Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (931)

Search Parameters:
Keywords = radiolabelling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 2077 KB  
Article
Tailored Reaction Conditions and Automated Radiolabeling of [177Lu]Lu-PSMA-ALB-56 in a 68Ga Setting: The Critical Impact of Antioxidant Concentrations
by Johanne Vanney, Léa Rubira, Jade Torchio and Cyril Fersing
Int. J. Mol. Sci. 2025, 26(19), 9642; https://doi.org/10.3390/ijms26199642 - 2 Oct 2025
Abstract
The growing use of experimental radiopharmaceuticals for targeted radionuclide therapy (TRT) highlights the need for robust “in house” radiolabeling protocols. Among these, PSMA-ALB-56 is a PSMA ligand incorporating an albumin-binding moiety to enhance pharmacokinetics, which showed promise for prostate cancer treatment. This study [...] Read more.
The growing use of experimental radiopharmaceuticals for targeted radionuclide therapy (TRT) highlights the need for robust “in house” radiolabeling protocols. Among these, PSMA-ALB-56 is a PSMA ligand incorporating an albumin-binding moiety to enhance pharmacokinetics, which showed promise for prostate cancer treatment. This study investigated manual radiolabeling conditions of this vector molecule with lutetium-177 and developed a corresponding automated synthesis protocol. Manual experiments on low activities explored buffer systems and antioxidants, identifying sodium acetate buffer and L-methionine as optimal, achieving radiochemical purities above 97% with excellent stability over 48 h. However, when these conditions were transposed directly to an automated process on a GAIA® module with activities > 2 GBq, radiochemical purity dropped below 70% due to significant radiolysis. This result emphasized that conditions optimized at low activities are not directly transferable to high-activity automated production, and highlighted the crucial role of antioxidant concentration. An optimized automated method was subsequently developed, integrating a solid-phase extraction purification step, higher antioxidant levels during radiolabeling and formulation, and a larger final product volume. These changes led to radiochemical purities above 98.9% and excellent product stability over 120 h for 3 test batches. The presence of high concentrations of methionine and ascorbic acid was essential to protect against radiolysis. This work underscores the importance of adjusting radiolabeling strategies during process scale-up and confirmed that antioxidant concentration is essential for successful 177Lu radiolabeling. The optimized automated method developed here for [177Lu]Lu-PSMA-ALB-56 may also be adapted to other radiopharmaceuticals in development for TRT. Full article
(This article belongs to the Special Issue Radiolabeled Compounds for Theranostic Applications in Oncology)
19 pages, 1084 KB  
Article
Production and Quality Control of [68Ga]Ga-FAPI-46: Development of an Investigational Medicinal Product Dossier for a Bicentric Clinical Trial
by Alessandro Cafaro, Cristina Cuni, Stefano Boschi, Elisa Landi, Giacomo Foschi, Manuela Monti, Paola Caroli, Federica Matteucci, Carla Masini and Valentina Di Iorio
Pharmaceuticals 2025, 18(10), 1475; https://doi.org/10.3390/ph18101475 - 30 Sep 2025
Abstract
Background/Objectives: Fibroblast activation protein (FAP) is highly expressed in tumor stroma and selected inflammatory conditions, offering a promising target for molecular imaging. [68Ga]Ga-FAPI-46 is a DOTA-based FAP inhibitor with excellent tumor-to-background ratio and potential advantages over [18F]FDG in low-glycolytic [...] Read more.
Background/Objectives: Fibroblast activation protein (FAP) is highly expressed in tumor stroma and selected inflammatory conditions, offering a promising target for molecular imaging. [68Ga]Ga-FAPI-46 is a DOTA-based FAP inhibitor with excellent tumor-to-background ratio and potential advantages over [18F]FDG in low-glycolytic tumors. This article aims to highlight the quality elements that are relevant to clinical practice and to describe the development of an investigational medicinal product dossier for a bicentric clinical trial involving [68Ga]Ga-FAPI-46. Methods: The radiolabeling was performed by the two facilities using different automated synthesizers, but with the same specifications and acceptance criteria Results: Three validation batches per site were analyzed for radiochemical/radionuclidic purity, pH, endotoxin, sterility, and bioburden according to European Pharmacopoeia standards. Stability was as sessed up to 2 h post-synthesis. All batches met predefined acceptance criteria. Conclusions: Despite differences in radiosynthesizer modules, product quality and process reproducibility were maintained across both centers. [68Ga]Ga-FAPI-46 can be reliably produced in academic settings under GMP-like conditions, enabling multicenter clinical research and facilitating IMPD submissions for broader adoption of FAP-targeted PET imaging. Full article
Show Figures

