applsci-logo

Journal Browser

Journal Browser

Rock Mechanics and Mining Engineering

A special issue of Applied Sciences (ISSN 2076-3417). This special issue belongs to the section "Civil Engineering".

Deadline for manuscript submissions: 20 September 2025 | Viewed by 3172

Special Issue Editors


E-Mail Website
Guest Editor
Center for Rock Instability and Seismicity Research, Northeastern University, Shenyang 110819, China
Interests: rock mechanics; microseismic monitoring; disaster warning; mine water inrush
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Center for Rock Instability and Seismicity Research, Northeastern University, Shenyang 110819, China
Interests: slope engineering; mining water inrush; rock mechanics

Special Issue Information

Dear Colleagues,

To promote theoretical innovation and improve technological practices in the fields of rock mechanics and mining engineering, this Special Issue focuses on the challenges of establishing rock mechanics during deep resource development and in complex geological environments. It will cover the constitutive model of rock mechanics, multi-field coupling effects, the stability of surrounding rock during deep mining, the prevention and control of dynamic disasters (such as rock bursts and water inrush), and intelligent monitoring and numerical simulation technology, among others. This Special Issue aims to simultaneously focus on green mining and sustainable development issues, including low-ecological-disturbance mining methods, the utilization of mining waste, and ecological restoration technologies for goaf areas. We encourage the submission of interdisciplinary research, such as the use of artificial intelligence and big data in mining optimization, the development of new support materials, and rock mechanics issues in deep geothermal energy development. All submissions should have both theoretical depth and practical value, aiming to provide scientific support for deep resource development, the safe and efficient operation of mines, and environmental coordination. We welcome original research, technical cases, and cutting-edge reviews to promote the industry’s technological innovation and sustainable development.

Dr. Yong Zhao
Prof. Dr. Tianhong Yang
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Applied Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • rock mechanics
  • mining engineering
  • disaster warning and prevention
  • multi-field coupling
  • surrounding rock stability

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (7 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

23 pages, 4194 KB  
Article
Study on the Evaluation System of Rock Mass Quality of Slopes Under the Influence of Freeze–Thaw Cycles
by Zhenling Gao, Penghai Zhang, Ning Gao, Wanni Yan, Honglei Liu and Jun Hou
Appl. Sci. 2025, 15(18), 10010; https://doi.org/10.3390/app151810010 - 12 Sep 2025
Viewed by 94
Abstract
This study takes the Wushan open-pit mine, a typical open-pit mine in cold regions, as the engineering background. Based on the measured extreme temperature values of slope rock masses over one year, a freeze–thaw cycle testing scheme is designed. By conducting experiments under [...] Read more.
This study takes the Wushan open-pit mine, a typical open-pit mine in cold regions, as the engineering background. Based on the measured extreme temperature values of slope rock masses over one year, a freeze–thaw cycle testing scheme is designed. By conducting experiments under varying numbers of freeze–thaw cycles and burial depths, the degradation patterns of uniaxial compressive strength and tensile strength of the rock are revealed. The rock material constant mi, representing the rock’s hardness and brittleness, is calculated based on the experimental results. Furthermore, shear tests are carried out on rock masses containing through-going structural planes and infill materials to derive the variation patterns of cohesion and internal friction angle. A comprehensive analysis is conducted on the effects of freeze–thaw cycling and burial depth on rock mechanical properties and infill material parameters, leading to the construction of a spatial variability characterization model for mechanical parameters. Finally, the rock mass fracture coefficient Kw and infill fracture coefficient Kf are proposed to modify the Hoek–Brown failure criterion under freeze–thaw conditions, thereby providing theoretical support for slope stability analysis and engineering design in cold regions. Full article
(This article belongs to the Special Issue Rock Mechanics and Mining Engineering)
Show Figures

