Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (97)

Search Parameters:
Keywords = ratiometric fluorescent probe

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1833 KB  
Article
A Ratiometric Fluorescent Probe Based on CDs-Functionalized UiO-66 for Efficient Detection of Uric Acid
by Hongmei Gao, Yourong Zhao, Yuhong Xie, Yiying Wang, Jie Che, Daojiang Gao and Zhanglei Ning
Chemosensors 2025, 13(9), 340; https://doi.org/10.3390/chemosensors13090340 - 5 Sep 2025
Viewed by 463
Abstract
In this study, a novel carbon quantum dots-functionalized UiO-66 composite was successfully prepared via the post-synthetic modification method and further developed into a ratiometric fluorescent probe for detecting uric acid. The composite demonstrates excellent structural and luminescent stability under challenging environmental conditions. As [...] Read more.
In this study, a novel carbon quantum dots-functionalized UiO-66 composite was successfully prepared via the post-synthetic modification method and further developed into a ratiometric fluorescent probe for detecting uric acid. The composite demonstrates excellent structural and luminescent stability under challenging environmental conditions. As a ratiometric fluorescent probe, its recognition principle relies on the ratio of response signals from two different fluorescent emission centers in the composite. In the presence of uric acid, the fluorescence emission intensity at 430 nm from CDs did not change significantly. However, the fluorescence intensity at 545 nm from Tb3+ ions decreased remarkably. This material was evaluated for its capacity to sense urinary components and was shown to specifically recognize uric acid over a wide concentration range (0~5 × 10−3 M). Moreover, it exhibited strong resistance to interference and high sensitivity in uric acid detection. The detection limit (LOD) was determined to be 0.102 μM through quantitative analysis. The sensing mechanism was validated through spectral overlap and fluorescence lifetime analysis, which can be attributed to the fluorescence resonance energy transfer (FRET) process. This ratiometric fluorescent probe provides an efficient and reliable strategy for detecting the biomarker uric acid. Full article
Show Figures

Figure 1

19 pages, 3233 KB  
Article
A Galactose-Functionalized Pyrrolopyrrole Aza-BODIPY for Highly Efficient Detection of Eight Aliphatic and Aromatic Biogenic Amines: Monitoring Food Freshness and Bioimaging
by Yujing Gan, Bingli Lu, Jintian Zhong, Xueguagn Ran, Derong Cao and Lingyun Wang
Biosensors 2025, 15(8), 542; https://doi.org/10.3390/bios15080542 - 18 Aug 2025
Viewed by 648
Abstract
The detection of aliphatic and aromatic biogenic amines (BAs) is important in food spoilage, environmental monitoring, and disease diagnosis and treatment. Existing fluorescent probes predominantly detect aliphatic BAs with single signal variation and low sensitivity, impairing the adaptability of discriminative sensing platforms. Herein, [...] Read more.
The detection of aliphatic and aromatic biogenic amines (BAs) is important in food spoilage, environmental monitoring, and disease diagnosis and treatment. Existing fluorescent probes predominantly detect aliphatic BAs with single signal variation and low sensitivity, impairing the adaptability of discriminative sensing platforms. Herein, we present a visual chemosensor (galactose-functionalized pyrrolopyrrole aza-BODIPY, PPAB-Gal) that simultaneously detects eight aliphatic and aromatic BAs in a real-time and intuitive way based on their unique electronic and structural features. Our findings reveal that the dual colorimetric and ratiometric emission changes are rapidly produced in presence of eight BAs through a noncovalent interaction (π–π stacking and hydrogen bond)-assisted chromophore reaction. Specifically, other lone-pair electrons containing compounds, such as secondary amines, tertiary amines, NH3, and thiol, fail to exhibit these changes. As a result, superior sensing performances with distinctly dual signals (Δλab = 130 nm, Δλem = 150 nm), a low LOD (~25 nM), and fast response time (<2 min) were obtained. Based on these advantages, a qualitative and smartphone-assisted sensing platform with a PPAB-Gal-loaded TLC plate is developed for visual detection of putrescine and cadaverine vapor. More importantly, we construct a connection between a standard quantitative index for the TVBN value and fluorescence signals to quantitatively determine the freshness of tuna and shrimp, and the method is facile and convenient for real-time and on-site detection in practical application. Furthermore, since the overexpressed spermine is an important biomarker of cancer diagnosis and treatment, PPAB-Gal NPs can be used to ratiometrically image spermine in living cells. This work provides a promising sensing method for BAs with a novel fluorescent material in food safety fields and biomedical assays. Full article
Show Figures