Graphical abstract

20 pages, 2624 KB  
Article
Design and Preclinical Validation of an Anti-B7-H3-Specific Radiotracer: A Non-Invasive Imaging Tool to Guide B7-H3-Targeted Therapies
by Cyprine Neba Funeh, Fien Meeus, Niels Van Winnendael, Timo W. M. De Groof, Matthias D’Huyvetter and Nick Devoogdt
Pharmaceuticals 2025, 18(10), 1477; https://doi.org/10.3390/ph18101477 - 30 Sep 2025
Abstract
Background: B7-H3, an immunoregulatory protein of the B7 family, has been associated with both anti-cancer immunity and tumor promotion, with its expression commonly correlated with poor prognosis. Although it is frequently expressed across cancers, its heterogeneity may limit the effectiveness of B7-H3-targeted therapies. [...] Read more.
Background: B7-H3, an immunoregulatory protein of the B7 family, has been associated with both anti-cancer immunity and tumor promotion, with its expression commonly correlated with poor prognosis. Although it is frequently expressed across cancers, its heterogeneity may limit the effectiveness of B7-H3-targeted therapies. Consequently, a sensitive and non-invasive method is needed to assess B7-H3 expression for patient selection and stratification. Single-domain antibody fragments (sdAbs) offer a promising platform for developing such a diagnostic tool. Methods: To generate B7-H3 sdAbs, two Ilamas were immunized with the recombinant human B7-H3 protein. Positive clones were selected through Phage biopanning and characterized for thermal stability, binding specificity, and affinity to human and murine B7-H3 proteins. Selected sdAbs were radiolabeled with Technetium-99m (99mTc) and evaluated for B7-H3 detection in two xenograft tumor models using micro-SPECT/CT imaging and dissection studies. Results: Sixteen purified sdAbs bound specifically to recombinant B7-H3 proteins and cells expressing native B7-H3 antigens, with nanomolar affinities. The four best-performing sdAbs bound promiscuously to tested mouse and human B7-H3 isoforms. Lead sdAb C51 labeled with 99mTc displayed specific accumulation across two human B7-H3+ tumor models, achieving high contrast with a tumor-to-blood ratio of up to 10 ± 3.16, and a tumor uptake of up to 4.96 ± 1.4%IA/g at 1.5 h post injection. Conclusions: The lead sdAb enabled rapid, specific, and non-invasive imaging of human B7-H3+ tumors. Its isoform promiscuity supports broad applicability across cancers expressing different human B7-H3 isoforms. These results support further development for clinical translation to enable patient selection and improved B7-H3-targeted therapies. Full article
(This article belongs to the Special Issue Development of Novel Radiopharmaceuticals for SPECT and PET Imaging)
Show Figures

Figure 1

11 pages, 1190 KB  
Communication
Multi-Fused S,N-Heterocyclic Compounds for Targeting α-Synuclein Aggregates
by Chao Zheng, Jeffrey S. Stehouwer, Goverdhan Reddy Ummenthala, Yogeshkumar S. Munot and Neil Vasdev
Cells 2025, 14(19), 1531; https://doi.org/10.3390/cells14191531 - 30 Sep 2025
Abstract
The development of positron emission tomography (PET) tracers targeting α-synuclein (α-syn) aggregates is critical for the early diagnosis, differential classification, and therapeutic monitoring of synucleinopathies such as Parkinson’s disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy. Despite recent advances, challenges [...] Read more.
The development of positron emission tomography (PET) tracers targeting α-synuclein (α-syn) aggregates is critical for the early diagnosis, differential classification, and therapeutic monitoring of synucleinopathies such as Parkinson’s disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy. Despite recent advances, challenges including the low abundance of α-syn aggregates (10–50× lower than amyloid-beta (Aβ) or Tau), structural heterogeneity (e.g., flat fibrils in PD vs. cylindrical forms in DLB), co-pathology with Aβ/Tau, and poor metabolic stability have hindered PET tracer development for this target. To optimize our previously reported pyridothiophene-based radiotracer, [18F]asyn-44, we present the synthesis and evaluation of novel S,N-heterocyclic scaffold derivatives for α-syn. A library of 49 compounds was synthesized, with 8 potent derivatives (LMD-006, LMD-022, LMD-029, LMD-044, LMD-045, LMD-046, LMD-051, and LMD-052) demonstrating equilibrium inhibition constants (Ki) of 6–16 nM in PD brain homogenates, all of which are amenable for radiolabeling with fluorine-18. This work advances the molecular toolkit for synucleinopathies and provides a roadmap for overcoming barriers in PET tracer development, with lead compounds that can be considered for biomarker-guided clinical trials and targeted therapies. Full article
(This article belongs to the Special Issue Development of PET Radiotracers for Imaging Alpha-Synuclein)
Show Figures