Figure 1

27 pages, 5466 KB  
Article
Experimental Study on Damage and Degradation Mechanism of Biotite Granulite Under Freeze–Thaw Action
by Bing Liang and Dong Xia
Appl. Sci. 2025, 15(17), 9665; https://doi.org/10.3390/app15179665 - 2 Sep 2025
Viewed by 380
Abstract
With the increasing intensity of resource development in alpine regions, numerous geotechnical engineering problems in cold regions have become increasingly prominent. In order to explore the damage and deterioration laws of rocks caused by freeze–thaw action, this paper takes the biotite granulite on [...] Read more.
With the increasing intensity of resource development in alpine regions, numerous geotechnical engineering problems in cold regions have become increasingly prominent. In order to explore the damage and deterioration laws of rocks caused by freeze–thaw action, this paper takes the biotite granulite on the eastern slope of Yanshan Iron Mine as the research object. By analyzing the changes in mechanical and acoustic emission parameters of rock samples after freeze–thaw, and combining with existing freeze–thaw damage theories, the suitable freeze–thaw damage mechanism for this rock is further explored, and a freeze–thaw damage model for biotite granulite with low and high freeze–thaw cycles is established. The results of this study demonstrate that biotite granulite subjected to a lower number of freeze–thaw cycles exhibits significantly greater reductions in peak strength, elastic modulus, acoustic emission (AE) hit counts, cumulative ringing counts, and cumulative energy compared with specimens exposed to a higher number of cycles. As the freeze–thaw cycles increase, the formation of newly generated large-scale fractures during failure becomes progressively less pronounced, leading to a diminished resistance to deformation and a gradual increase in plastic deformation during loading. A coupled damage variable relationship was established for biotite granulite under both low and high freeze–thaw regimes based on cumulative AE ringing counts. In the early three stress stages, specimens subjected to fewer cycles exhibited fewer microcracks, with no clear spatial correlation between their distribution and the eventual fracture coalescence zones, whereas specimens exposed to a higher number of cycles showed a distinct sequential relationship between microcrack initiation sites and subsequent crack coalescence. Building upon existing freeze–thaw damage theories, the freeze–thaw damage mechanism specific to biotite granulite was further elucidated. Accordingly, a freeze–thaw damage model for low- and high-cycle conditions was developed and preliminarily validated. Full article
(This article belongs to the Special Issue Rock Mechanics and Mining Engineering)
Show Figures

Figure 1

21 pages, 12309 KB  
Article
Analysis of Surface Runoff and Ponding Infiltration Patterns Induced by Underground Block Caving Mining—A Case Study
by Shihui Jiao, Yong Zhao, Tianhong Yang, Xin Wen, Qingshan Ma, Qianbai Zhao and Honglei Liu
Appl. Sci. 2025, 15(17), 9516; https://doi.org/10.3390/app15179516 - 29 Aug 2025
Viewed by 317
Abstract
Surface subsidence induced by underground mining in mining areas significantly alters surface topography and hydrogeological conditions, forming depressions and fissures, thereby affecting regional runoff-ponding processes and groundwater infiltration patterns. Accurate assessment of infiltration volumes in subsidence zones under heavy rainfall is crucial for [...] Read more.
Surface subsidence induced by underground mining in mining areas significantly alters surface topography and hydrogeological conditions, forming depressions and fissures, thereby affecting regional runoff-ponding processes and groundwater infiltration patterns. Accurate assessment of infiltration volumes in subsidence zones under heavy rainfall is crucial for designing underground drainage systems and evaluating water-inrush risks in open-pit to underground transition mines. Taking the surface subsidence area of the Dahongshan Iron Mine as a case study, this paper proposes a rainfall infiltration calculation method based on the precise delineation of surface ponding-infiltration zones. By numerically simulating the subsidence range, the study divides the area into two distinct infiltration characteristic zones under different mining states: the caved zone and the water-conducting fracture zone. The rainfall infiltration volume under storm conditions was calculated separately for each zone. The results indicate that high-intensity mining-induced subsidence leads to a nonlinear surge in stormwater infiltration, primarily due to the significant expansion of the highly permeable caved zone. The core mechanism lies in the area expansion of the caved zone as a rapid infiltration channel, which dominates the overall infiltration capacity multiplication. These findings provide a scientific basis for the design of mine drainage systems and the prevention of water-inrush disasters. Full article
(This article belongs to the Special Issue Rock Mechanics and Mining Engineering)
Show Figures