Figure 1

12 pages, 2131 KB  
Article
Harnessing Excited-State Iminium Form in 1,5-Diaminonaphthalene for Rapid Water Detection in Organic Solvents
by Erika Kopcsik, Péter Kun and Miklós Nagy
Photochem 2025, 5(3), 22; https://doi.org/10.3390/photochem5030022 - 15 Aug 2025
Viewed by 429
Abstract
Accurate detection of water in organic solvents is essential for various industrial and analytical applications. In this study, we present a simple, rapid, and sensitive fluorescence-based method for water quantification using 1,5-diaminonaphthalene (1,5-DAN) as a solvatochromic probe. This method exploits the excited-state intramolecular [...] Read more.
Accurate detection of water in organic solvents is essential for various industrial and analytical applications. In this study, we present a simple, rapid, and sensitive fluorescence-based method for water quantification using 1,5-diaminonaphthalene (1,5-DAN) as a solvatochromic probe. This method exploits the excited-state intramolecular charge transfer (ICT) behavior of 1,5-DAN, which undergoes a symmetry-breaking transition in the presence of protic solvents such as water, leading to a distinct redshift in its emission spectrum and a change from a structured double-band to a single ICT band. We demonstrate that, in solvents like acetonitrile and tetrahydrofuran, the emission maxima of 1,5-DAN correlate linearly with water content up to 100%, while ratiometric analysis of peak intensities allows for sensitive detection in low concentration ranges. This method achieved limits of detection as low as 0.08% (v/v) in MeCN, with high reproducibility and minimal sample preparation. Application to a real MeCN–water azeotrope confirms the method’s accuracy, matching classical refractometric measurements. Our findings highlight the potential of 1,5-DAN as a low-cost, efficient, and non-destructive fluorescent sensor for monitoring moisture in organic solvents, offering a practical alternative to conventional methods such as Karl Fischer titration for both bulk and trace water analysis. Full article
Show Figures

Graphical abstract

21 pages, 2240 KB  
Review
A Review of Fluorescent pH Probes: Ratiometric Strategies, Extreme pH Sensing, and Multifunctional Utility
by Weiqiao Xu, Zhenting Ma, Qixin Tian, Yuanqing Chen, Qiumei Jiang and Liang Fan
Chemosensors 2025, 13(8), 280; https://doi.org/10.3390/chemosensors13080280 - 2 Aug 2025
Viewed by 1616
Abstract
pH is a critical parameter requiring precise monitoring across scientific, industrial, and biological domains. Fluorescent pH probes offer a powerful alternative to traditional methods (e.g., electrodes, indicators), overcoming limitations in miniaturization, long-term stability, and electromagnetic interference. By utilizing photophysical mechanisms—including intramolecular charge transfer [...] Read more.
pH is a critical parameter requiring precise monitoring across scientific, industrial, and biological domains. Fluorescent pH probes offer a powerful alternative to traditional methods (e.g., electrodes, indicators), overcoming limitations in miniaturization, long-term stability, and electromagnetic interference. By utilizing photophysical mechanisms—including intramolecular charge transfer (ICT), photoinduced electron transfer (PET), and fluorescence resonance energy transfer (FRET)—these probes enable high-sensitivity, reusable, and biocompatible sensing. This review systematically details recent advances, categorizing probes by operational pH range: strongly acidic (0–3), weakly acidic (3–7), strongly alkaline (>12), weakly alkaline (7–11), near-neutral (6–8), and wide-dynamic range. Innovations such as ratiometric detection, organelle-specific targeting (lysosomes, mitochondria), smartphone colorimetry, and dual-analyte response (e.g., pH + Al3+/CN) are highlighted. Applications span real-time cellular imaging (HeLa cells, zebrafish, mice), food quality assessment, environmental monitoring, and industrial diagnostics (e.g., concrete pH). Persistent challenges include extreme-pH sensing (notably alkalinity), photobleaching, dye leakage, and environmental resilience. Future research should prioritize broadening functional pH ranges, enhancing probe stability, and developing wide-range sensing strategies to advance deployment in commercial and industrial online monitoring platforms. Full article
Show Figures

