Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (806)

Search Parameters:
Keywords = rainfall–runoff simulation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2697 KB  
Article
Incorporating Pipe Age and Sizes into Pipe Roughness Coefficient Estimation for Urban Flood Modeling: A Scenario-Based Roughness Approach
by Soon Ho Kwon, Woo Jin Lee, Jong Hwan Kang and Hwandon Jun
Sustainability 2025, 17(17), 7989; https://doi.org/10.3390/su17177989 - 4 Sep 2025
Viewed by 412
Abstract
With climate change, the frequency and severity of localized heavy rainfalls are increasing. Thus, for urban drainage networks (UDNs), particularly those in aging cities such as Seoul, Republic of Korea, flood risk management challenges are mounting. Conventional design standards typically apply uniform roughness [...] Read more.
With climate change, the frequency and severity of localized heavy rainfalls are increasing. Thus, for urban drainage networks (UDNs), particularly those in aging cities such as Seoul, Republic of Korea, flood risk management challenges are mounting. Conventional design standards typically apply uniform roughness coefficients based on new pipe conditions, neglecting the ongoing performance degradation from physical influences. This study introduces a methodology that systematically incorporates pipe age and size into roughness coefficient scenarios for higher-accuracy 1D–2D rainfall–runoff hydrologic–hydraulic simulations. Eleven roughness scenarios (a baseline and ten aging-based scenarios) are applied across seven UDNs using historical rainfall data. The most representative scenario (S3) is identified using a Euclidean distance metric combining the peak water-level error and root mean square error. For two rainfall events, S3 yields substantial increases in the simulated mean flood volumes (75.02% and 76.45%) compared with the baseline, while spatial analysis reveals significantly expanded inundation areas and increased flood depths. These findings underscore the critical impact of pipe deterioration on hydraulic capacity and demonstrate the importance of incorporating aging infrastructure into flood modeling and UDN design. This approach offers empirical support for updating UDN design standards for more resilient flood management. Full article
Show Figures

Figure 1

23 pages, 8519 KB  
Article
How Do Climate Change and Deglaciation Affect Runoff Formation Mechanisms in the High-Mountain River Basin of the North Caucasus?
by Ekaterina D. Pavlyukevich, Inna N. Krylenko, Yuri G. Motovilov, Ekaterina P. Rets, Irina A. Korneva, Taisiya N. Postnikova and Oleg O. Rybak
Glacies 2025, 2(3), 10; https://doi.org/10.3390/glacies2030010 - 3 Sep 2025
Viewed by 187
Abstract
This study assesses the impact of climate change and glacier retreat on river runoff in the high-altitude Terek River Basin using the physically based ECOMAG hydrological model. Sensitivity experiments examined the influence of glaciation, precipitation, and air temperature on runoff variability. Results indicate [...] Read more.
This study assesses the impact of climate change and glacier retreat on river runoff in the high-altitude Terek River Basin using the physically based ECOMAG hydrological model. Sensitivity experiments examined the influence of glaciation, precipitation, and air temperature on runoff variability. Results indicate that glacier retreat primarily affects streamflow in upper reaches during peak melt (July–October), while precipitation changes influence both annual runoff and peak flows (May–October). Rising temperatures shift snowmelt to earlier periods, increasing runoff in spring and autumn but reducing it in summer. The increase in autumn runoff is also due to the shift between solid and liquid precipitation, as warmer temperatures cause more precipitation to fall as rain, rather than snow. Scenario-based modeling incorporated projected glacier area changes (GloGEMflow-DD) and regional climate data (CORDEX) under RCP2.6 and RCP8.5 scenarios. Simulated runoff changes by the end of the 21st century (2070–2099) compared to the historical period (1977–2005) ranged from −2% to +5% under RCP2.6 and from −8% to +14% under RCP8.5. Analysis of runoff components (snowmelt, rainfall, and glacier melt) revealed that changes in river flow are largely determined by the elevation of snow and glacier accumulation zones and the rate of their degradation. The projected trends are consistent with current observations and emphasize the need for adaptive water resource management and risk mitigation strategies in glacier-fed catchments under climate change. Full article
Show Figures

