Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (350)

Search Parameters:
Keywords = raw starch

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1472 KB  
Article
Cassava Starch–Onion Peel Powder Biocomposite Films: Functional, Mechanical, and Barrier Properties for Biodegradable Packaging
by Assala Torche, Toufik Chouana, Soufiane Bensalem, Meyada Khaled, Fares Mohammed Laid Rekbi, Elyes Kelai, Şükran Aşgın Uzun, Furkan Türker Sarıcaoğlu, Maria D’Elia and Luca Rastrelli
Polymers 2025, 17(19), 2690; https://doi.org/10.3390/polym17192690 (registering DOI) - 4 Oct 2025
Abstract
This study valorizes onion peel, an agro-industrial by-product rich in phenolic compounds and structural carbohydrates, for the development of cassava starch-based biodegradable films. The films were prepared using the solution casting method; a cassava starch matrix was mixed with a 2.5% glycerol solution [...] Read more.
This study valorizes onion peel, an agro-industrial by-product rich in phenolic compounds and structural carbohydrates, for the development of cassava starch-based biodegradable films. The films were prepared using the solution casting method; a cassava starch matrix was mixed with a 2.5% glycerol solution and heated to 85 °C for 30 min. A separate solution of onion peel powder (OPP) in distilled water was prepared at 25 °C. The two solutions were then combined and stirred for an additional 2 min before 25 mL of the final mixture was cast to form the films. Onion peel powder (OPP) incorporation produced darker and more opaque films, suitable for packaging light-sensitive foods. Film thickness increased with OPP content (0.138–0.218 mm), while moisture content (19.2–32.6%) and solubility (24.0–25.2%) decreased. Conversely, water vapor permeability (WVP) significantly increased (1.69 × 10−9–2.77 × 10−9 g·m−1·s−1·Pa−1; p < 0.0001), reflecting the hydrophilic nature of OPP. Thermal analysis (TGA/DSC) indicated stability up to 245 °C, supporting applications as food coatings. Morphological analysis (SEM) revealed OPP microparticles embedded in the starch matrix, with FTIR and XRD suggesting electrostatic and hydrogen–bond interactions. Mechanically, tensile strength improved (up to 2.71 MPa) while elongation decreased (14.1%), indicating stronger but less flexible films. Biodegradability assays showed slightly reduced degradation (29.0–31.8%) compared with the control (38.4%), likely due to antimicrobial phenolics inhibiting soil microbiota. Overall, OPP and cassava starch represent low-cost, abundant raw materials for the formulation of functional biopolymer films with potential in sustainable food packaging. Full article
(This article belongs to the Special Issue Applications of Biopolymer-Based Composites in Food Technology)
Show Figures