Figure 1

14 pages, 2816 KB  
Article
A Colorimetric/Ratiometric Fluorescent Probe Based on Aggregation-Induced Emission Effect for Detecting Hypochlorous Acid in Real Samples and Bioimaging Applications
by Junliang Chen, Pingping Xiong, Huawei Niu, Weiwei Cao, Wenfen Zhang and Shusheng Zhang
Foods 2025, 14(14), 2491; https://doi.org/10.3390/foods14142491 - 16 Jul 2025
Cited by 2 | Viewed by 591
Abstract
Hypochlorous acid (HClO) serves as a biological mediator and is widely utilized as a disinfectant in food processing and water treatment. However, excessive HClO residues in food and environmental water raise concerns due to the potential formation of carcinogenic chlorinated byproducts and disinfection [...] Read more.
Hypochlorous acid (HClO) serves as a biological mediator and is widely utilized as a disinfectant in food processing and water treatment. However, excessive HClO residues in food and environmental water raise concerns due to the potential formation of carcinogenic chlorinated byproducts and disinfection byproducts (DBPs). Despite its importance, traditional methods for HClO detection often involve complex sample preparation, sophisticated instrumentation, and skilled operators. Herein, we report an aggregation-induced emission (AIE) small molecule fluorescent probe (NYV) that integrates colorimetric and ratiometric fluorescence responses for the detection of HClO. This probe exhibits high sensitivity, with a detection limit of 0.35 μM, a rapid response time of 1 min, and a wide linear range (0–142.5 μM), along with anti-interference capabilities, making it suitable for real-time monitoring. Furthermore, we have developed a portable solid-state sensor based on probe NYV for the rapid visual detection of HClO. The potential applications of this probe in real sample analysis and bioimaging experiments are demonstrated. Our findings contribute to the development of innovative fluorescent probes for HClO detection, with broad applications in food safety, environmental monitoring, and biomedical research on oxidative stress and ferroptosis. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Figure 1

18 pages, 4103 KB  
Article
Dual-Emitting Molecularly Imprinted Nanopolymers for the Detection of CA19-9
by Eduarda Rodrigues, Ana Xu, Rafael C. Castro, David S. M. Ribeiro, João L. M. Santos and Ana Margarida L. Piloto
Biomedicines 2025, 13(7), 1629; https://doi.org/10.3390/biomedicines13071629 - 3 Jul 2025
Viewed by 671
Abstract
Background/Objectives: Carbohydrate antigen 19-9 (CA19-9) is a clinically established biomarker primarily used for monitoring disease progression and recurrence in pancreatic and gastrointestinal cancers. Accurate and continuous quantification of CA19-9 in patient samples is critical for effective clinical management. This study aimed to develop [...] Read more.
Background/Objectives: Carbohydrate antigen 19-9 (CA19-9) is a clinically established biomarker primarily used for monitoring disease progression and recurrence in pancreatic and gastrointestinal cancers. Accurate and continuous quantification of CA19-9 in patient samples is critical for effective clinical management. This study aimed to develop dual-emitting molecularly imprinted nanopolymers (dual@nanoMIPs) for ratiometric and reliable detection of CA19-9 in serum. Methods: Dual-emitting nanoMIPs were synthesized via a one-step molecular imprinting process, incorporating both blue-emitting carbon dots (b-CDs) as internal reference fluorophores and yellow-emitting quantum dots (y-QDs) as responsive probes. The CA19-9 template was embedded into the polymer matrix to create specific recognition sites. Fluorescence measurements were carried out under 365 nm excitation in 1% human serum diluted in phosphate-buffered saline (PBS). Results: The dual@nanoMIPs exhibited a ratiometric fluorescence response upon CA19-9 binding, characterized by the emission quenching of the y-QDs at 575 nm, while the b-CDs emission remained stable at 467 nm. The fluorescence shift observed in the RGB coordinates from yellow to green in the concentration range of CA19-9 tested, improved quantification accuracy by compensating for matrix effects in serum. A linear detection range was achieved from 4.98 × 10−3 to 8.39 × 102 U mL−1 in serum samples, with high specificity and reproducibility. Conclusions: The dual@nanoMIPs developed in this work enable a stable, sensitive, and specific detection of CA19-9 in minimally processed serum, offering a promising tool for longitudinal monitoring of cancer patients. Its ratiometric fluorescence design enhances reliability, supporting clinical decision-making in the follow-up of pancreatic cancer. Full article
(This article belongs to the Special Issue Application of Biomedical Materials in Cancer Therapy)
Show Figures