Figure 1

21 pages, 12309 KB  
Article
Analysis of Surface Runoff and Ponding Infiltration Patterns Induced by Underground Block Caving Mining—A Case Study
by Shihui Jiao, Yong Zhao, Tianhong Yang, Xin Wen, Qingshan Ma, Qianbai Zhao and Honglei Liu
Appl. Sci. 2025, 15(17), 9516; https://doi.org/10.3390/app15179516 - 29 Aug 2025
Viewed by 252
Abstract
Surface subsidence induced by underground mining in mining areas significantly alters surface topography and hydrogeological conditions, forming depressions and fissures, thereby affecting regional runoff-ponding processes and groundwater infiltration patterns. Accurate assessment of infiltration volumes in subsidence zones under heavy rainfall is crucial for [...] Read more.
Surface subsidence induced by underground mining in mining areas significantly alters surface topography and hydrogeological conditions, forming depressions and fissures, thereby affecting regional runoff-ponding processes and groundwater infiltration patterns. Accurate assessment of infiltration volumes in subsidence zones under heavy rainfall is crucial for designing underground drainage systems and evaluating water-inrush risks in open-pit to underground transition mines. Taking the surface subsidence area of the Dahongshan Iron Mine as a case study, this paper proposes a rainfall infiltration calculation method based on the precise delineation of surface ponding-infiltration zones. By numerically simulating the subsidence range, the study divides the area into two distinct infiltration characteristic zones under different mining states: the caved zone and the water-conducting fracture zone. The rainfall infiltration volume under storm conditions was calculated separately for each zone. The results indicate that high-intensity mining-induced subsidence leads to a nonlinear surge in stormwater infiltration, primarily due to the significant expansion of the highly permeable caved zone. The core mechanism lies in the area expansion of the caved zone as a rapid infiltration channel, which dominates the overall infiltration capacity multiplication. These findings provide a scientific basis for the design of mine drainage systems and the prevention of water-inrush disasters. Full article
(This article belongs to the Special Issue Rock Mechanics and Mining Engineering)
Show Figures

Figure 1

14 pages, 2725 KB  
Article
Quantifying Soil Erosion Processes Based on Micro-ΔDEM
by Na Ta, Chenguang Wang, Shixiang Zhao and Qingfeng Zhang
Water 2025, 17(17), 2557; https://doi.org/10.3390/w17172557 - 28 Aug 2025
Viewed by 734
Abstract
The spatial distribution traits of microtopography exert a profound influence on the generation of runoff and sediment. Nevertheless, the underlying mechanism through which microtopography alterations, triggered by diverse factors, impact soil erosion remains largely elusive. In light of that, this study simulated conventional [...] Read more.
The spatial distribution traits of microtopography exert a profound influence on the generation of runoff and sediment. Nevertheless, the underlying mechanism through which microtopography alterations, triggered by diverse factors, impact soil erosion remains largely elusive. In light of that, this study simulated conventional farming practices on the Loess Plateau: artificial backhoe, artificial digging, and contour tillage (CT), with no tillage (CK) designated as the control group. The objective was to meticulously investigate the variations in microtopography, runoff, and sediment yield under disparate treatment conditions, rainfall intensities (60 mm/h and 90 mm/h), and slope gradients (5°, 10°, and 20°). The principal findings were as follows: With the amplification of rainfall intensity, the elevation change rate and fractal dimension of various treatments generally exhibited an upward trend, whereas the structural ratio showed a downward tendency. As the slope gradient increased, the elevation change rate and structural ratio of different treatments typically increased. However, the fractal dimension displayed no conspicuous alteration at a rainfall intensity of 60 mm/h and a decreasing trend at 90 mm/h. Under different rainfall intensity scenarios, a robust linear correlation existed between the fractal dimension and both runoff and sediment yield (R2 > 0.73), rendering it an outstanding parameter for estimating these variables within the scope of this research. Path analysis revealed that the indirect effect of microtopography on sediment yield, which was mediated by runoff, constituted 77.80–96.47% of the direct effect. Moreover, under different rainfall intensities, the alterations in runoff and sediment yield ensuing from unit-scale changes in the fractal dimension varied significantly. Specifically, at a rainfall intensity of 90 mm/h, these changes were 1.70-fold and 3.75-fold those at 60 mm/h, respectively. Overall, the CT treatment engendered the lowest runoff and sediment yield, along with the highest fractal dimension, thereby emerging as the most efficacious measure for soil and water conservation in this study. The research outcomes offer valuable perspectives for further elucidating the mechanisms through which tillage practices impinge upon soil erosion. Full article
(This article belongs to the Special Issue Soil Erosion and Soil and Water Conservation, 2nd Edition)
Show Figures