Figure 1

22 pages, 1956 KB  
Review
Development and Application Prospects of Biomass-Based Organic Binders for Pellets Compared with Bentonite
by Yu Liu, Wenguo Liu, Zile Peng, Jingsong Wang, Qingguo Xue and Haibin Zuo
Materials 2025, 18(19), 4553; https://doi.org/10.3390/ma18194553 - 30 Sep 2025
Abstract
With the low-carbon transformation of the steel industry, using low-carbon raw materials is one of the important ways to achieve the “dual carbon” goals. Pellets have great physical and chemical properties as low-carbon furnace materials, which can significantly reduce blast furnace carbon emissions, [...] Read more.
With the low-carbon transformation of the steel industry, using low-carbon raw materials is one of the important ways to achieve the “dual carbon” goals. Pellets have great physical and chemical properties as low-carbon furnace materials, which can significantly reduce blast furnace carbon emissions, exhibiting favorable overall environmental benefits. Increasing their proportion in the furnace is one of the important measures the steel industry can take to reduce carbon emissions. Binders play a critical role in the pelletizing process, and their properties directly influence pellet quality, thereby affecting the subsequent blast furnace smelting process. Compared with traditional bentonite, organic binders have become a potential alternative material due to their environmental friendliness, renewability, and ability to significantly reduce silica and alumina impurities in pellets while improving the iron grade. This work systematically elucidates the mechanism of organic binders, which primarily rely on the chemical adsorption of carboxyl groups and the hydrogen bonding of hydroxyl groups to enhance pellet strength, and then provides three typical examples of organic binders: lignosulfonate, carboxymethyl cellulose (CMC), and carboxymethyl starch (CMS). The common characteristic of these organic binders is that they are derived from renewable biomass through chemical modification, which is a derivative of biomass with renewable and abundant resources. However, the main problem with organic binders is that they burn and decompose at high temperatures. Current research has achieved technological breakthroughs in pellet quality by combining LD sludge, low-iron oxides, and nano-CaCO3, including improved iron grade, reduced reduction swelling index (RSI), and enhanced preheating/roasting strength. Future studies should focus on optimizing the molecular structure of organic binders by increasing the degree of substitution of functional groups and the overall degree of polymerization. This approach aims to replace traditional bentonite while exploring applications of composite industrial solid wastes, effectively addressing the high-temperature strength loss issues in organic binders and providing strong support for the steel industry to achieve the green and low-carbon goals. Full article
(This article belongs to the Topic Biomass for Energy, Chemicals and Materials)
17 pages, 4457 KB  
Article
The Genetic Loci Associated with Fiber Development in Upland Cotton (Gossypium hirsutum L.) Were Mapped by the BSA-Seq Technique
by Yanlong Yang, Fenglei Sun, Xin Wei, Zhengzheng Wang, Jun Ma, Dawei Zhang, Chunping Li, Chengxia Lai, Guoyong Fu and Youzhong Li
Plants 2025, 14(17), 2804; https://doi.org/10.3390/plants14172804 - 7 Sep 2025
Cited by 1 | Viewed by 559
Abstract
Cotton fiber quality improvement remains a fundamental challenge in breeding programs due to the complex genetic architecture underlying fiber development. The narrow genetic base of upland cotton (Gossypium hirsutum L.) and the quantitative nature of fiber quality traits necessitate innovative approaches for [...] Read more.
Cotton fiber quality improvement remains a fundamental challenge in breeding programs due to the complex genetic architecture underlying fiber development. The narrow genetic base of upland cotton (Gossypium hirsutum L.) and the quantitative nature of fiber quality traits necessitate innovative approaches for identifying and incorporating superior alleles from related species. We developed a BC6F2 population by introgressing chromosome segments from the sea island cotton variety Xinhai 36 (G. barbadense) into the upland cotton variety Xinluzhong 60 (G. hirsutum). Based on fiber strength phenotyping, we constructed two DNA bulks representing extreme phenotypes (20 superior and 12 inferior individuals) for bulked segregant analysis sequencing (BSA-Seq). High-throughput sequencing generated 225.13 Gb of raw data with average depths of 20× for parents and 30× for bulks. SNP calling and annotation were performed using GATK and ANNOVAR against the upland cotton reference genome (TM-1). BSA-Seq analysis identified 13 QTLs primarily clustered within a 1.6 Mb region (20.6–22.2 Mb) on chromosome A10. Within this region, we detected nonsynonymous mutation genes involving a total of six genes. GO and KEGG enrichment analyses revealed significant enrichment for carbohydrate metabolic processes, protein modification, and secondary metabolite biosynthesis pathways. Integration with transcriptome data prioritized GH_A10G1043, encoding a β-amylase family protein, as the key candidate gene. Functional validation through overexpression and RNAi knockdown in Arabidopsis thaliana demonstrated that GH_A10G1043 significantly regulates starch content and β-amylase activity, though without visible morphological alterations. This study successfully identified potential genomic regions and candidate genes associated with cotton fiber strength using chromosome segment substitution lines combined with BSA-Seq. The key candidate gene GH_A10G1043 provides a valuable target for marker-assisted selection in cotton breeding programs. Our findings establish a foundation for understanding the molecular mechanisms of fiber quality formation and offer genetic resources for developing superior cotton varieties with enhanced fiber strength. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