Figure 1

20 pages, 5668 KB  
Article
A Hydrophobic Ratiometric Fluorescent Indicator Film Using Electrospinning for Visual Monitoring of Meat Freshness
by Xiaodong Zhai, Xingdan Ma, Yue Sun, Yuhong Xue, Wanwan Ban, Wenjun Song, Tingting Shen, Zhihua Li, Xiaowei Huang, Qing Sun, Kunlong Wu, Zhilong Chen, Wenwu Zou, Biao Liu, Liang Zhang and Jiaji Zhu
Foods 2025, 14(13), 2200; https://doi.org/10.3390/foods14132200 - 23 Jun 2025
Cited by 2 | Viewed by 796
Abstract
A ratiometric fluorescent film with high gas sensitivity and stability was developed using electrospinning technology for monitoring food spoilage. 5(6)-Carboxyfluorescein (5(6)-FAM) was used as the indicator, combined with the internal reference Rhodamine B (RHB), to establish a composite ratiometric fluorescent probe (FAM@RHB). The [...] Read more.
A ratiometric fluorescent film with high gas sensitivity and stability was developed using electrospinning technology for monitoring food spoilage. 5(6)-Carboxyfluorescein (5(6)-FAM) was used as the indicator, combined with the internal reference Rhodamine B (RHB), to establish a composite ratiometric fluorescent probe (FAM@RHB). The hydrophobic fluorescent films were fabricated by incorporating FAM@RHB probes into polyvinylidene fluoride (PVDF) at varying molar ratios through electrospinning. The FR-2 film with a 2:8 ratio of 5(6)-FAM to RHB exhibited the best performance, demonstrating excellent hydrophobicity with a water contact angle (WCA) of 113.45° and good color stability, with a ΔE value of 2.05 after 14 days of storage at 4 °C. Gas sensitivity tests indicated that FR-2 exhibited a limit of detection (LOD) of 0.54 μM for trimethylamine (TMA). In the application of monitoring the freshness of pork and beef at 4 °C, the fluorescence color of the FR-2 film significantly changed from orange–yellow to green, enabling the visual monitoring of meat freshness. Hence, this study provides a new approach for intelligent food packaging. Full article
(This article belongs to the Special Issue Novel Smart Packaging in Foods)
Show Figures

Figure 1

46 pages, 25492 KB  
Review
Recent Advancement in Fluorescent Probes for Peroxynitrite (ONOO)
by Hai-Hao Han, Pan-Xin Ge, Wen-Jia Li, Xi-Le Hu and Xiao-Peng He
Sensors 2025, 25(10), 3018; https://doi.org/10.3390/s25103018 - 10 May 2025
Cited by 3 | Viewed by 1767
Abstract
Peroxynitrite (ONOO) is a reactive nitrogen species (RNS) that plays pivotal roles in various physiological and pathological processes. The recent literature has seen significant progress in the development of highly sensitive and selective fluorescent probes applicable for monitoring ONOO dynamics [...] Read more.
Peroxynitrite (ONOO) is a reactive nitrogen species (RNS) that plays pivotal roles in various physiological and pathological processes. The recent literature has seen significant progress in the development of highly sensitive and selective fluorescent probes applicable for monitoring ONOO dynamics in live cells and a variety of animal models of human diseases. However, the clinical applications of those probes remain much less explored. This review delves into the biological roles of ONOO and summarizes the design strategies, sensing mechanisms, and bioimaging applications of near-infrared (NIR), long-wavelength, two-photon, and ratiometric fluorescent probes modified with a diverse range of functional groups responsive to ONOO. Furthermore, we will discuss the remaining problems that prevent the currently developed ONOO probes from translating into clinical practice. Full article
(This article belongs to the Special Issue Fluorescence Sensors for Biological and Medical Applications)
Show Figures