Figure 1

25 pages, 15090 KB  
Article
Climate Change Effects on Precipitation and Streamflow in the Mediterranean Region
by Abdulkadir Baycan, Osman Sonmez and Gamze Tuncer Evcil
Water 2025, 17(17), 2556; https://doi.org/10.3390/w17172556 - 28 Aug 2025
Viewed by 661
Abstract
This study investigates the impact of climate change on the Mudurnu Stream Basin in northwest Türkiye by analyzing climate parameters in the Mediterranean region. Historical data from EC-Earth2, HadGEM2-ES, and MPI-ESM-MR GCMs from the CMIP5 Euro-CORDEX archive were assessed, and future precipitation and [...] Read more.
This study investigates the impact of climate change on the Mudurnu Stream Basin in northwest Türkiye by analyzing climate parameters in the Mediterranean region. Historical data from EC-Earth2, HadGEM2-ES, and MPI-ESM-MR GCMs from the CMIP5 Euro-CORDEX archive were assessed, and future precipitation and temperature data were derived using five statistical bias correction methods for the selected EC-Earth2 model under RCP4.5 and RCP8.5 scenarios. The SWAT model was employed to simulate future runoff amounts for the Mudurnu Stream Basin. The findings reveal notable changes in precipitation and temperature. The annual and seasonal variations of total precipitation and average, maximum, and minimum temperatures for the RCP4.5 and RCP8.5 scenarios in the Sakarya and Mudurnu regions were analyzed and determined. The projections for future river flow indicate a significant increase in precipitation during the rainy seasons. The Mudurnu Stream mainstem will experience an increase in flow of between 70 and 140% under RCP4.5 and between 80 and 160% under RCP8.5. In the Dinsiz Stream tributary, a 32–55% increase is observed for the spring and summer months. In this context, the rainfall and runoff projections required for the estimation of potential drought and flood risks in the near and distant future were calculated. Full article
Show Figures