17 pages, 801 KB  
Article
Exploring Germination to Unlock the Nutritional Potential of Sorghum (Sorghum bicolor)
by Sara Margherita Borgonovi, Silvia Marzocchi, Federica Pasini, Alessandra Bordoni, Alberto Barbiroli, Alessandra Marti, Stefania Iametti and Mattia Di Nunzio
Molecules 2025, 30(17), 3622; https://doi.org/10.3390/molecules30173622 - 4 Sep 2025
Viewed by 886
Abstract
Thanks to its tolerance to drought, sorghum is a cereal crop that is extensively cultivated in the sub-Saharan region. Its good nutritional value makes it an interesting raw material for the food industry, although several anti-nutritional features pose a challenge to exploiting its [...] Read more.
Thanks to its tolerance to drought, sorghum is a cereal crop that is extensively cultivated in the sub-Saharan region. Its good nutritional value makes it an interesting raw material for the food industry, although several anti-nutritional features pose a challenge to exploiting its full potential. In this study, we evaluated whether the process of germination may represent a way of improving the macro- and micro-molecular profile of sorghum, lowering the content of anti-nutritional factors, and promoting the synthesis of bioactive compounds. Germination for 48 and especially 72 h promoted the hydrolysis of starch and proteins, enhanced antioxidant activity, increased the content of polyphenols, mainly flavonols and flavanones, and promoted the conversion of γ- to α-isomers of tocopherols. At the same time, it significantly reduced the concentration of phytates and linoleic acid, enhancing pepsin activity and contributing to the inaugural examination of the impact of sprouted sorghum on digestive protease activity. These findings could help to promote the utilization of sprouted sorghum as a premium ingredient for food products, providing significant nutritional advantages. Full article
Show Figures

Figure 1

24 pages, 1104 KB  
Article
Muffins Enriched with the Polysaccharide Fraction Residue After Isolation of Starch from Unripe Apples—Nutritional Composition, Profile of Phenolic Compounds, and Oxidation Stability
by Dorota Gumul, Marek Kruczek, Eva Ivanišová and Ivona Jančo
Appl. Sci. 2025, 15(17), 9720; https://doi.org/10.3390/app15179720 - 4 Sep 2025
Viewed by 536
Abstract
Apple by-products are a valuable raw material due to their high content of dietary fiber, minerals, and bioactive compounds, making them a promising functional ingredient in food products. The aim of this study was to evaluate the effect of adding a residue obtained [...] Read more.
Apple by-products are a valuable raw material due to their high content of dietary fiber, minerals, and bioactive compounds, making them a promising functional ingredient in food products. The aim of this study was to evaluate the effect of adding a residue obtained from the isolation of starch from unripe apples of the Pyros and Oliwka varieties on the nutritional composition, mineral content, polyphenol and fiber levels, and color of wheat muffins. Additionally, the oxidative stability was analyzed. The results showed that the addition of the residue significantly increased the total, soluble, and insoluble fiber content, as well as the protein content. The polysaccharide fraction residue from unripe Oliwka apples had a stronger impact on enhancing the fiber content of the muffins. In contrast, muffins enriched with the polysaccharide fraction residue from unripe Pyros apples exhibited higher levels of calcium, potassium, and magnesium, while the Oliwka residue increased the contents of sodium, strontium, and iron. The addition of the polysaccharide fraction residue significantly increased the levels of chlorogenic acid, phloridzin, quercetin, and procyanidin B1. Color analysis revealed a darkening effect in the muffins after the addition of the residue, and the oxidative stability decreased with increasing levels of the polysaccharide fraction residue. This study demonstrated that apple residues obtained after starch isolation can effectively enrich muffins with nutrients and health-promoting compounds; however, their impact on oxidative stability requires further investigation. Full article
(This article belongs to the Special Issue Food Polysaccharides: Chemistry, Technology and Applications)
Show Figures

