing to their diminutive size, their exceptionally high surface-area-to-volume ratio, and the emergence of quantum effects at this scale. In this research, a computational simulation was conducted to explore the structural configurations of both silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs). Subsequently, geometry optimization techniques were applied to refine these structures. The optimized nanoparticle configurations were then systematically evaluated for their potential interactions with three specific targets within the SARS-CoV-2 virus: the Main protease (Mpro), the RNA-dependent RNA polymerase (RdRp), and the S spike glycoprotein. Notably, the results revealed that both AgNPs and AuNPs exhibited remarkable affinities for the active pockets of SARS-CoV-2 Mpro, suggesting their potential utility as inhibitors for this critical viral protein. Intriguingly, when considering RdRp, AgNPs displayed superior binding affinity compared to AuNPs, indicating their specific potential in targeting this component of the virus. Conversely, when assessing their interactions with the S spike glycoprotein, AuNPs demonstrated greater binding affinities than AgNPs, with more pocket residues being involved in this interaction. The versatility of gold and silver nanoparticles extends far beyond virology, as these materials find applications in diverse fields, including medicine, electronics, and environmental remediation. The findings presented here underscore their potential as versatile antiviral agents, providing a promising avenue for further in vitro and in vivo research to explore their efficacy in inhibiting the replication of the SARS-CoV-2 virus. Full article
(This article belongs to the Proceedings of The 3rd International Electronic Conference on Biomolecules)
13 pages, 3945 KB  
Article
Temperature- and Size-Dependent Photoluminescence of CuInS2 Quantum Dots
by Oleg Korepanov, Dmitriy Kozodaev, Olga Aleksandrova, Alexander Bugrov, Dmitrii Firsov, Demid Kirilenko, Dmitriy Mazing, Vyacheslav Moshnikov and Zamir Shomakhov
Nanomaterials 2023, 13(21), 2892; https://doi.org/10.3390/nano13212892 - 1 Nov 2023
Cited by 9 | Viewed by 3821
Abstract
We present the results of a temperature-dependent photoluminescence (PL) spectroscopy study on CuInS2 quantum dots (QDs). In order to elucidate the influence of QD size on PL temperature dependence, size-selective precipitation was used to obtain several nanoparticle fractions. Additionally, the nanoparticles’ morphology [...] Read more.
We present the results of a temperature-dependent photoluminescence (PL) spectroscopy study on CuInS2 quantum dots (QDs). In order to elucidate the influence of QD size on PL temperature dependence, size-selective precipitation was used to obtain several nanoparticle fractions. Additionally, the nanoparticles’ morphology and chemical composition were studied using transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The obtained QDs showed luminescence in the visible–near infrared range. The PL energy, linewidth, and intensity were studied within an 11–300 K interval. For all fractions, a temperature decrease led to a shift in the emission maximum to higher energies and pronounced growth of the PL intensity down to 75–100 K. It was found that for large particle fractions, the PL intensity started to decrease, with temperature decreasing below 75 K, while the PL intensity of small nanoparticles remained stable. Full article
(This article belongs to the Special Issue Semiconductor Quantum Dots: Synthesis, Properties and Applications)
Show Figures

Figure 1

29 pages, 20294 KB  
Article
Quantum Black Holes in Conformal Dilaton–Higgs Gravity on Warped Spacetimes
by Reinoud Jan Slagter
Universe 2023, 9(9), 383; https://doi.org/10.3390/universe9090383 - 26 Aug 2023
Cited by 1 | Viewed by 2354
Abstract
A promising method for understanding the geometric properties of a spacetime in the vicinity of the horizon of a Kerr-like black hole can be developed by applying the antipodal boundary condition on the two opposite regions in the extended Penrose diagram. By considering [...] Read more.
A promising method for understanding the geometric properties of a spacetime in the vicinity of the horizon of a Kerr-like black hole can be developed by applying the antipodal boundary condition on the two opposite regions in the extended Penrose diagram. By considering a conformally invariant Lagrangian on a Randall–Sundrum warped five-dimensional spacetime, an exact vacuum solution is found, which can be interpreted as an instanton solution on the Riemannian counterpart spacetime, R+2×R1×S1, where R+2 is conformally flat. The antipodal identification, which comes with a CPT inversion, is par excellence, suitable when quantum mechanical effects, such as the evaporation of a black hole by Hawking radiation, are studied. Moreover, the black hole paradoxes could be solved. By applying the non-orientable Klein surface, embedded in R4, there is no need for instantaneous transport of information. Further, the gravitons become “hard” in the bulk, which means that the gravitational backreaction on the brane can be treated without the need for a firewall. By splitting the metric in a product ω2g˜μν, where ω represents a dilaton field and g˜μν the conformally flat “un-physical” spacetime, one can better construct an effective Lagrangian in a quantum mechanical setting when one approaches the small-scale area. When a scalar field is included in the Lagrangian, a numerical solution is presented, where the interaction between ω and Φ is manifest. An estimate of the extra dimension could be obtained by measuring the elapsed traversal time of the Hawking particles on the Klein surface in the extra dimension. Close to the Planck scale, both ω and Φ can be treated as ordinary quantum fields. From the dilaton field equation, we obtain a mass term for the potential term in the Lagrangian, dependent on the size of the extra dimension. Full article
Show Figures