Figure 1

12 pages, 3925 KB  
Article
Ratiometric Fluorescent Probes Based on Isosteviol with Identification of Maleic Acid in Starchy Foods
by Xinye Qian, Chunling Zheng and Fang Zhang
Foods 2025, 14(9), 1541; https://doi.org/10.3390/foods14091541 - 28 Apr 2025
Viewed by 465
Abstract
The rigid saddle-shaped framework of isosteviol provides a unique host–guest recognition cavity. For the first time, we have utilized isosteviol to construct fluorescent probes 4 and 5, achieving highly selective recognition of maleic acid and fumaric acid. The experimental results indicated that neither [...] Read more.
The rigid saddle-shaped framework of isosteviol provides a unique host–guest recognition cavity. For the first time, we have utilized isosteviol to construct fluorescent probes 4 and 5, achieving highly selective recognition of maleic acid and fumaric acid. The experimental results indicated that neither probe 4 nor probe 5 exhibited significant fluorescence changes when exposed to fumaric acid. However, both probes demonstrated distinct ratiometric fluorescence responses upon interaction with maleic acid. For maleic acid, probes 4 and 5 showed detection limits of 4.14 × 10−6 M and 1.88 × 10−6 M, respectively. Density functional theory (DFT) calculations and 1H NMR spectroscopy revealed that probes 4 and 5 formed stable intermolecular hydrogen bonds with maleic acid, contributing to the observed changes in fluorescence signals. Furthermore, maleic acid was successfully detected in starch-rich dietary samples, including potatoes, sweet potatoes, and corn, utilizing the sensing capabilities of probes 4 and 5. In conclusion, probes 4 and 5 hold significant potential for the development of fluorescence-based recognition systems for fumaric acid and maleic acid. Full article
Show Figures

Figure 1

13 pages, 4116 KB  
Article
Excited-State-Altering Ratiometric Fluorescent Probes for the Response of β-Galactosidase in Senescent Cells
by Ya-Nan Han, Lei Dong, Lu-Lu Sun, Wen-Jia Li, Jianjing Xie, Congyu Li, Shuhui Ren, Zhan Zhang, Hai-Hao Han and Zhong Zhang
Molecules 2025, 30(6), 1221; https://doi.org/10.3390/molecules30061221 - 8 Mar 2025
Cited by 1 | Viewed by 1469
Abstract
β-galactosidase (β-Gal) has emerged as a pivotal biomarker for the comprehensive investigation of diseases associated with cellular senescence. The development of a fluorescent sensor is of considerable importance for precisely detecting the activity and spatial distribution of β-Gal. In [...] Read more.
β-galactosidase (β-Gal) has emerged as a pivotal biomarker for the comprehensive investigation of diseases associated with cellular senescence. The development of a fluorescent sensor is of considerable importance for precisely detecting the activity and spatial distribution of β-Gal. In this study, we developed two excited-state-altering responsive fluorescent sensors (TF1 and TF2) for ratiometric detection of β-Gal. Two TCF dyes, composed of tricyanofuran (TCF) and naphthol units, feature electron “pull–push” systems and are quenched fluorescence by β-Gal. Upon β-Gal hydrolysis, a significant ratiometric shift in absorption from ca. 475 nm to 630 nm is observed, accompanied by the emergence of a fluorescence signal at ca. 660 nm. The enzyme-responsive optical red-shifts are attributed to the excited-state transition from intramolecular charge transfer (ICT) state to local excited (LE) state, which was confirmed by density functional theory (DFT) calculations. Both fluorescent sensors display exceptional sensitivity and selectivity for the response of β-Gal in PBS solution and are capable of tracking β-Gal within senescent A549 cells. This study introduces a framework for developing multimodal optical probes by systematically modulating excited-state properties, demonstrating their utility in senescence studies, diagnostic assay design, and therapeutic assessment. Full article
(This article belongs to the Special Issue Fluorescent Probes in Biomedical Detection and Imaging)
Show Figures