Figure 1

16 pages, 1819 KB  
Article
Influence of Rice Physicochemical Properties on High-Quality Fresh Wet Rice Noodles: Amylose and Gel Consistency as Key Factors
by Dezhi Zhao, Yuanyuan Deng, Qi Huang, Guang Liu, Yan Zhang, Xiaojun Tang, Pengfei Zhou, Zhihao Zhao, Jiarui Zeng, Ying Liu and Ping Li
Gels 2025, 11(9), 696; https://doi.org/10.3390/gels11090696 - 2 Sep 2025
Viewed by 388
Abstract
Fresh wet rice noodles (FWRNs) are a popular staple food in southern China. The quality of rice varieties results in the inconsistent quality of FWRNs. However, evaluation of rice adaptability for the production of FWRNs is not comprehensive due to the absence of [...] Read more.
Fresh wet rice noodles (FWRNs) are a popular staple food in southern China. The quality of rice varieties results in the inconsistent quality of FWRNs. However, evaluation of rice adaptability for the production of FWRNs is not comprehensive due to the absence of unified screening standards. In this study, twelve rice varieties in southern China were selected to analyze the correlations between rice’s physicochemical properties and the quality characteristics of FWRNs. Results showed that KIM, GC, and IZG rice exhibited a high chalky grain rate and low gel consistency, while the related starches had a high amylose content, high setback value, and low short-range order. Their noodles achieved high total sensory scores and exhibited high levels of sensory and textural qualities. Correlation analysis revealed that the chalky grain rate, chalkiness degree, protein and fat contents, and amylose content were significantly and positively correlated with the hardness, elasticity, chewiness, and total sensory score of FWRNs. Therefore, based on the structural parameters of KIM and GC rice, amylose content between 26–28% and gel consistency between 33–36 mm would be the key factors for raw rice to make high-quality FWRNs. These results offer theoretical guidance for rice selection in the industrial-scale production of FWRNs. Full article
(This article belongs to the Special Issue State-of-the-Art Food Gels)
Show Figures

Graphical abstract

15 pages, 3594 KB  
Article
Physicochemical Characterization of Starch and Cellulose Nanofibers Extracted from Colocasia esculenta Cultivated in the Colombian Caribbean
by Sandra Milena Daza-Orsini, Carolina Medina-Jaramillo and Alex López-Córdoba
Polymers 2025, 17(17), 2354; https://doi.org/10.3390/polym17172354 - 29 Aug 2025
Viewed by 817
Abstract
This study explores the valorization of Colocasia esculenta roots (flesh and peels) as a source of biopolymers by isolating and characterizing starch and cellulose nanofibers. Fresh roots were sourced from the Colombian Caribbean, and a bromatological analysis was conducted to determine their composition. [...] Read more.
This study explores the valorization of Colocasia esculenta roots (flesh and peels) as a source of biopolymers by isolating and characterizing starch and cellulose nanofibers. Fresh roots were sourced from the Colombian Caribbean, and a bromatological analysis was conducted to determine their composition. Starch was extracted from the flesh (yield: 16.2 ± 0.5%) and characterized by a low amylose content (14.6 ± 0.9%) and a gelatinization temperature of 77.6 ± 0.3 °C. Granules showed spherical and polyhedral shapes and smooth, fissure-free surfaces. The median granule size (D50 = 12.2 ± 0.18 µm) exceeded several values reported for Colocasia esculenta from other regions. Cellulose nanofibers were isolated from peel byproducts (yield: 10.0 ± 1.4%), displaying dense fibrillar networks with diameters of 15–25 nm and lengths around 80 nm. FTIR analysis confirmed the presence of characteristic functional groups in both materials. Thermogravimetric analysis showed thermal degradation peaks at 320 °C for starch and 330 °C for nanocellulose. These findings demonstrate that Colocasia esculenta, an underutilized crop in the Colombian Caribbean, represents a promising and sustainable raw material for the development of bio-based polymers with suitable physicochemical, structural, and thermal properties. Full article
(This article belongs to the Special Issue Natural Polymers: Structure, Function and Application)
Show Figures