Figure 1

15 pages, 4920 KB  
Article
Electrochemical Biosensor Based on Horseradish Peroxidase and Black Phosphorene Quantum Dot Modified Electrode
by Xiaoqing Li, Fan Shi, Lisi Wang, Siyue Zhang, Lijun Yan, Xiaoping Zhang and Wei Sun
Molecules 2023, 28(16), 6151; https://doi.org/10.3390/molecules28166151 - 21 Aug 2023
Cited by 10 | Viewed by 2228
Abstract
Black phosphorene quantum dots (BPQDs) were prepared by ultrasonic-assisted liquid-phase exfoliation and centrifugation with morphologies proved by TEM results. Furthermore, an electrochemical enzyme sensor was prepared by co-modification of BPQDs with horseradish peroxidase (HRP) on the surface of a carbon ionic liquid electrode [...] Read more.
Black phosphorene quantum dots (BPQDs) were prepared by ultrasonic-assisted liquid-phase exfoliation and centrifugation with morphologies proved by TEM results. Furthermore, an electrochemical enzyme sensor was prepared by co-modification of BPQDs with horseradish peroxidase (HRP) on the surface of a carbon ionic liquid electrode (CILE) for the first time. The direct electrochemical behavior of HRP was studied with a pair of well-shaped voltammetric peaks that appeared, indicating that the existence of BPQDs was beneficial to accelerate the electron transfer rate between HRP and the electrode surface. This was due to the excellent properties of BPQDs, such as small particle size, high interfacial reaction activity, fast conductivity, and good biocompatibility. The presence of BPQDs on the electrode surface provided a fast channel for direct electron transfer of HRP. Therefore, the constructed electrochemical HRP biosensor was firstly used to investigate the electrocatalytic behavior of trichloroacetic acid (TCA) and potassium bromate (KBrO3), and the wide linear detection ranges of TCA and KBrO3 were 4.0–600.0 mmol/L and 2.0–57.0 mmol/L, respectively. The modified electrode was applied to the actual samples detection with satisfactory results. Full article
Show Figures

Figure 1

15 pages, 2608 KB  
Article
An Intelligent Advanced Classification Method for Tunnel-Surrounding Rock Mass Based on the Particle Swarm Optimization Least Squares Support Vector Machine
by Jie Lu, Weidong Guo, Jinpei Liu, Ruijie Zhao, Yueyang Ding and Shaoshuai Shi
Appl. Sci. 2023, 13(4), 2068; https://doi.org/10.3390/app13042068 - 5 Feb 2023
Cited by 6 | Viewed by 2327
Abstract
The fast and accurate classification of surrounding rock mass is the basis for tunnel design and construction and has significant value in engineering applications. Therefore, this paper proposes a method for classifying and predicting surrounding rock mass based on particle swarm optimization (PSO)–least [...] Read more.
The fast and accurate classification of surrounding rock mass is the basis for tunnel design and construction and has significant value in engineering applications. Therefore, this paper proposes a method for classifying and predicting surrounding rock mass based on particle swarm optimization (PSO)–least squares support vector machine (LSSVM). The premise of the research is that the data acquired from digital drilling technology are divided into a training group and a test group; the training group continuously optimizes the algorithm for the particle swarm optimization least squares support vector machine, and then the test group is used for verification. Moreover, the fast searching abilities of the particle swarm significantly accelerate the computational power and computational accuracy of the least squares support vector machine, making it a high-speed analog search tool. Taking the Jiaozhou Bay undersea tunnel in China as an example, a comparison of the evaluation results of PSO-LSSVM and QGA-RBF (quantum genetic algorithm-radical basis function neural network) is undertaken. The results show that PSO-LSSVM matches well with the field-measured surrounding rock grade. Applying the method in an engineering context proves that it has good self-learning abilities, even when the sample size is small and the prediction accuracy is high; as such, it meets the engineering requirements. The technique has the advantages of small sample prediction, pattern recognition, and nonlinear prediction. Full article
Show Figures