Figure 1

25 pages, 7884 KB  
Article
Watershed-BIM Integration for Urban Flood Resilience: A Framework for Simulation, Assessment, and Planning
by Panagiotis Tsikas, Athanasios Chassiakos and Vasileios Papadimitropoulos
Sustainability 2025, 17(17), 7687; https://doi.org/10.3390/su17177687 - 26 Aug 2025
Viewed by 649
Abstract
Urban flooding represents a growing global concern, especially in areas with rapid urbanization, unregulated urban sprawl and climate change conditions. Conventional flood modeling approaches do not effectively capture the complex dynamics between natural watershed behavior and urban infrastructure; they typically simulate these domains [...] Read more.
Urban flooding represents a growing global concern, especially in areas with rapid urbanization, unregulated urban sprawl and climate change conditions. Conventional flood modeling approaches do not effectively capture the complex dynamics between natural watershed behavior and urban infrastructure; they typically simulate these domains in isolation. This study introduces the Watershed-BIM methodology, a three-dimensional simulation framework that integrates Building and City Information Modeling (BIM/CIM), Geographic Information Systems (GIS), Flood Risk Assessment (FRA), and Flood Risk Management (FRM) into a single framework. Autodesk InfraWorks 2024, Civil 3D 2024, and RiverFlow2D v8.14 software are incorporated in the development. The methodology enhances interoperability and prediction accuracy by bridging hydrological processes with detailed urban-scale data. The framework was tested on a real-world flash flood event in Mandra, Greece, an area frequently exposed to extreme rainfall and runoff events. A specific comparison with observed flood characteristics indicates improved accuracy in comparison to other hydrological analyses (e.g., by HEC-RAS simulation). Beyond flood depth, the model offers additional insights into flow direction, duration, and localized water accumulation around buildings and infrastructure. In this context, integrated tools such as Watershed-BIM stand out as essential instruments for translating complex flood dynamics into actionable, city-scale resilience planning. Full article
(This article belongs to the Special Issue Sustainable Project, Production and Service Operations Management)
Show Figures

Figure 1

33 pages, 12539 KB  
Article
A Flood Forecasting Method in the Francolí River Basin (Spain) Using a Distributed Hydrological Model and an Analog-Based Precipitation Forecast
by Daniel Carril-Rojas, Carlo Guzzon, Luis Mediero, Javier Fernández-Fidalgo, Luis Garrote, Maria Carmen Llasat and Raul Marcos-Matamoros
Hydrology 2025, 12(8), 220; https://doi.org/10.3390/hydrology12080220 - 19 Aug 2025
Viewed by 795
Abstract
Recent flooding events in Spain have highlighted the need to develop real-time flood forecasts to estimate streamflows over the next few hours and days. Therefore, a meteorological forecast that provides possible precipitation for the upcoming hours combined with a hydrological model to simulate [...] Read more.
Recent flooding events in Spain have highlighted the need to develop real-time flood forecasts to estimate streamflows over the next few hours and days. Therefore, a meteorological forecast that provides possible precipitation for the upcoming hours combined with a hydrological model to simulate the rainfall-runoff processes in the basin and its flood response are needed. In this paper, a probabilistic flood forecasting tool is proposed for the Francolí river basin, located in Catalonia (Spain). For this purpose, the Real-time Interactive Basin Simulator (RIBS) distributed hydrological model was calibrated in this basin for a set of flood events. Then, a series of rainfall field forecasts based on the analog method have been used as input data in the hydrological model, obtaining a set of hydrographs for given flood events as output. Finally, a probabilistic forecast that supplies the probability distribution of the possible response flows of the Francolí river is provided for a set of episodes. Full article
(This article belongs to the Section Water Resources and Risk Management)
Show Figures