Graphical abstract

20 pages, 5198 KB  
Article
Expandable Gastroretentive Films Based on Anthocyanin-Rich Rice Starch for Improved Ferulic Acid Delivery
by Nattawipa Matchimabura, Jiramate Poolsiri, Nataporn Phadungvitvatthana, Rachanida Praparatana, Ousanee Issarachot and Ruedeekorn Wiwattanapatapee
Polymers 2025, 17(17), 2301; https://doi.org/10.3390/polym17172301 - 25 Aug 2025
Viewed by 1330
Abstract
Ferulic acid (FA) is a bioactive compound known for its potent antioxidant and anti-inflammatory properties; however, its poor water solubility significantly limits its bioavailability and therapeutic potential. In this study, a solid dispersion of FA (FA-SD) was developed using Eudragit® EPO via [...] Read more.
Ferulic acid (FA) is a bioactive compound known for its potent antioxidant and anti-inflammatory properties; however, its poor water solubility significantly limits its bioavailability and therapeutic potential. In this study, a solid dispersion of FA (FA-SD) was developed using Eudragit® EPO via the solvent evaporation method, achieving a 24-fold increase in solubility (42.7 mg/mL) at a 1:3 drug-to-polymer ratio. Expandable gastroretentive films were subsequently formulated using starches from Hom-Nil rice, glutinous rice, and white rice, combined with chitosan as the primary film-forming agents, via the solvent casting technique. Hydroxypropyl methylcellulose (HPMC) K100 LV was incorporated as an adjuvant to achieve controlled release. At optimal concentrations (3% w/w starch, 2% w/w chitosan, and 2% w/w HPMC), the films exhibited favorable mechanical properties, swelling capacity, and unfolding behavior. Sustained release of FA over 8 h was achieved in formulations containing HPMC with either Hom-Nil or glutinous rice starch. Among the tested formulations (R6, G6, and H6), those incorporating Hom-Nil rice starch demonstrated the most significant antioxidant (10.38 ± 0.23 μg/mL) and anti-inflammatory (9.26 ± 0.14 μg/mL) effects in murine macrophage cell line (RAW 264.7), surpassing the activities of both free FA and FA-SD. These results highlight the potential of anthocyanin-rich pigmented rice starch-based expandable films as effective gastroretentive systems for enhanced FA delivery. Full article
Show Figures

Graphical abstract

27 pages, 6633 KB  
Article
Effect of Lactic Acid Bacteria Fermentation Agent on the Structure, Physicochemical Properties, and Digestive Characteristics of Corn, Oat, Barley, and Buckwheat Starch
by Ziyi You, Jinpeng Wang, Wendi Teng, Ying Wang, Yuemei Zhang and Jinxuan Cao
Foods 2025, 14(16), 2904; https://doi.org/10.3390/foods14162904 - 21 Aug 2025
Viewed by 581
Abstract
This study modified corn, oat, barley, and buckwheat starches using a Henan-specific sourdough starter, revealing that the initial starch architecture governs differentiated functional transformations. Pore-dominant starches (corn/buckwheat) underwent “inside-out” enzymatic pathways—corn starch exhibited a 38.21% reduced particle size through pore expansion, with long [...] Read more.
This study modified corn, oat, barley, and buckwheat starches using a Henan-specific sourdough starter, revealing that the initial starch architecture governs differentiated functional transformations. Pore-dominant starches (corn/buckwheat) underwent “inside-out” enzymatic pathways—corn starch exhibited a 38.21% reduced particle size through pore expansion, with long amylopectin chain degradation forming thermally stable gels, establishing it as an ideal base for anti-staling sauces and frozen dough. Buckwheat starch demonstrated a 44% increased amylose content facilitated by porous structures, where post digestion double helix formation elevated the resistant starch (RS) content by 7%, achieving a significant 28.19% GI (Glycemic Index) reduction. Conversely, fissure-dominant starches (oat/barley) experienced “surface-inward” limited erosion—oat starch, constrained by surface cracks, showed amorphous region degradation and short-chain proliferation, accelerating glucose release and adapting it for rapid digestion products like energy bars. Barley starch primarily underwent amorphous zone modification, enhancing the pasting efficiency to provide raw materials for instant meal replacement powders. Full article
Show Figures