Figure 1

11 pages, 1071 KB  
Article
Homotypic Targeting of [89Zr]Zr-Oxine Labeled PC3 and 4T1 Cells in Tumor-Bearing Mice
by Volkan Tekin, Noel E. Archer, Solana R. Fernandez, Hailey A. Houson, Jennifer L. Bartels and Suzanne E. Lapi
Pharmaceutics 2025, 17(10), 1259; https://doi.org/10.3390/pharmaceutics17101259 - 26 Sep 2025
Abstract
Background/Objectives: Homotypic targeting refers to the ability of cells to preferentially interact with other cells of the same type. An understanding of how cells use homotypic targeting (self-homing) characteristics for tumor-targeting purposes may aid in the effective delivery of radionuclides or other [...] Read more.
Background/Objectives: Homotypic targeting refers to the ability of cells to preferentially interact with other cells of the same type. An understanding of how cells use homotypic targeting (self-homing) characteristics for tumor-targeting purposes may aid in the effective delivery of radionuclides or other drugs for imaging or therapeutic applications. Additionally, studies investigating the targeting properties of cells from the same lineage may shed light on this interesting mechanism, allowing it to be harnessed for other applications. The objective of this study was to assess the tumor-self targeting potential of PC3 prostate cancer and 4T1 breast cancer cells using a direct cell labeling technique, with a focus on evaluation of cellular labeling efficiency, cell viability, cellular efflux, and in vivo tumor-self targeting capability using both identical and dissimilar tumor models. Methods: [89Zr]Zr-oxine was prepared and utilized for the labeling of PC3 and 4T1 cells. Following the assessment of cell labeling efficacy, viability, and efflux, PET/CT imaging and biodistribution studies were conducted with [89Zr]Zr-oxine labeled PC3 and 4T1 cells in PC3 and 4T1 tumor-bearing mice models. Results: Both PC3 cells and 4T1 cells were radiolabeled with [89Zr]oxine, with PC3 cells illustrating a higher labeling efficiency (86.55 ± 0.38%) than 4T1 cells (46.95 ± 1.47%). Notably, radiolabeled PC3 cells illustrated significant uptake in PC3 tumors (7.54 ± 1.07%ID/gram at 24 h and 6.95 ± 3.56%ID/gram at 48 h) with lower tumor uptake in the 4T1 xenograft model (1.79 ± 0.29%ID/gram at 24 h and 1.42 ± 0.71%ID/gram at 48 h), illustrating the potential of self-targeting. Conclusions: Both PC3 and 4T1 cells followed a similar pattern of biodistribution, with labeled PC3 cells demonstrating lower blood retention and reduced uptake in non-target organs such as lungs and heart. Taken together, these results may indicate that PC3 cells illustrate homotypic targeting, warranting further investigation of this phenomenon. Full article
(This article belongs to the Special Issue Cell-Mediated Delivery Systems)
Show Figures