Figure 1

30 pages, 7914 KB  
Article
Impact of Climate Change on Water-Sensitive Urban Design Performances in the Wet Tropical Sub-Catchment
by Sher Bahadur Gurung, Robert J. Wasson, Michael Bird and Ben Jarihani
Earth 2025, 6(3), 99; https://doi.org/10.3390/earth6030099 - 19 Aug 2025
Viewed by 381
Abstract
Existing drainage systems have limited capacity to mitigate future climate change-induced flooding problems effectively. However, some studies have evaluated the effectiveness of integrating Water-Sensitive Urban Design (WSUD) with existing drainage systems in mitigating flooding in tropical regions. This study examined the performance of [...] Read more.
Existing drainage systems have limited capacity to mitigate future climate change-induced flooding problems effectively. However, some studies have evaluated the effectiveness of integrating Water-Sensitive Urban Design (WSUD) with existing drainage systems in mitigating flooding in tropical regions. This study examined the performance of drainage systems and integrated WSUD options under current and future climate scenarios in a sub-catchment of Saltwater Creek, a tropical catchment located in Cairns, Australia. A combination of one-dimensional (1D) and two-dimensional (1D2D) runoff generation and routing models (RORB, storm injector, and MIKE+) is used for simulating runoff and inundation. Several types of WSUDs are tested alongside different climate change scenarios to assess the impact of WSUD in flood mitigation. The results indicate that the existing grey infrastructure is insufficient to address the anticipated increase in precipitation intensity and the resulting flooding caused by climate change in the Engineers Park sub-catchment. Under future climate change scenarios, moderate rainfall events contribute to a 25% increase in peak flow (95% confidence interval = [1.5%, 0.8%]) and total runoff volume (95% confidence interval = [1.05%, 6.5%]), as per the Representative Concentration Pathway 8.5 in the 2090 scenario. Integrating WSUD with existing grey infrastructure positively contributed to reducing the flooded area by 18–54% under RCP 8.5 in 2090. However, the efficiency of these combined systems is governed by several factors such as rainfall characteristics, the climate change scenario, rain barrel and porous pavement systems, and the size and physical characteristics of the study area. In the tropics, the flooding problem is estimated to increase under future climatic conditions, and the integration of WSUD with grey infrastructure can play a positive role in reducing floods and their impacts. However, careful interpretation of results is required with an additional assessment clarifying how these systems perform in large catchments and their economic viability for extensive applications. Full article
(This article belongs to the Topic Water Management in the Age of Climate Change)
Show Figures

Figure 1

19 pages, 8271 KB  
Article
Characteristics of Hydrodynamic Parameters of Different Understory Vegetation Patterns
by Chenhui Zhang, Jiali Wang and Jianbo Jia
Plants 2025, 14(16), 2556; https://doi.org/10.3390/plants14162556 - 17 Aug 2025
Viewed by 489
Abstract
The presence of understory vegetation not only influences slope-scale soil and water conservation but also exerts a profound effect on hydrodynamic characteristics and the processes of runoff and sediment production. Therefore, in this study, different vegetation types and vegetation coverages (bare land, 30%, [...] Read more.
The presence of understory vegetation not only influences slope-scale soil and water conservation but also exerts a profound effect on hydrodynamic characteristics and the processes of runoff and sediment production. Therefore, in this study, different vegetation types and vegetation coverages (bare land, 30%, 60%, and 90%) were set up by simulating rainfall (45, 60, 90, and 120 mm·h−1) to evaluate the runoff-sediment process and the response characteristics of hydrodynamic parameters. The results showed that increasing vegetation cover significantly reduced soil erosion on forest slopes (p < 0.05). When the vegetation cover ranged from 60% to 90%, vegetation pattern C and pattern D were the most effective in suppressing erosion, where increased cover improved runoff stability. Under low-cover conditions, overland flow tended toward turbulent and rapid regimes, whereas under high cover conditions, flow was primarily laminar and slow. Patterns C and D significantly reduced flow velocity and water depth (p < 0.05). Structural equation patterning revealed that, under different vegetation patterns, the runoff power (ω), Reynolds number (Re), and resistance coefficient (f) more effectively characterized the erosion process. Among these, the Reynolds number and runoff power were the dominant factors driving erosion on red soil slopes. By contrast, runoff shear stress was significantly reduced under high-cover conditions and showed weak correlation with sediment yield, suggesting that it was unsuitable as an indicator of slope erosion. Segmental vegetation arrangements and increasing vegetation cover near runoff outlets—especially at 60–90% coverage—effectively reduced soil erosion. These findings provide scientific insight into the hydrodynamic mechanisms of vegetation cover on slopes and offer theoretical support for optimizing soil and water conservation strategies on hilly terrain. Full article
(This article belongs to the Special Issue Plant Challenges in Response to Salt and Water Stress)
Show Figures

