Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (27)

Search Parameters:
Keywords = reagent pyrolysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 9279 KB  
Article
Synthesis and Characterization of Potassium Bicarbonate and Urea-Modified Biochar from Rape Straw: Application in the Removal of Tetracycline from Aqueous Solution
by Zhipeng Zhang, Chenghan Tang, Hongbin Wang, Ming Zhong, Pengchao Ge, Wenlai Xu and Yiyang Chen
Water 2024, 16(17), 2522; https://doi.org/10.3390/w16172522 - 5 Sep 2024
Cited by 1 | Viewed by 1607
Abstract
Using rapeseed straw as a raw material and potassium bicarbonate (KHCO3) and urea (CO(NH2)2) as modification reagents, the pyrolysis raw materials were mixed in a certain proportion, and the unmodified biochar GBC800, KHCO3-modified biochar KGBC800, [...] Read more.
Using rapeseed straw as a raw material and potassium bicarbonate (KHCO3) and urea (CO(NH2)2) as modification reagents, the pyrolysis raw materials were mixed in a certain proportion, and the unmodified biochar GBC800, KHCO3-modified biochar KGBC800, and (KHCO3)/(CO(NH2)2) co-modified biochar N-KGBC800 were, respectively, prepared using the one-pot method at 800 °C. The physicochemical properties, such as surface morphology, pore characteristics, functional group distribution, and elemental composition of the three biochars, were characterized, and the adsorption performance and mechanism of the typical antibiotic tetracycline (TC) in water were studied. The results showed that the surface of GBC800 was smooth and dense, with no obvious pore structure, and both the specific surface area and total pore volume were small; the surface of KGBC800 showed an obvious coral-like three-dimensional carbon skeleton, the number of micropores and the specific surface area were significantly improved, and the degree of carbonization and aromatization was enhanced; N-KGBC800 had a coral-like three-dimensional carbon skeleton similar to KGBC800, and there were also many clustered carbon groups. The carbon layer changed significantly with interlayer gaps, presenting a multi-level porous structure. After N doping, the content of N increased, and new nitrogen-containing functional groups were formed. When the initial TC concentration was 100 mg/L, pH ≈ 3.4, the temperature was 25 °C, and the dosage of the three biochars was 0.15 g/L, the adsorption equilibrium was reached before 720 min. The adsorption capacities of GBC800, KGBC800, and N-KGBC800 for TC were 16.97 mg/g, 294.86 mg/g, and 604.71 mg/g, respectively. Fitting the kinetic model to the experimental data, the adsorption of TC by the three biochars was more in line with the pseudo-second-order adsorption kinetic model, and the adsorption isotherm was more in line with the Langmuir model. This adsorption process was a spontaneous endothermic reaction, mainly chemical adsorption, specifically involving multiple adsorption mechanisms such as pore filling, electrostatic attraction, hydrogen bonds, nπ interaction, Lewis acid–base interaction, ππ stacking, or cation −π interaction between the aromatic ring structure of the carbon itself and TC. A biochar-adsorption column was built to investigate the dynamic adsorption process of tetracycline using the three biochars against the background of laboratory pure water and salt water. The adsorption results show that the Thomas model and the Yoon–Nelson model both provide better predictions for dynamic adsorption processes. The modified biochars KGBC800 and N-KGBC800 can be used as preferred materials for the efficient adsorption of TC in water. Full article
(This article belongs to the Special Issue The Application of Electrochemical Methods in Water Treatment)
Show Figures