Figure 1

10 pages, 3938 KB  
Article
Aggregachromic Fluorogenic Asymmetric Cyanine Probes for Sensitive Detection of Heparin and Protamine
by Anton Kostadinov, Aleksey Vasilev, Stanislav Baluschev and Katharina Landfester
Molecules 2025, 30(3), 570; https://doi.org/10.3390/molecules30030570 - 27 Jan 2025
Cited by 1 | Viewed by 994
Abstract
The precise and fast detection of heparin, the most widely used anticoagulant, remains a significant challenge for assessing its use in a clinical setting. In this work, we adapt a well-established asymmetric cyanine fluorogenic platform for the purpose of ultrasensitive heparin detection in [...] Read more.
The precise and fast detection of heparin, the most widely used anticoagulant, remains a significant challenge for assessing its use in a clinical setting. In this work, we adapt a well-established asymmetric cyanine fluorogenic platform for the purpose of ultrasensitive heparin detection in the presence of common interferant chemical species. Three analogous fluorescence probes are synthesized in order to optimize for the number of binding moieties. Their interaction with heparin is studied using steady-state absorption, fluorescence, and circular dichroism spectroscopy. The obtained probes exhibit a highly sensitive “turn-on” fluorescence response to heparin, with a LOD in the 10–25 nM range, well within practical requirement, as well as a visible colorimetric change. The heparin–probe complex is also employed as a sensitive detection platform for protamine, both in the “turn-off” fluorescence and ratiometric detection schemes. Full article
(This article belongs to the Section Analytical Chemistry)
Show Figures

Figure 1

14 pages, 3156 KB  
Article
Development of Sensitive R6G/AuNCs Ratiometric Fluorescent Probes for the Detection of Biogenic Amines in Fish Products
by Yutong Huang, Simiao Zhang, Mei Zhou, Xiaokang Xu, Weiqing Sun, Jing Ma and Long Wu
Int. J. Mol. Sci. 2025, 26(1), 139; https://doi.org/10.3390/ijms26010139 - 27 Dec 2024
Cited by 1 | Viewed by 985
Abstract
Biogenic amines (BAs), produced in fish and seafood due to microbial contamination, pose significant health risks. This study introduces a novel ratiometric fluorescent probe, synthesized by integrating rhodamine 6G(R6G) and gold nanoparticles (AuNCs), for the sensitive and specific detection of BAs. The probe [...] Read more.
Biogenic amines (BAs), produced in fish and seafood due to microbial contamination, pose significant health risks. This study introduces a novel ratiometric fluorescent probe, synthesized by integrating rhodamine 6G(R6G) and gold nanoparticles (AuNCs), for the sensitive and specific detection of BAs. The probe operates on the principle of BAs hydrolysis, catalyzed by diamine oxidase, to produce hydrogen peroxide (H2O2), which selectively quenches the fluorescence of AuNCs at 620 nm, while the fluorescence of R6Gat 533 nm remains unaffected. The ratio of I620/I553 demonstrated excellent linearity with a wide dynamic range (1–1000 μM) and a low detection limit of 0.1 μM. Validation using grass carp samples showed high recovery rates (97.57% to 104.29%), confirming the probe’s efficacy and potential for practical application in food safety monitoring. Full article
Show Figures

Figure 1

13 pages, 4995 KB  
Article
BODIPY-Based Ratiometric Fluorescent Probe for Sensing Peroxynitrite in Inflammatory Cells and Tissues
by Qian Wu, Ziwei Hu, Guoyang Zhang, Yulong Jin and Zhuo Wang
Biosensors 2024, 14(12), 638; https://doi.org/10.3390/bios14120638 - 22 Dec 2024
Cited by 2 | Viewed by 1745
Abstract
Peroxynitrite (ONOO) plays an important role in many physiological and pathological processes. Excessive ONOO in cells leads to oxidative stress and inflammation. However, precise monitoring of ONOO levels in specific organelles (e.g., mitochondria) is still lacking and urgently needed. [...] Read more.
Peroxynitrite (ONOO) plays an important role in many physiological and pathological processes. Excessive ONOO in cells leads to oxidative stress and inflammation. However, precise monitoring of ONOO levels in specific organelles (e.g., mitochondria) is still lacking and urgently needed. Herein, we rationally designed a mitochondria-targeted ratiometric fluorescent probe, MOBDP-I, for imaging of ONOO in the mitochondria of inflammatory cells and model mice. This probe, MOBDP-I, was synthesized by conjugating a BODIPY fluorophore to a mitochondria-targeting moiety–indole-salt group by a carbon–carbon double bond (C=C). In the presence of ONOO, the C=C bond between the BODIPY backbone and the indole-salt group was oxidized and broken, leading to an 18-fold enhancement of fluorescence at 510 nm, along with a significant fluorescence decrease at 596 nm. The ratiometric response property bestowed the probe with advantages in the precise quantification of ONOO in cells, thus allowing estimation of the extent of inflammation in living cells and mouse models of rheumatoid arthritis, peritonitis, and brain inflammation. MOBDP-I could act as an effective molecular tool to study the relationship between ONOO and the occurrence and development of inflammatory diseases. Full article
(This article belongs to the Special Issue State-of-the-Art Biosensors in China (2nd Edition))
Show Figures