Figure 1

22 pages, 6469 KB  
Article
Construction-Induced Waterlogging Simulation in Pinglu Canal Using a Coupled SWMM-HEC-RAS Model: Implications for Inland Waterway Engineering
by Jingwen Li, Jiangdong Feng, Qingyang Wang and Yongtao Zhang
Water 2025, 17(16), 2415; https://doi.org/10.3390/w17162415 - 15 Aug 2025
Viewed by 459
Abstract
Focusing on the Lingshan section of Guangxi’s Pinglu Canal, this study addresses frequent waterlogging during construction under subtropical monsoon rainfall. Human disturbances alter hydrological processes, causing project delays and economic losses. We developed a coupled Storm Water Management Model (SWMM 1D hydrological) and [...] Read more.
Focusing on the Lingshan section of Guangxi’s Pinglu Canal, this study addresses frequent waterlogging during construction under subtropical monsoon rainfall. Human disturbances alter hydrological processes, causing project delays and economic losses. We developed a coupled Storm Water Management Model (SWMM 1D hydrological) and Hydrologic Engineering Center—River Analysis System 2D (HEC-RAS 2D hydrodynamic) model. High-resolution Unmanned Aerial Vehicle—Light Detection and Ranging (UAV-LiDAR) Digital Elevation Model (DEM) delineated sub-catchments, while the Green-Ampt model quantified soil conductivity decay. Synchronized runoff data drove high-resolution HEC-RAS 2D simulations of waterlogging evolution under design storms (1–100-year return periods) and a real event (10 May 2025). Key results: Water depth exhibits nonlinear growth with return period—slow at low intensities but accelerating beyond 50-year events, particularly at temporary road junctions where embankments impede flow. Additionally, intensive intermittent rainfall causes significant ponding at excavation pit-road intersections, and optimized drainage drastically shortens recession time. The study reveals a “rapid runoff generation–restricted convergence–prolonged ponding” mechanism under construction disturbance, validates the model’s capability for complex scenarios, and provides critical data for real-time waterlogging risk prediction and drainage optimization during the canal’s construction. Full article
(This article belongs to the Topic Hydraulic Engineering and Modelling)
Show Figures

Figure 1

31 pages, 11711 KB  
Article
Blue–Green Infrastructure Network Planning in Urban Small Watersheds Based on Water Balance
by Xin Chen and Xiaojun Wang
Land 2025, 14(8), 1652; https://doi.org/10.3390/land14081652 - 15 Aug 2025
Viewed by 550
Abstract
The rapid expansion of urbanization and inadequate planning have triggered a water balance crisis in many cities, manifesting as both the need for artificial lake supplementation and frequent urban flooding. Using the Xuanwu Lake watershed in Nanjing as a case study, this research [...] Read more.
The rapid expansion of urbanization and inadequate planning have triggered a water balance crisis in many cities, manifesting as both the need for artificial lake supplementation and frequent urban flooding. Using the Xuanwu Lake watershed in Nanjing as a case study, this research aims to optimize the Blue–Green Infrastructure (BGI) network to maximize rainfall utilization within the watershed. The ultimate goal is to restore natural water balance processes and reduce reliance on artificial supplementation while mitigating urban flood risks. First, the Soil Conservation Service Curve Number (SCS–CN) model is employed to estimate the maximum potential of natural convergent flow within the watershed. Second, drawing on landscape connectivity theory, a multi-level BGI network optimization model is developed by integrating the Minimum Cumulative Resistance (MCR) model and the gravity model, incorporating both hydrological connectivity and flood safety considerations. Third, a water balance model based on the Storm Water Management Model (SWMM) framework and empirical formulas is constructed and coupled with the network optimization model to simulate and evaluate water budget performance under optimized scenarios. The results indicate that the optimized scheme can reduce artificial supplementation to Xuanwu Lake by 62.2% in June, while also ensuring effective supplementation throughout the year. Annual runoff entering the lake reaches 13.25 million cubic meters, meeting approximately 13% of the current annual supplementation demand. Moreover, under a 100-year return period flood scenario, the optimized network reduces total watershed flood volume by 35% compared to pre-optimization conditions, with flood-prone units experiencing reductions exceeding 50%. These findings underscore the optimized BGI network scheme’s capacity to reallocate rainwater resources efficiently, promoting a transition in urban water governance from an “engineering-dominated” approach to an “ecology-oriented and self-regulating” paradigm. Full article
(This article belongs to the Section Urban Contexts and Urban-Rural Interactions)
Show Figures