Graphical abstract

32 pages, 1169 KB  
Review
Actinium-225/Bismuth-213 as Potential Leaders for Targeted Alpha Therapy: Current Supply, Application Barriers, and Future Prospects
by Mohamed F. Nawar, Adli A. Selim, Basma M. Essa, Alaa F. El-Daoushy, Mohamed M. Swidan, Claudia G. Chambers, Mohammed H. Al Qahtani, Charles J. Smith and Tamer M. Sakr
Cancers 2025, 17(18), 3055; https://doi.org/10.3390/cancers17183055 - 18 Sep 2025
Viewed by 602
Abstract
Alpha therapy (TAT) relies on combining alpha-emitting radionuclides with specific cell-targeting vectors to deliver a high payload of cytotoxic radiation capable of destroying tumor tissues. TAT efficacy comes from the tissue selectivity of the targeting vector, the high linear energy transfer (LET) of [...] Read more.
Alpha therapy (TAT) relies on combining alpha-emitting radionuclides with specific cell-targeting vectors to deliver a high payload of cytotoxic radiation capable of destroying tumor tissues. TAT efficacy comes from the tissue selectivity of the targeting vector, the high linear energy transfer (LET) of the radionuclide, and the short range of alpha particles in tissues. Recent research studies have been directed to evaluate TAT on a preclinical and clinical scale, including evaluating damage to tumor tissues with minimal toxic radiation effects on surrounding healthy tissues. This review highlights the use of Actinium-225/Bismuth-213 radionuclides as promising candidates for TAT. Herein, we begin with a discussion on the production and supply of [225Ac]Ac/[213Bi]Bi followed by the formulation of [225Ac]Ac/[213Bi]Bi-radiopharmaceuticals using different radiolabeling techniques. Finally, we have summarized the preclinical and clinical evaluation of these potential radiotheranostic agents. Full article
(This article belongs to the Section Cancer Therapy)
Show Figures

Figure 1

15 pages, 2136 KB  
Article
Click-to-Release for Controlled Immune Cell Activation: Tumor-Targeted Unmasking of an IL12 Prodrug
by Martijn H. den Brok, Kim E. de Roode, Luc H. M. Zijlmans, Laurens H. J. Kleijn, Marleen H. M. E. van Stevendaal, Ron M. Versteegen, Lieke W. M. Wouters, Raffaella Rossin and Marc S. Robillard
Pharmaceuticals 2025, 18(9), 1380; https://doi.org/10.3390/ph18091380 - 16 Sep 2025
Viewed by 657
Abstract
Objectives: Immunotherapy utilizing immune-stimulating cytokines such as IL12 holds great promise for the treatment of cancer. However, clinical use of IL12 is hampered due to severe toxicity following systemic administration. We here present a novel treatment strategy in which IL12 is chemically silenced [...] Read more.
Objectives: Immunotherapy utilizing immune-stimulating cytokines such as IL12 holds great promise for the treatment of cancer. However, clinical use of IL12 is hampered due to severe toxicity following systemic administration. We here present a novel treatment strategy in which IL12 is chemically silenced by conjugation to PEG masks that sterically hinder the receptor binding. Subsequently, the masks can be released on demand using a bioorthogonal click reaction, cleaving the linker connecting the masks, thereby restoring the native cytokine. This “click-to-release” approach is based on the highly selective Inverse electron-demand Diels–Alder (IEDDA) pyridazine elimination reaction between a tetrazine (Tz) and a trans-cyclooctene (TCO), optimized for fast reaction kinetics and in vivo compatibility. Selective activation in the tumor microenvironment is achieved by pretargeting one component of this reaction to the tumor, triggering local activation of the masked IL12 once it is given in a secondary i.v. injection. Methods: IL12 masking and unmasking were evaluated in vitro with PAGE and HEK-Blue reporter cells and ex vivo with ELISA. Biodistribution in mice was evaluated with I-125 radiolabeling and biotin-click histochemistry. Results: Several designs were evaluated and optimized in vitro, resulting in an IL12-TCO-PEG construct that exhibited superior masking and subsequent reactivation upon reaction with a tetrazine bound to a TAG-72-targeted diabody. In tumor-bearing mice, we demonstrated that this diabody-tetrazine could efficiently pre-localize tetrazine in the tumor. Administration of IL12-TCO-PEG 24 h later afforded efficient and selective unmasking in tumors, but not in the blood. Conclusions: These results demonstrate proof of principle of the click-cleavable IL12 prodrug approach and showcase the versatility of the click-to-release reaction. Full article
(This article belongs to the Special Issue Tumor Therapy and Drug Delivery)
Show Figures