Figure 1

21 pages, 10198 KB  
Article
Transformation of Cu2O into Metallic Copper within Matrix of Carboxylic Cation Exchangers: Synthesis and Thermogravimetric Studies of Novel Composite Materials
by Elżbieta Kociołek-Balawejder, Katarzyna Winiarska, Juliusz Winiarski and Igor Mucha
Materials 2024, 17(16), 3893; https://doi.org/10.3390/ma17163893 - 6 Aug 2024
Cited by 3 | Viewed by 1488
Abstract
In order to systematize and expand knowledge about copper-containing composite materials as hybrid ion exchangers, in this study, fine metallic copper particles were dispersed within the matrix of a carboxyl cation exchanger (CCE) with a macroporous and gel-type structure thanks to the reduction [...] Read more.
In order to systematize and expand knowledge about copper-containing composite materials as hybrid ion exchangers, in this study, fine metallic copper particles were dispersed within the matrix of a carboxyl cation exchanger (CCE) with a macroporous and gel-type structure thanks to the reduction of Cu2O particles precipitated within the matrix earlier. It was possible to introduce as much as 22.0 wt% Cu0 into a gel-type polymeric carrier (G/H#Cu) when an ascorbic acid solution was used to act as a reducer of Cu2O and a reagent transforming the functional groups from Na+ into the H+ form. The extremely high shrinkage of the porous skeleton containing –COOH groups (in a wet and also dry state) and its limited affinity for water protected the copper from oxidation without the use of special conditions. When macroporous CCE was used as a host material, the composite material (M/H#Cu) contained 18.5 wt% Cu, and copper particles were identified inside the resin beads, but not on their surface where Cu2+ ions appeared during drying. Thermal analysis in an air atmosphere and under N2 showed that dispersing metallic copper within the resin matrix accelerated its decomposition in both media, whereby M/H#Cu decomposed faster than G/H#Cu. It was found that G/H#Cu contained 6.0% bounded water, less than M/H#Cu (7.5%), and that the solid residue after combustion of G/H#Cu and M/H#Cu was CuO (26.28% and 22.80%), while after pyrolysis the solid residue (39.35% and 26.23%) was a mixture of carbon (50%) and metallic copper (50%). The presented composite materials thanks to the antimicrobial, catalytic, reducing, deoxygenating and hydrophobic properties of metallic copper can be used for point-of-use and column water/wastewater treatment systems. Full article
(This article belongs to the Special Issue Advanced High-Performance Metal Matrix Composites (MMCs))
Show Figures

Graphical abstract

19 pages, 6399 KB  
Article
Influence of Carbonated Pyrolysis Oil Recycled from Scrap Tires on Metallurgical Efficiency of Coal Flotation
by Iman Hasanizadeh, Hamid Khoshdast, Mehdi Safari, Kaveh Asgari and Ahmad Rahmanian
Minerals 2024, 14(8), 765; https://doi.org/10.3390/min14080765 - 27 Jul 2024
Cited by 2 | Viewed by 1508
Abstract
This research assesses the effect of carbonated pyrolysis oil (CPO) derived from scrap car tires on the metallurgical efficiency of coal flotation as a flotation additive. Using a statistical experimental design, the influence of various operational variables, including solid percent of feed pulp [...] Read more.
This research assesses the effect of carbonated pyrolysis oil (CPO) derived from scrap car tires on the metallurgical efficiency of coal flotation as a flotation additive. Using a statistical experimental design, the influence of various operational variables, including solid percent of feed pulp and dosages of reagents, i.e., CPO as an additive, diesel oil as a collector, and pine oil as a frother, on the ash content and yield of the final concentrate were investigated. Experimental data vary significantly based on operational conditions, ranging from 6.6% ash content with a 15% yield to 19.1% ash content with a 76.8% yield. The composition of the pyrolysis oil was identified by using Fourier transform infrared spectroscopy (FTIR). The analysis of variance (ANOVA) of experimental results demonstrated that almost all variables had a substantial effect on the flotation responses, positive or negative, depending on the variable or variable interaction. It was discovered that the usage of CPO intensified the total yield and ash content of concentrate in a nonlinear fashion in a range of 15% and 4%, respectively. The results revealed a non-selective interaction effect between CPO and pine oil, as well as competitive adsorption between diesel oil and CPO, which contributed to the curved behavior of flotation measurements. The detrimental effect of CPO on the flotation response of the studied coal sample was also related to the interaction of the hydrophilic groups in the CPO structure and the oxide groups of ash material in coal particles. This work shows the potential of carbonated pyrolysis oil to enhance coal flotation performance and sheds light on the underlying mechanisms. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