Figure 1

19 pages, 9115 KB  
Article
The Effect of Vegetation Restoration on Erosion Processes and Runoff on a Hillslope Under Simulated Rainfall
by Lele Niu, Jinfei Hu, Pengfei Li, Guangju Zhao and Xingmin Mu
Water 2025, 17(16), 2411; https://doi.org/10.3390/w17162411 - 15 Aug 2025
Viewed by 461
Abstract
Determining the impact of vegetation restoration on runoff and sediment yield is crucial for formulating science-based slope management practices. The study analyzed runoff and sediment yield behavior in relation to varying vegetation cover and components, based on field-simulated rainfall experiments. The results showed [...] Read more.
Determining the impact of vegetation restoration on runoff and sediment yield is crucial for formulating science-based slope management practices. The study analyzed runoff and sediment yield behavior in relation to varying vegetation cover and components, based on field-simulated rainfall experiments. The results showed that both runoff and sediment yield rates tended to decrease as vegetation cover increased. Vegetation contributed more significantly to the reduction in sediment yield than to the reduction in runoff. For a rainfall intensity of 1.5 mm·min−1, the sediment yield reduced to 37%, 73%, 78%, and 94% under the vegetation coverage of 20%, 40%, 60%, and 90%, respectively. The corresponding sediment yield reduction effects at the rainfall intensity of 2.0 mm·min−1 were 27%, 67%, 78% and 89%, respectively. At a rainfall intensity of 1.5 mm·min−1, the sediment yield reduction contributions of the litter layer, stem-leaf layer, and roots were 36%, 3%, and 51%, respectively. The corresponding sediment yield reduction contributions at the 2.0 mm·min−1 rainfall intensity were 30%, 7%, and 51%, respectively. Full article
(This article belongs to the Special Issue Applications of Remote Sensing and GISs in River Basin Ecosystems)
Show Figures

Figure 1

29 pages, 2318 KB  
Article
A Bounded Sine Skewed Model for Hydrological Data Analysis
by Tassaddaq Hussain, Mohammad Shakil, Mohammad Ahsanullah and Bhuiyan Mohammad Golam Kibria
Analytics 2025, 4(3), 19; https://doi.org/10.3390/analytics4030019 - 13 Aug 2025
Viewed by 577
Abstract
Hydrological time series frequently exhibit periodic trends with variables such as rainfall, runoff, and evaporation rates often following annual cycles. Seasonal variations further contribute to the complexity of these data sets. A critical aspect of analyzing such phenomena is estimating realistic return intervals, [...] Read more.
Hydrological time series frequently exhibit periodic trends with variables such as rainfall, runoff, and evaporation rates often following annual cycles. Seasonal variations further contribute to the complexity of these data sets. A critical aspect of analyzing such phenomena is estimating realistic return intervals, making the precise determination of these values essential. Given this importance, selecting an appropriate probability distribution is paramount. To address this need, we introduce a flexible probability model specifically designed to capture periodicity in hydrological data. We thoroughly examine its fundamental mathematical and statistical properties, including the asymptotic behavior of the probability density function (PDF) and hazard rate function (HRF), to enhance predictive accuracy. Our analysis reveals that the PDF exhibits polynomial decay as x, ensuring heavy-tailed behavior suitable for extreme events. The HRF demonstrates decreasing or non-monotonic trends, reflecting variable failure risks over time. Additionally, we conduct a simulation study to evaluate the performance of the estimation method. Based on these results, we refine return period estimates, providing more reliable and robust hydrological assessments. This approach ensures that the model not only fits observed data but also captures the underlying dynamics of hydrological extremes. Full article
Show Figures