Graphical abstract

42 pages, 1890 KB  
Review
Toxicity of Magnetic Nanoparticles in Medicine: Contributing Factors and Modern Assessment Methods
by Julia Nowak-Jary and Beata Machnicka
Int. J. Mol. Sci. 2025, 26(17), 8586; https://doi.org/10.3390/ijms26178586 - 3 Sep 2025
Viewed by 819
Abstract
With the rapid evolution of nanotechnology, magnetic iron oxide nanoparticles (MNPs)—primarily Fe3O4 and γ-Fe2O3—have gained prominence in biomedicine. Their extensive specific surface area, tunable surface functionalities, and intrinsic magnetic characteristics render them highly versatile for diverse [...] Read more.
With the rapid evolution of nanotechnology, magnetic iron oxide nanoparticles (MNPs)—primarily Fe3O4 and γ-Fe2O3—have gained prominence in biomedicine. Their extensive specific surface area, tunable surface functionalities, and intrinsic magnetic characteristics render them highly versatile for diverse clinical applications, including tumor visualization through Magnetic Resonance Imaging (MRI), radiolabeling, targeted radiotherapy, hyperthermia, gene transfer, drug delivery, Magnetic Particle Imaging (MPI), magnetic blood filtration and theranostic strategies. Nevertheless, ensuring the biocompatibility and non-toxicity of these nanostructures remains a fundamental prerequisite for their medical implementation. Hence, it is essential to continuously refine our understanding of MNP-related toxicity and pursue comprehensive research on this front. This article consolidates up-to-date insights into the evaluation of MNPs’ toxicological profiles, emphasizing the influence of physicochemical properties such as morphology, surface modifications, and electrostatic characteristics, along with operational factors like dosage and administration routes. Traditional toxicity testing strategies, including in vitro assays as first-line screening tools, together with standard ex vivo and in vivo models, are discussed. Special attention is given to the emerging role of New Approach Methodologies (NAMs), such as organoid formation, 3D bioprinting, in ovo chicken embryo assays, and image cytometry. These techniques offer ethical, human-relevant, and informative alternatives to animal testing, supporting more predictive and translationally relevant toxicity assessment of MNPs. Taken together, the integration of conventional assays with innovative NAMs, alongside careful consideration of physicochemical and operational factors, is essential to translate the laboratory promise of MNPs into safe and clinically effective nanomedicines. Full article
(This article belongs to the Special Issue Toxicity of Heavy Metal Compounds)
Show Figures

Figure 1

18 pages, 2394 KB  
Review
Theranostic Radiopharmaceuticals of Somatostatin Receptors for Patients with Neuroendocrine Tumors: Agonists Versus Antagonists—A Systematic Review and Meta-Analysis
by Qi Wang, Damiano Librizzi, Shamim Bagheri, Ali Ebrahimifard, Azimeh Hojjat Shamami, Anja Rinke, Friederike Eilsberger, Markus Luster and Behrooz Hooshyar Yousefi
Int. J. Mol. Sci. 2025, 26(17), 8539; https://doi.org/10.3390/ijms26178539 - 2 Sep 2025
Viewed by 515
Abstract
Neuroendocrine tumors (NETs) are a rare and heterogeneous class of neoplastic lesions, but their prevalence has increased significantly over the past three decades. These tumors are aggressive and difficult to treat. Improving diagnostic efficiency and treatment effectiveness is important for patients with neuroendocrine [...] Read more.
Neuroendocrine tumors (NETs) are a rare and heterogeneous class of neoplastic lesions, but their prevalence has increased significantly over the past three decades. These tumors are aggressive and difficult to treat. Improving diagnostic efficiency and treatment effectiveness is important for patients with neuroendocrine tumors. Radiopharmaceutical therapeutic diagnostics combines diagnosis and treatment technology and has broad prospects in precision medicine, especially for the early diagnosis and treatment of tumors. To compare the diagnostic advantages of radiolabeled somatostatin receptor agonists and antagonists for liver metastases from NETs and the disease control rate in NET patients. Systematic search of PubMed, Embase, Cochrane, Ovid, Scopus, and Web of Science databases up to 29 October 2024. Clinical trials of somatostatin receptor agonists and antagonists for NET diagnosis or treatment. Following PRISMA guidelines, data were independently extracted by two researchers. Pooled diagnostic or treatment effects and 95% CIs were reported using a random-effects meta-analysis model. Effect of somatostatin receptor agonists and antagonists in detecting liver metastases and disease control rate. Risk Ratio (RR) for liver metastasis detection and Effect Size (ES) for disease control rate were calculated. From 5291 articles, 52 were included in the meta-analysis. Radiolabeled somatostatin receptor antagonists were significantly more effective than agonists in detecting liver lesions (RR = 11.57, 95% CI: 4.10, 32.67). Disease control rates were higher with antagonists (ES = 0.90, 95% CI: 0.83, 0.96) compared to agonists (ES = 0.82, 95% CI: 0.78, 0.85, z = 2.12, p = 0.03). Radiolabeled somatostatin receptor antagonists outperform agonists in diagnosing hepatic lesions and controlling disease in NETs, highlighting their clinical superiority. This meta-analysis provides critical insights into the diagnostic and therapeutic efficacy of somatostatin receptor antagonists, and may offer a potential paradigm shift in the management of neuroendocrine tumors. Nevertheless, the smaller number of studies on antagonists may limit the generalizability of the findings and underscore the need for further clinical trials to validate these results. Full article
Show Figures