Figure 1

20 pages, 5383 KB  
Article
Research on Deformation Characteristics and Failure Modes of Tunnel Anchoring in Conglomerate Layers Based on Field Scaled Model Tests
by Zhijin Shen, Menglong Dong, Li Zhang, Aipeng Tang and Xiaokai Li
Appl. Sci. 2025, 15(14), 7743; https://doi.org/10.3390/app15147743 - 10 Jul 2025
Cited by 1 | Viewed by 299
Abstract
Tunnel anchors are critical for suspension bridge stability, yet their theoretical framework remains underdeveloped, limiting engineering applications. This study addresses this gap through a pioneering 1:12 in situ scaled model test, combining geological surveys, rock mechanics testing, and large-scale experimentation on a Yangtze [...] Read more.
Tunnel anchors are critical for suspension bridge stability, yet their theoretical framework remains underdeveloped, limiting engineering applications. This study addresses this gap through a pioneering 1:12 in situ scaled model test, combining geological surveys, rock mechanics testing, and large-scale experimentation on a Yangtze River bridge case. Key findings include (1) quantified rock mechanics parameters for anchorage conglomerates, (2) load–displacement relationships revealing surrounding rock-dominated failure, and (3) deformation thresholds for anchor integrity. The 1:12 in situ model overcomes lab-scale limitations, providing the first high-fidelity validation of tunnel anchor behavior. The results offer essential design benchmarks, advancing both theory and practice for large-span bridges. Full article
(This article belongs to the Special Issue Rock Mechanics and Mining Engineering)
Show Figures

Figure 1

21 pages, 6033 KB  
Article
Study on Microseismic Monitoring of Landslide Induced by Blasting Caving
by Fuhua Peng and Weijun Wang
Appl. Sci. 2025, 15(13), 7567; https://doi.org/10.3390/app15137567 - 5 Jul 2025
Viewed by 476
Abstract
This study focuses on the monitoring and early warning of landslide hazards induced by blasting caving in the Shizhuyuan polymetallic mine. A 30-channel microseismic monitoring system was deployed to capture the spatiotemporal characteristics of rock mass fracturing during a large-scale directional stratified blasting [...] Read more.
This study focuses on the monitoring and early warning of landslide hazards induced by blasting caving in the Shizhuyuan polymetallic mine. A 30-channel microseismic monitoring system was deployed to capture the spatiotemporal characteristics of rock mass fracturing during a large-scale directional stratified blasting operation (419 tons) conducted on 21 June 2012. A total of 85 microseismic events were recorded, revealing two distinct zones of intense rock failure: Zone I (below 630 m elevation, P1–P3, C6–C8) and Zone II (above 630 m elevation, P4–P5, C1–C6). The upper slope collapse occurred within 5 min post-blasting, as documented by real-time monitoring and video recordings. Principal component analysis (PCA) was applied to 54 microseismic events in Zone II to determine the kinematic characteristics of the slip surface, yielding a dip direction of 324.6° and a dip angle of 73.2°. Complementary moment tensor analysis further revealed that shear failure dominated the slope instability, with pronounced shear fracturing observed in the 645–700 m height range. This study innovatively integrates spatial microseismic event distribution with geomechanical mechanisms, elucidating the dynamic evolution of blasting-induced landslides. The proposed methodology provides a novel approach for monitoring and forecasting slope instability triggered by underground mining, offering significant implications for disaster prevention in similar mining contexts. Full article
(This article belongs to the Special Issue Rock Mechanics and Mining Engineering)
Show Figures