Figure 1

19 pages, 7793 KB  
Article
A Ratiometric Fluorescence Method Based on PCN-224-DABA for the Detection of Se(IV) and Fe(III)
by Mao-Ling Luo, Guo-Ying Chen, Wen-Jia Li, Jia-Xin Li, Tong-Qing Chai, Zheng-Ming Qian and Feng-Qing Yang
Biosensors 2024, 14(12), 626; https://doi.org/10.3390/bios14120626 - 19 Dec 2024
Cited by 1 | Viewed by 1583
Abstract
In this study, 3,4-diaminobenzoic acid (DABA) was introduced into the porphyrin metal–organic framework (PCN-224) for the first time to prepare a ratiometric fluorescent probe (PCN-224-DABA) to quantitatively detect ferric iron (Fe(III)) and selenium (IV) (Se(IV)). The fluorescence attributed to the DABA of PCN-224-DABA [...] Read more.
In this study, 3,4-diaminobenzoic acid (DABA) was introduced into the porphyrin metal–organic framework (PCN-224) for the first time to prepare a ratiometric fluorescent probe (PCN-224-DABA) to quantitatively detect ferric iron (Fe(III)) and selenium (IV) (Se(IV)). The fluorescence attributed to the DABA of PCN-224-DABA at 345 nm can be selectively quenched by Fe(III) and Se(IV), but the fluorescence emission peak attributed to tetrakis (4-carboxyphenyl) porphyrin (TCPP) at 475 nm will not be disturbed. Therefore, the ratio of I345nm/I475nm with an excitation wavelength of 270 nm can be designed to determine Fe(III) and Se(IV). After the experimental parameters were systematically optimized, the developed method shows good selectivity and interference resistance for Fe(III) and Se(IV) detection, and has good linearity in the ranges of 0.01–4 μM and 0.01–15 μM for Fe(III) and Se(IV) with a limit of detection of 0.045 μM and 0.804 μM, respectively. Furthermore, the quenching pattern was investigated through the Stern–Volmer equation, and the results suggest that both Se(IV) and Fe(III) quenched on PCN-224-DABA can be attributed to the dynamic quenching. Finally, the constructed ratiometric fluorescent probe was applied in the spiked detection of lake water samples, which shows good applicability in real sample analysis. Moreover, the Fe(III) and Se(IV) contents in spinach and selenium-enriched rice were determined, respectively. Full article
Show Figures

Figure 1

13 pages, 4002 KB  
Article
A Ratiometric Fluorescence Probe for Visualized Detection of Heavy Metal Cadmium and Application in Water Samples and Living Cells
by Qijiang Xu, Wen Qin, Yanfei Qin, Guiying Hu, Zhiyong Xing and Yatong Liu
Molecules 2024, 29(22), 5331; https://doi.org/10.3390/molecules29225331 - 13 Nov 2024
Cited by 2 | Viewed by 1522
Abstract
Heavy metal cadmium (II) residuals have inflicted severe damage to human health and ecosystems. It has become imperative to devise straightforward and highly selective sensing methods for the detection of Cd2+. In this work, a ratiometric benzothiazole-based fluorescence probe (BQFA [...] Read more.
Heavy metal cadmium (II) residuals have inflicted severe damage to human health and ecosystems. It has become imperative to devise straightforward and highly selective sensing methods for the detection of Cd2+. In this work, a ratiometric benzothiazole-based fluorescence probe (BQFA) was effortlessly synthesized and characterized using standard optical techniques for the visual detection of Cd2+ with a change in color from blue to green, exhibiting a significant Stokes shift. Moreover, the binding ratio of BQFA to Cd2+ was established as 1:1 by the Job’s plot and was further confirmed by FT-IR and 1HNMR titrations. The ratiometric fluorescence response via the ICT mechanism was confirmed by DFT calculations. Furthermore, the limit of detection for detecting Cd2+ was determined to be 68 nM. Furthermore, it is noteworthy that BQFA showed good performance in real water samples, paper strips, smartphone colorimetric identification, and cell imaging. Full article
(This article belongs to the Section Analytical Chemistry)
Show Figures

Graphical abstract

Back to TopTop