Figure 1

29 pages, 1811 KB  
Review
Alpha Particle Emitter Radiolabeled Antibodies in Cancer Therapy: Current Status, Challenges, and Future Prospects
by Citra R. A. P. Palangka, Isa Mahendra, Rien Ritawidya, Naoya Kondo and Takahito Nakajima
Pharmaceuticals 2025, 18(9), 1316; https://doi.org/10.3390/ph18091316 - 2 Sep 2025
Viewed by 872
Abstract
The utilization of antibodies to target radionuclides, known as radioimmunotherapy (RIT), has been actively researched for nearly five decades. Numerous significant preclinical and clinical studies in cancer therapy have been highlighted. Among them, RIT using alpha-emitting nuclides has shown high effectiveness and has [...] Read more.
The utilization of antibodies to target radionuclides, known as radioimmunotherapy (RIT), has been actively researched for nearly five decades. Numerous significant preclinical and clinical studies in cancer therapy have been highlighted. Among them, RIT using alpha-emitting nuclides has shown high effectiveness and has attracted much interest in recent years. This review presents an overview of the basic elements of alpha-RIT, namely the target proteins (monoclonal antibodies and antibody-derived proteins), alpha-emitting radionuclides, and labeling methods, which are currently being adapted in cancer therapy. It also highlights efforts to expand the potential of alpha-RIT, including the control of radioactivity distribution in the body. Full article
(This article belongs to the Section Radiopharmaceutical Sciences)
Show Figures

Figure 1

27 pages, 1956 KB  
Review
Implications of Indolethylamine N-Methyltransferase (INMT) in Health and Disease: Biological Functions, Disease Associations, Inhibitors, and Analytical Approaches
by Seif Abouheif, Ahmed Awad and Christopher R. McCurdy
Brain Sci. 2025, 15(9), 935; https://doi.org/10.3390/brainsci15090935 - 28 Aug 2025
Viewed by 1288
Abstract
Indolethylamine N-methyltransferase (INMT) is a Class 1 methyltransferase responsible for N-methylation of various endogenous and exogenous compounds, including tryptamine, serotonin, and dopamine. This review aims to provide a comprehensive overview of the biological and therapeutic relevance of INMT, emphasizing the human isoform (hINMT), [...] Read more.
Indolethylamine N-methyltransferase (INMT) is a Class 1 methyltransferase responsible for N-methylation of various endogenous and exogenous compounds, including tryptamine, serotonin, and dopamine. This review aims to provide a comprehensive overview of the biological and therapeutic relevance of INMT, emphasizing the human isoform (hINMT), highlighting its structural characteristics, disease association, and recent advances in analytical strategies. Dysregulation of INMT activity has been linked to a range of pathological conditions, including neuropsychiatric disorders, neurodegeneration, and several forms of cancer. These associations are addressed by integrating current findings across disease pathophysiology, enzyme inhibition, and analytical methodologies, including both radiolabeled and non-radiolabeled in vitro assays, for measuring INMT activity. We further explored the chemical diversity of INMT inhibitors, both natural and synthetic, and highlighted key compounds with therapeutic relevance. Additionally, recent commercial assays for quantifying INMT activity are emphasized. By integrating emerging evidence from structural biology and disease pathology with inhibitor profiling and analytical technologies, this review highlights the underexplored therapeutic potential of targeting INMT and underscores its value as a promising target for drug development and therapeutic applications. Full article
(This article belongs to the Section Neuropharmacology and Neuropathology)
Show Figures