Figure 1

22 pages, 9767 KB  
Article
Freeze–Thaw-Induced Degradation Mechanisms and Slope Stability of Filled Fractured Rock Masses in Cold Region Open-Pit Mines
by Jun Hou, Penghai Zhang, Ning Gao, Wanni Yan and Qinglei Yu
Appl. Sci. 2025, 15(13), 7429; https://doi.org/10.3390/app15137429 - 2 Jul 2025
Cited by 1 | Viewed by 379
Abstract
In cold regions, the rock mass of open-pit mine slopes is continuously exposed to freeze–thaw (FT) environments, during which the fracture structures and their infilling materials undergo significant degradation, severely affecting slope stability and the assessment of service life. Conventional laboratory [...] Read more.
In cold regions, the rock mass of open-pit mine slopes is continuously exposed to freeze–thaw (FT) environments, during which the fracture structures and their infilling materials undergo significant degradation, severely affecting slope stability and the assessment of service life. Conventional laboratory FT tests are typically based on uniform temperature settings, which fail to reflect the actual thermal variations at different burial depths, thereby limiting the accuracy of mechanical parameter acquisition. Taking the Wushan open-pit mine as the engineering background, this study establishes a temperature–depth relationship, defines multiple thermal intervals, and conducts direct shear tests on structural plane filling materials under various FT conditions to characterize the evolution of cohesion and internal friction angle. Results from rock mass testing and numerical simulation demonstrate that shear strength parameters exhibit an exponential decline with increasing FT cycles and decreasing burial depth, with the filling material playing a dominant role in the initial stage of degradation. Furthermore, a two-dimensional fracture network model of the rock mass was constructed, and the representative elementary volume (REV) was determined through the evolution of equivalent plastic strain. Based on this, spatial assignment of slope strength was performed, followed by stability analysis. Based on regression fitting using 0–25 FT cycles, regression model predictions indicate that when the number of FT cycles exceeds 42, the slope safety factor drops below 1.0, entering a critical instability state. This research successfully establishes a spatial field of mechanical parameters and evaluates slope stability, providing a theoretical foundation and parameter support for the long-term service evaluation and stability assessment of cold-region open-pit mine slopes. Full article
(This article belongs to the Special Issue Rock Mechanics and Mining Engineering)
Show Figures

Figure 1

18 pages, 22803 KB  
Article
Strength Deterioration Pattern and Stability Evaluation of Open−Pit Mine Slopes in Cold Regions Under Freeze–Thaw Cycles
by Penghai Zhang, Ning Gao, Wanni Yan, Jun Hou and Honglei Liu
Appl. Sci. 2025, 15(9), 4853; https://doi.org/10.3390/app15094853 - 27 Apr 2025
Cited by 4 | Viewed by 571
Abstract
With the gradual depletion of mineral resources in temperate regions, cold regions have become primary areas for mineral extraction. However, the freeze–thaw phenomena induced by temperature fluctuations pose significant threats to the stability of rock masses on open−pit mine slopes, further affecting normal [...] Read more.
With the gradual depletion of mineral resources in temperate regions, cold regions have become primary areas for mineral extraction. However, the freeze–thaw phenomena induced by temperature fluctuations pose significant threats to the stability of rock masses on open−pit mine slopes, further affecting normal mining operations. To investigate the strength degradation and stability evolution patterns of freeze–thaw slope rock masses, this study takes the Wushan Open−Pit Mine as its engineering context. We analyzed the relationship between rock temperature and burial depth, conducted freeze–thaw cyclic tests under realistic temperature ranges, and developed a mechanical parameter characterization model for freeze–thaw rock masses by integrating the generalized Hoek–Brown strength criterion. Slope safety factors and potential landslide mechanisms were determined through numerical simulations and the strength reduction method. Key findings include the following: (1) Shallow rock temperatures exhibit high synchronization with atmospheric temperature, characterized by large fluctuations and rapid variation rates, whereas deep rock demonstrates opposite trends. (2) As freeze–thaw cycles increase and burial depth decreases, the internal friction angle and cohesion of slope rock masses follow negative exponential decay functions. After 20 freeze–thaw cycles, the internal friction angle and cohesion of rock at a 5.27 m depth decreased by 18.36% and 33.92%, respectively. In contrast, rock at a 0.10 m depth showed more severe reductions of 31.81% and 50.14%. (3) Increasing freeze–thaw cycles progressively lower the safety factors of slope benches, with potential slip surfaces displaying reduced average depths and curvature, alongside elevated dip angles. These findings provide critical insights for preventing freeze–thaw−induced landslide hazards in cold−region open−pit mine slopes. Full article
(This article belongs to the Special Issue Rock Mechanics and Mining Engineering)
Show Figures

Figure 1

Back to TopTop