Figure 1

19 pages, 1899 KB  
Article
Effects of the Ratio of Alaskan Pollock Surimi to Wheat Flour on the Quality Characteristics and Protein Interactions of Innovative Extruded Surimi–Flour Blends
by Xinru Fan, Xinyue Zhang, Yingying Zhou, Maodong Song, Meng Li, Soottawat Benjakul, Zhibo Li and Qiancheng Zhao
Foods 2025, 14(16), 2851; https://doi.org/10.3390/foods14162851 - 17 Aug 2025
Viewed by 596
Abstract
Snack foods (e.g., extruded flour-based products) are widely favored by consumers because of their convenience, affordability, and time-saving attributes. However, with the growing demand for high-quality snacks, several challenges have emerged that hinder industry development, such as relatively underdeveloped industrial standards, limited raw [...] Read more.
Snack foods (e.g., extruded flour-based products) are widely favored by consumers because of their convenience, affordability, and time-saving attributes. However, with the growing demand for high-quality snacks, several challenges have emerged that hinder industry development, such as relatively underdeveloped industrial standards, limited raw material diversity (primarily starch and soy protein), and, consequently, insufficient nutritional value. In this study, a novel type of puffed snack was developed using Alaskan pollock surimi and wheat flour using extrusion puffing technology. The effects of varying ratios of surimi to wheat flour (0:10, 1:9, 2:8, 3:7, and 4:6, which served as SFBC, SFB1, SFB2, SFB3, and SFB4, respectively), on the physicochemical properties, apparent morphology, microstructure, thermal stability, and protein structure of spicy strips were systematically investigated, and the interaction between extruded protein and flour mixtures was analyzed. The results indicated that increasing the proportion of surimi led to decreases in hardness, elasticity, and chewiness, whereas the moisture content and water solubility index increased. The maximum expansion rate (202.2%) was observed in the SFB1 sample. Morphological and microstructural observations further revealed that a higher surimi content resulted in a denser internal structure and a reduced degree of puffing. The protein distribution was relatively uniform, with large pores. Moreover, increased surimi content increased the proportion of immobilized water and improved the thermal stability. These findings provide valuable insights into starch–protein-complex-based extrusion puffing technologies and contribute to the development of innovative surimi-based puffed food products. Full article
Show Figures

Figure 1

19 pages, 2264 KB  
Article
Comparative Evaluation of Puffing Effects on Physicochemical and Volatile Profiles of Brown and Refined Rice
by Xiaomei Liu, Yi Zhang, Kai Zhu, Fan Xie, Haoyu Si, Songheng Wu, Bingjie Chen, Qi Zheng, Xiao Wang, Yong Zhao and Yongjin Qiao
Foods 2025, 14(16), 2812; https://doi.org/10.3390/foods14162812 - 13 Aug 2025
Viewed by 475
Abstract
Rice has excellent nutritional quality as a dietary food and is easily puffed. The aim of this study was to investigate the effects of puffing technology on the physicochemical parameters, structure properties and volatile components of brown rice (BR) and refined rice (RR). [...] Read more.
Rice has excellent nutritional quality as a dietary food and is easily puffed. The aim of this study was to investigate the effects of puffing technology on the physicochemical parameters, structure properties and volatile components of brown rice (BR) and refined rice (RR). XRD and FT-IR spectroscopic data demonstrated that puffing under high temperature and pressure conditions triggered starch gelatinization, concurrently reducing starch crystallinity and inducing a V-type polymorphic structure. In addition, it substantially weakened hydrogen bonding networks in rice flour. In detail, 136 volatile compounds of raw and puffed rice were analyzed by HS-SPME-GC-MS, and the results showed that aldehydes, ketones, and pyrazines were the main volatile aroma compounds after puffing. By correlation analysis, benzaldehyde, 2-octenal, 2-methoxy-phenol, and furfural were identified as key contributors. The volatile components, especially ketones and alcohols, were higher in the BR as compared to those in the RR, with a significant difference observed between the two (p < 0.05). Combined with sensory evaluation, 1212CH was found to have a high score (17.63). These results could provide a theoretical basis for understanding the effect of puffing on rice flour and the volatile components of puffed products. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