Figure 1

15 pages, 8138 KB  
Article
Study on the Characteristics of Straw Fiber Curtains for Protecting Embankment Slopes from Rainfall Erosion
by Xiangyong Zhong, Feng Xu, Rusong Nie, Yang Li, Chunyan Zhao and Long Zhang
Eng 2025, 6(8), 179; https://doi.org/10.3390/eng6080179 - 1 Aug 2025
Viewed by 242
Abstract
Straw fiber curtain contains a plant fiber blanket woven from crop straw, which is mainly used to protect embankment slopes from rainwater erosion. To investigate the erosion control performance of slopes covered with straw fiber curtains of different structural configurations, physical model tests [...] Read more.
Straw fiber curtain contains a plant fiber blanket woven from crop straw, which is mainly used to protect embankment slopes from rainwater erosion. To investigate the erosion control performance of slopes covered with straw fiber curtains of different structural configurations, physical model tests were conducted in a 95 cm × 65 cm × 50 cm (length × height × width) test box with a slope ratio of 1:1.5 under controlled artificial rainfall conditions (20 mm/h, 40 mm/h, and 60 mm/h). The study evaluated the runoff characteristics, sediment yield, and key hydrodynamic parameters of slopes under the coverage of different straw fiber curtain types. The results show that the A-type straw fiber curtain (woven with strips of straw fiber) has the best effect on water retention and sediment reduction, while the B-type straw fiber curtain (woven with thicker straw strips) with vertical straw fiber has a better effect regarding water retention and sediment reduction than the B-type transverse straw fiber curtain. The flow of rainwater on a slope covered with straw fiber curtain is mainly a laminar flow. Straw fiber curtain can promote the conversion of water flow from rapids to slow flow. The Darcy-Weisbach resistance coefficient of straw fiber curtain increases at different degrees with an increase in rainfall time. Full article
Show Figures

Figure 1

15 pages, 68949 KB  
Article
Hydraulic Modeling of Extreme Flow Events in a Boreal Regulated River to Assess Impact on Grayling Habitat
by M. Lovisa Sjöstedt, J. Gunnar I. Hellström, Anders G. Andersson and Jani Ahonen
Water 2025, 17(15), 2230; https://doi.org/10.3390/w17152230 - 26 Jul 2025
Viewed by 496
Abstract
Climate change is projected to significantly alter hydrological conditions across the Northern Hemisphere, with increased precipitation variability, more intense rainfall events, and earlier, rain-driven spring floods in regions like northern Sweden. These changes will affect both natural ecosystems and hydropower-regulated rivers, particularly during [...] Read more.
Climate change is projected to significantly alter hydrological conditions across the Northern Hemisphere, with increased precipitation variability, more intense rainfall events, and earlier, rain-driven spring floods in regions like northern Sweden. These changes will affect both natural ecosystems and hydropower-regulated rivers, particularly during ecologically sensitive periods such as the grayling spawning season in late spring. This study examines the impact of extreme spring flow conditions on grayling spawning habitats by analyzing historical runoff data and simulating high-flow events using a 2D hydraulic model in Delft3D FM. Results show that previously suitable spawning areas became too deep or experienced flow velocities beyond ecological thresholds, rendering them unsuitable. These hydrodynamic shifts could have cascading effects on aquatic vegetation and food availability, ultimately threatening the survival and reproductive success of grayling populations. The findings underscore the importance of integrating ecological considerations into future water management and hydropower operation strategies in the face of climate-driven flow variability. Full article
Show Figures

Figure 1

Back to TopTop