Figure 1

16 pages, 1984 KB  
Article
Optimized Automated Cassette-Based Synthesis of [68Ga]Ga-DOTATOC
by Anton Amadeus Hörmann, Johannes Neumann, Samuel Nadeje, Gregor Schweighofer-Zwink, Gundula Rendl, Theresa Jung, Teresa Kiener, Ruben Lechner, Sylvia Friedl, Ursula Huber-Schönauer, Martin Wolkersdorfer, Mohsen Beheshti and Christian Pirich
Pharmaceuticals 2025, 18(9), 1274; https://doi.org/10.3390/ph18091274 - 26 Aug 2025
Viewed by 793
Abstract
Background: [68Ga]Ga-DOTATOC is widely used in PET imaging of neuroendocrine tumors (NETs) due to its high affinity for somatostatin receptors. Given the short physical half-life of gallium-68 (~68 min), rapid, reproducible, and GMP-compliant synthesis is essential for clinical application. Methods: An [...] Read more.
Background: [68Ga]Ga-DOTATOC is widely used in PET imaging of neuroendocrine tumors (NETs) due to its high affinity for somatostatin receptors. Given the short physical half-life of gallium-68 (~68 min), rapid, reproducible, and GMP-compliant synthesis is essential for clinical application. Methods: An optimized cassette-based automated synthesis protocol was developed using a commercial cassette. Improvements included direct generator elution into the reactor without pre-purification, use of a SepPak® C18 Plus Light cartridge for purification, replacement of HEPES with 0.3 M sodium acetate buffer (final pH ~3.8), and implementation of a non-vented sterile filter enabling automated pressure-hold integrity testing. Results: Across all batches, the synthesis yielded [68Ga]Ga-DOTATOC with high radiochemical purity (> 97%) and reproducible decay-corrected radiochemical yields up to 88.3 ± 0.6%. Total synthesis time was approximately 13 min. The final product remained stable for at least 3 h post-synthesis. The use of acetate buffer eliminated the need for HEPES-specific testing, streamlining the workflow. Automated filter testing improved GMP-compliant documentation and reduced radiation exposure for personnel. Conclusions: This optimized, cassette-based synthesis protocol enables fast, high-yield, and GMP-compliant production of [68Ga]Ga-DOTATOC. It supports clinical theranostic workflows by ensuring product quality, process standardization, and regulatory compliance. Full article
Show Figures

Graphical abstract

5 pages, 2300 KB  
Commentary
Could 18F-FES PET Be a New Driver in Therapeutic Choice for Metastatic HR+/HER2− Patients?
by Maria Vita Sanò, Alessandro Russo, Lorenza Marino, Sarah Pafumi, Martina Di Pietro and Giuseppina Rosaria Rita Ricciardi
Diagnostics 2025, 15(17), 2139; https://doi.org/10.3390/diagnostics15172139 - 25 Aug 2025
Viewed by 603
Abstract
Hormone receptor-positive (HR+)/human epidermal growth factor receptor 2-negative (HER2−) breast cancer is the most prevalent subtype. Positron emission tomography (PET) imaging with 16α-18F-fluoro-17β-fluoroestradiol (18F-FES), a radiolabeled form of estradiol, enables the assessment in vivo of ER expression, ER heterogeneity in metastatic [...] Read more.
Hormone receptor-positive (HR+)/human epidermal growth factor receptor 2-negative (HER2−) breast cancer is the most prevalent subtype. Positron emission tomography (PET) imaging with 16α-18F-fluoro-17β-fluoroestradiol (18F-FES), a radiolabeled form of estradiol, enables the assessment in vivo of ER expression, ER heterogeneity in metastatic sites and functionally active ER capable of ligand binding. This imaging modality has been recently approved as a diagnostic tool for detecting ER-positive lesions in patients with recurrent or metastatic breast cancer. Despite promising activity, the role of this powerful tool is still debated. Herein we critically analyzed current evidence supporting the use of 18F-FES PET in metastatic ER+/HER2− breast cancer, highlighting the potential challenges for clinical implementation. Full article
(This article belongs to the Special Issue Emerging Predictive Biomarkers in Breast Cancer)
Show Figures