17 pages, 2521 KB  
Article
Nutrient-Enriched Germinated Brown Rice Alters the Intestinal Ecological Network by Regulating Lipid Metabolism in Rats
by Chuanying Ren, Shuwen Lu, Shan Shan, Shan Zhang, Bin Hong, Di Yuan, Jingyi Zhang, Shiwei Gao, Qing Liu and Xiaobing Fan
Int. J. Mol. Sci. 2025, 26(16), 7693; https://doi.org/10.3390/ijms26167693 - 8 Aug 2025
Viewed by 604
Abstract
Metabolic diseases such as high blood lipids, high blood sugar, and disrupted gut microbiota pose a serious threat to people’s physical health. The occurrence of these diseases is closely related to the lack of nutrients in daily rice staple foods, but there is [...] Read more.
Metabolic diseases such as high blood lipids, high blood sugar, and disrupted gut microbiota pose a serious threat to people’s physical health. The occurrence of these diseases is closely related to the lack of nutrients in daily rice staple foods, but there is a lack of comprehensive analysis of the underlying mechanisms. This study used fully nutritious brown rice as raw material, and after germination under various stress conditions, it significantly increased the levels of gamma aminobutyric acid (GABA, four carbon non protein amino acid), resistant starch, flavonoids, and other components that regulate metabolic diseases. Using rats as experimental subjects, a model of hyperlipidemia and hyperglycemia was constructed, with rice consumption as the control. The experimental period was 8 weeks. Research has found that feeding sprouted brown rice can significantly improve the accumulation of white fat in the liver caused by a high-fat diet, significantly reduce TC, TG, LDL-C, apoB, HL, LPL, and LCAT, significantly increase HDL-C and apoA1, and significantly reduce the levels of inflammatory factors IL-6 and TNF-α. Therefore, consuming sprouted brown rice can reduce the risk of hyperlipidemia, inflammation, and tumor occurrence by promoting fat breakdown, and can also increase the abundance of metabolic-promoting microorganisms (especially Euryarchaeota and Lactobacillus) in the intestine, improving the entire metabolic ecological network of rats. Full article
Show Figures

Figure 1

17 pages, 2502 KB  
Article
Influence of Glutinous Rice Raw Material Characteristics on the Aroma Profile of Rice Wine
by Yue Wang, Kangjie Yu, Xiongjun Xiao, Jianxia Tan, Rui Liao, Cong Li, Siyu Li, Nian Liu and Yi Ma
Molecules 2025, 30(16), 3315; https://doi.org/10.3390/molecules30163315 - 8 Aug 2025
Viewed by 563
Abstract
Rice wine is a beverage rich in flavor, but the flavor difference caused by rice raw materials has received little attention. To determine the key aroma compounds in rice wine, four types of samples were analyzed by gas chromatography–mass spectrometry (GC–MS), gas chromatography–olfactometry [...] Read more.
Rice wine is a beverage rich in flavor, but the flavor difference caused by rice raw materials has received little attention. To determine the key aroma compounds in rice wine, four types of samples were analyzed by gas chromatography–mass spectrometry (GC–MS), gas chromatography–olfactometry (GC-O), and sensory evaluation. Thirty-eight aroma compounds were detected in the experiment, thirteen of which were identified and quantified using the internal standard method. Additionally, multivariate statistical analyses such as partial least squares discriminant analysis (PLS-DA) effectively revealed three major differential aroma components in rice wine (VIP value ≥ 1). Furthermore, by correlation analysis, it was found that starch and fat in the raw material properties of glutinous rice were significantly and positively correlated with the main differential volatile aroma components in rice wine (p < 0.05). Combined with principal component analysis (PCA), the selection of glutinous rice varieties associated with starch and lipid characteristics during the rice wine brewing process is conducive to improving the overall quality of rice wine. Full article
Show Figures