Figure 1

16 pages, 304 KB  
Article
Avoidance of Singularity during the Gravitational Collapse with String T-Duality Effects
by Kimet Jusufi
Universe 2023, 9(1), 41; https://doi.org/10.3390/universe9010041 - 9 Jan 2023
Cited by 13 | Viewed by 2291
Abstract
In this paper, we explore the gravitational collapse of matter (dust) under the effect of zero-point length l0. During the gravitational collapse, we neglect the backreaction effect of pre-Hawking radiation (in the sense that it is a small effect and cannot [...] Read more.
In this paper, we explore the gravitational collapse of matter (dust) under the effect of zero-point length l0. During the gravitational collapse, we neglect the backreaction effect of pre-Hawking radiation (in the sense that it is a small effect and cannot prevent the formation of an apparent horizon), then we recast the internal metric of a collapsing star as a closed FRW universe for any spherically symmetric case and, finally, we obtain the minimal value for the scale factor, meaning that the particles never hit the singularity. We argue that the object emerging at the end of the gravitational collapse can be interpreted as Planck stars (black hole core) hidden inside the event horizon of the black hole, with a radius proportional to (GMl02/c2)1/3. Quite interestingly, we found the same result for the radius of the Planck star using a free-falling observer point of view. In addition, we point out a correspondence between the modified Friedmann’s equations in loop quantum gravity and the modified Friedmann’s equation in string T-duality. In the end, we discuss two possibilities regarding the final stage of the black hole. The first possibility is that we end up with Planck-size black hole remnants. The second possibility is that the inner core can be unstable and, due to the quantum tunneling effect, the spacetime can undergo a black-hole-to-white-hole transition (a bouncing Planck star). Full article
(This article belongs to the Section Gravitation)
19 pages, 4372 KB  
Article
Development of Biodegradable GQDs-hMSNs for Fluorescence Imaging and Dual Cancer Treatment via Photodynamic Therapy and Drug Delivery
by Sarah Reagen, Yingfen Wu, Di Sun, Carlos Munoz, Nuri Oncel, Colin Combs and Julia Xiaojun Zhao
Int. J. Mol. Sci. 2022, 23(23), 14931; https://doi.org/10.3390/ijms232314931 - 29 Nov 2022
Cited by 14 | Viewed by 2556
Abstract
Recently, nano-based cancer therapeutics have been researched and developed, with some nanomaterials showing anticancer properties. When it comes to cancer treatment, graphene quantum dots (GQDs) contain the ability to generate 1O2, a reactive oxidative species (ROS), allowing for the synergistic [...] Read more.
Recently, nano-based cancer therapeutics have been researched and developed, with some nanomaterials showing anticancer properties. When it comes to cancer treatment, graphene quantum dots (GQDs) contain the ability to generate 1O2, a reactive oxidative species (ROS), allowing for the synergistic imaging and photodynamic therapy (PDT) of cancer. However, due to their small particle size, GQDs struggle to remain in the target area for long periods of time in addition to being poor drug carriers. To address this limitation of GQDs, hollow mesoporous silica nanoparticles (hMSNs) have been extensively researched for drug delivery applications. This project investigates the utilization and combination of biomass-derived GQDs and Stöber silica hMSNs to make graphene quantum dots-hollow mesoporous silica nanoparticles (GQDs-hMSNs) for fluorescent imaging and dual treatment of cancer via drug delivery and photodynamic therapy (PDT). Although the addition of hMSNs made the newly synthesized nanoparticles slightly more toxic at higher concentrations, the GQDs-hMSNs displayed excellent drug delivery using fluorescein (FITC) as a mock drug, and PDT treatment by using the GQDs as a photosensitizer (PS). Additionally, the GQDs retained their fluorescence through the surface binding to hMSNs, allowing them to still be used for cell-labeling applications. Full article
(This article belongs to the Special Issue Biopolymers as Nanoparticles Carriers)
Show Figures

Figure 1

13 pages, 3104 KB  
Article
Preparation of Nitrogen and Sulfur Co-Doped Fluorescent Carbon Dots from Cellulose Nanocrystals as a Sensor for the Detection of Rutin
by Tao Zhang, Qingxue Ji, Jiayi Song, Haiming Li, Xing Wang, Haiqiang Shi, Meihong Niu, Tingting Chu, Fengshan Zhang and Yanzhu Guo
Molecules 2022, 27(22), 8021; https://doi.org/10.3390/molecules27228021 - 18 Nov 2022
Cited by 15 | Viewed by 3037
Abstract
The poor water solubility, large particle size, and low accessibility of cellulose, the most abundant bioresource, have restricted its generalization to carbon dots (CDs). Herein, nitrogen and sulfur co-doped fluorescent carbon dots (N, S-CDs) were hydrothermally synthesized using cellulose nanocrystals (CNC) as a [...] Read more.
The poor water solubility, large particle size, and low accessibility of cellulose, the most abundant bioresource, have restricted its generalization to carbon dots (CDs). Herein, nitrogen and sulfur co-doped fluorescent carbon dots (N, S-CDs) were hydrothermally synthesized using cellulose nanocrystals (CNC) as a carbon precursor, exhibiting a small particle size and excellent aqueous dispersion. Thiourea was selected as a nitrogen and sulfur dopant to introduce abundant fluorescent functional groups into N, S-CDs. The resulting N, S-CDs exhibited nanoscale size (6.2 nm), abundant functional groups, bright blue fluorescence, high quantum yield (QY = 27.4%), and high overall yield (16.2%). The excellent optical properties of N, S-CDs endowed it to potentially display a highly sensitive fluorescence “turn off” response to rutin. The fluorescence response for rutin allowed a wide linear range of 0–40 mg·L−1, with a limit of detection (LOD) of 0.02 μM, which revealed the potential of N, S-CDs as a rapid and simple sensing platform for rutin detection. In addition, the sustainable and large-scale production of the N, S-CDs in this study paves the way for the successful high-value utilization of cellulose. Full article
(This article belongs to the Special Issue Research Progress of Lignocellulosic Biomass)
Show Figures

Graphical abstract

Back to TopTop