Figure 1

13 pages, 1207 KB  
Article
Evaluation of Cyclotron Solid Target Produced Gallium-68 Chloride for the Labeling of [68Ga]Ga-PSMA-11 and [68Ga]Ga-DOTATOC
by Michał Jagodziński, Jakub Boratyński, Paulina Hamankiewicz, Łukasz Cheda, Witold Uhrynowski, Agnieszka Girstun, Joanna Trzcińska-Danielewicz, Zbigniew Rogulski and Marek Pilch-Kowalczyk
Molecules 2025, 30(17), 3458; https://doi.org/10.3390/molecules30173458 - 22 Aug 2025
Viewed by 838
Abstract
Gallium-68 is a widely used positron-emitting radionuclide in nuclear medicine, traditionally obtained from 68Ge/68Ga generators. However, increasing clinical demand has driven interest in alternative production methods, such as medical cyclotrons equipped with solid targets. This study evaluates the functional equivalence [...] Read more.
Gallium-68 is a widely used positron-emitting radionuclide in nuclear medicine, traditionally obtained from 68Ge/68Ga generators. However, increasing clinical demand has driven interest in alternative production methods, such as medical cyclotrons equipped with solid targets. This study evaluates the functional equivalence of gallium-68 chloride obtained from cyclotron solid target and formulated to be equivalent to the eluate from a germanium-gallium generator, aiming to determine whether this production method can serve as a reliable alternative for PET radiopharmaceutical applications. Preparations of [68Ga]Ga-PSMA-11 and [68Ga]Ga-DOTATOC, labeled with cyclotron-derived gallium-68 chloride, were subjected to quality control analysis using radio thin layer chromatography and radio high performance liquid chromatography. Subsequently, biodistribution studies were performed in mouse oncological models of expression of PSMA antigen and SSTR receptor to compare uptake of preparations produced with generator and cyclotron-derived isotopes. All tested formulations met the required radiochemical purity specifications. Moreover, tumor accumulation of the radiolabeled compounds was comparable regardless of the isotope source. The results support the conclusion that gallium-68 produced via cyclotron is functionally equivalent to that obtained from a generator, demonstrating its potential for interchangeable use in clinical and research radiopharmaceutical applications. Full article
Show Figures

Figure 1

14 pages, 2129 KB  
Article
Validation of a Ready-to-Use Lyophilized Kit for Labeling IL2 with 68Ga: A New Avenue for Imaging Activated T-lymphocytes in Tumor Microenvironment
by Chiara Lauri, Valeria Bentivoglio, Michela Varani, Ilenia Cammarata, Giorgia Sartori, Silvia Piconese, Giuseppe Campagna and Alberto Signore
J. Clin. Med. 2025, 14(16), 5658; https://doi.org/10.3390/jcm14165658 - 10 Aug 2025
Viewed by 425
Abstract
Background/Objectives: Radiolabeled interleukin-2 (IL2) could allow for imaging activated T-lymphocytes in the tumor microenvironment (TME). The aims of this study were to assess the shelf life of a lyophilized kit containing THP-desIL2 to allow for the labeling of IL2 with 68Ga [...] Read more.
Background/Objectives: Radiolabeled interleukin-2 (IL2) could allow for imaging activated T-lymphocytes in the tumor microenvironment (TME). The aims of this study were to assess the shelf life of a lyophilized kit containing THP-desIL2 to allow for the labeling of IL2 with 68Ga at room temperature and to test the in vitro binding of 68Ga-THP-desIL2 on different T-cell populations in order to determine which specific T-cell subset expresses the CD25 subunit of the IL2 receptor (IL2R). Methods: desIL2 was conjugated with THP and lyophilized. 68Ga labeling was performed and several quality controls, including HPLC, iTLC and SDS-PAGE, were carried out at different storage times (1, 3 and 6 months) and temperatures (4 °C and −80 °C). Moreover, flow cytometric analysis on different T-cell populations and the in vitro and competitive binding of 68Ga-THP-desIL2 were performed. Results: The lyophilized kit of THP-desIL2 was stable up to 6 months at −80 °C, preserving its sterility, integrity and acceptable values of labeling yield (51.80 ± 3.74%), radiochemical purity (>96%) and specific activity (5.59 ± 0.40 MBq/µg). Binding of 68Ga-THP-desIL2 on activated lymphocytes was specific and exhibited a low dissociation constant from IL2R on stimulated Tregs (Kd: 10−9–10−10 mol/L). Conclusions: We assessed the shelf life of a lyophilized kit containing THP-desIL2 for the easy labeling of IL2 with 68Ga at room temperature. The kit can be stored at −80 °C up to 6 months, thus facilitating the adoption of 68Ga-THP-desIL2 into clinical practice. 68Ga-THP-desIL2 showed high affinity and specificity for CD25 on activated T-lymphocytes, particularly Tregs, thus opening new opportunities for imaging immune cells trafficking in the TME. Full article
(This article belongs to the Section Nuclear Medicine & Radiology)
Show Figures

Graphical abstract

Back to TopTop