Figure 1

17 pages, 5354 KB  
Article
Carboxymethyl Polysaccharides/Montmorillonite Biocomposite Films and Their Sorption Properties
by Adrian Krzysztof Antosik, Marcin Bartkowiak, Magdalena Zdanowicz and Katarzyna Wilpiszewska
Polymers 2025, 17(15), 2130; https://doi.org/10.3390/polym17152130 - 1 Aug 2025
Viewed by 573
Abstract
The production of bionanocomposite films based on carboxymethyl derivatives of starch and cellulose with sodium montmorillonite (MMT-Na) as a filler was described. The developed films with high absorbency can be used in the preparation of adhesive dressings for wounds oozing as a result [...] Read more.
The production of bionanocomposite films based on carboxymethyl derivatives of starch and cellulose with sodium montmorillonite (MMT-Na) as a filler was described. The developed films with high absorbency can be used in the preparation of adhesive dressings for wounds oozing as a result of abrasions or tattoos. Carboxymethyl cellulose (CMC), carboxymethyl starch (CMS), and potato starch were used as the raw materials for film manufacturing. Citric acid was used as a crosslinking agent and glycerol as a plasticizer. The following parameters were evaluated for the obtained films: solubility in water, swelling behavior, moisture absorption, and mechanical durability (tensile strength, elongation at break, and Young’s modulus). This study revealed that filler concentration has a significant influence on the stability, durability, and moisture absorption parameters of films. The best nanocomposite with a high absorption capacity was a two-component film CMS/CMC containing 5 pph of sodium montmorillonite and can be used as a base material for wound dressing, among other applications. Full article
(This article belongs to the Section Innovation of Polymer Science and Technology)
Show Figures

Figure 1

13 pages, 553 KB  
Article
Biorefinery-Based Energy Recovery from Algae: Comparative Evaluation of Liquid and Gaseous Biofuels
by Panagiotis Fotios Chatzimaliakas, Dimitrios Malamis, Sofia Mai and Elli Maria Barampouti
Fermentation 2025, 11(8), 448; https://doi.org/10.3390/fermentation11080448 - 1 Aug 2025
Cited by 1 | Viewed by 752
Abstract
In recent years, biofuels and bioenergy derived from algae have gained increasing attention, fueled by the growing demand for renewable energy sources and the urgent need to lower CO2 emissions. This research examines the generation of bioethanol and biomethane using freshly harvested [...] Read more.
In recent years, biofuels and bioenergy derived from algae have gained increasing attention, fueled by the growing demand for renewable energy sources and the urgent need to lower CO2 emissions. This research examines the generation of bioethanol and biomethane using freshly harvested and sedimented algal biomass. Employing a factorial experimental design, various trials were conducted, with ethanol yield as the primary optimization target. The findings indicated that the sodium hydroxide concentration during pretreatment and the amylase dosage in enzymatic hydrolysis were key parameters influencing the ethanol production efficiency. Under optimized conditions—using 0.3 M NaOH, 25 μL/g starch, and 250 μL/g cellulose—fermentation yielded ethanol concentrations as high as 2.75 ± 0.18 g/L (45.13 ± 2.90%), underscoring the significance of both enzyme loading and alkali treatment. Biomethane potential tests on the residues of fermentation revealed reduced methane yields in comparison with the raw algal feedstock, with a peak value of 198.50 ± 25.57 mL/g volatile solids. The integrated process resulted in a total energy recovery of up to 809.58 kWh per tonne of algal biomass, with biomethane accounting for 87.16% of the total energy output. However, the energy recovered from unprocessed biomass alone was nearly double, indicating a trade-off between sequential valorization steps. A comparison between fresh and dried feedstocks also demonstrated marked differences, largely due to variations in moisture content and biomass composition. Overall, this study highlights the promise of integrated algal biomass utilization as a viable and energy-efficient route for sustainable biofuel production. Full article
(This article belongs to the Special Issue Algae Biotechnology for Biofuel Production and Bioremediation)
Show Figures

Figure 1

Back to TopTop