12 pages, 1943 KB  
Article
Rearrangement of Arylsulfamates and Sulfates to Para-Sulfonyl Anilines and Phenols
by Yifei Zhou and Alan M. Jones
Molecules 2024, 29(7), 1445; https://doi.org/10.3390/molecules29071445 - 23 Mar 2024
Cited by 3 | Viewed by 2298
Abstract
The C(sp2)-aryl sulfonate functional group is found in bioactive molecules, but their synthesis can involve extreme temperatures (>190 °C or flash vacuum pyrolysis) and strongly acidic reaction conditions. Inspired by the 1917 Tyrer industrial process for a sulfa dye that [...] Read more.
The C(sp2)-aryl sulfonate functional group is found in bioactive molecules, but their synthesis can involve extreme temperatures (>190 °C or flash vacuum pyrolysis) and strongly acidic reaction conditions. Inspired by the 1917 Tyrer industrial process for a sulfa dye that involved an aniline N(sp2)-SO3 intermediate en route to a C(sp2)-SO3 rearranged product, we investigated tributylsulfoammonium betaine (TBSAB) as a milder N-sulfamation to C-sulfonate relay reagent. Initial investigations of a stepwise route involving TBSAB on selected anilines at room temperature enabled the isolation of N(sp2)-sulfamate. Subsequent thermal rearrangement demonstrated the intermediary of a sulfamate en route to the sulfonate; however, it was low-yielding. Investigation of the N-sulfamate to C--sulfonate mechanism through control experiments with variation at the heteroatom positions and kinetic isotope experiments (KIEH/D) confirmed the formation of a key N(sp2)-SO3 intermediate and further confirmed an intermolecular mechanism. Furthermore, compounds without an accessible nitrogen (or oxygen) lone pair did not undergo sulfamation- (or sulfation) -to-sulfonation under these conditions. A one-pot sulfamation and thermal sulfonation reaction was ultimately developed and explored on a range of aniline and heterocyclic scaffolds with high conversions, including N(sp2)-sulfamates (O(sp2)-sulfates) and C(sp2)-sulfonates, in up to 99 and 80% (and 88% for a phenolic example) isolated yield, respectively. Encouragingly, the ability to modulate the ortho-para selectivity of the products obtained was observed under thermal control. A sulfonated analog of the intravenous anesthetic propofol was isolated (88% yield), demonstrating a proof-of-concept modification of a licensed drug alongside a range of nitrogen- and sulfur-containing heterocyclic fragments used in drug discovery. Full article
Show Figures

Graphical abstract

13 pages, 2531 KB  
Article
Fractionation and Lability of Phosphorus Species in Cottonseed Meal-Derived Biochars as Influenced by Pyrolysis Temperature
by Mingxin Guo, Zhongqi He and Jing Tian
Molecules 2024, 29(2), 303; https://doi.org/10.3390/molecules29020303 - 6 Jan 2024
Cited by 5 | Viewed by 1962
Abstract
Defatted cottonseed meal (CSM), the residue of cottonseeds after oil extraction, is a major byproduct of the cotton industry. Converting CSM to biochar and utilizing the goods in agricultural and environmental applications may be a value-added, sustainable approach to recycling this byproduct. In [...] Read more.
Defatted cottonseed meal (CSM), the residue of cottonseeds after oil extraction, is a major byproduct of the cotton industry. Converting CSM to biochar and utilizing the goods in agricultural and environmental applications may be a value-added, sustainable approach to recycling this byproduct. In this study, raw CSM was transformed into biochar via complete batch slow pyrolysis at 300, 350, 400, 450, 500, 550, and 600 °C. Thermochemical transformation of phosphorus (P) in CSM during pyrolysis was explored. Fractionation, lability, and potential bioavailability of total P (TP) in CSM-derived biochars were evaluated using sequential and batch chemical extraction techniques. The recovery of feed P in biochar was nearly 100% at ≤550 °C and was reduced to <88% at 600 °C. During pyrolysis, the organic P (OP) molecules predominant in CSM were transformed into inorganic P (IP) forms, first to polyphosphates and subsequently to orthophosphates as promoted by a higher pyrolysis temperature. Conversion to biochar greatly reduced the mobility, lability, and bioavailability of TP in CSM. The biochar TP consisted of 9.3–17.9% of readily labile (water-extractable) P, 10.3–24.1% of generally labile (sequentially NaHCO3-extractable) P, 0.5–2.8% of moderately labile (sequentially NaOH-extractable) P, 17.0–53.8% of low labile (sequentially HCl-extractable) P, and 17.8–47.5% of residual (unextractable) P. Mehlich-3 and 1 M HCl were effective batch extraction reagents for estimating the “readily to mid-term” available and the “overall” available P pools of CSM-derived biochars, respectively. The biochar generated at 450 °C exhibited the lowest proportions of readily labile P and residual P compounds, suggesting 450 °C as the optimal pyrolysis temperature to convert CSM to biochar with maximal P bioavailability and minimal runoff risk. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

20 pages, 5498 KB  
Article
Asphaltenes from Ethylene Tar as a Potential Raw Material to Obtain High Value-Added Products
by Yulia Yu. Borisova, Alsu M. Minzagirova, Konstantin V. Shabalin, Vladimir I. Morozov, Dmitry N. Borisov and Makhmut R. Yakubov
Energies 2023, 16(21), 7376; https://doi.org/10.3390/en16217376 - 31 Oct 2023
Cited by 3 | Viewed by 2396
Abstract
Ethylene tar is the main byproduct of ethylene synthesis obtained via pyrolysis of hydrocarbon feedstock. With the growing demand for ethylene, the efficient use of ethylene tar is of great importance from both an economic and an ecological point of view. It contains [...] Read more.
Ethylene tar is the main byproduct of ethylene synthesis obtained via pyrolysis of hydrocarbon feedstock. With the growing demand for ethylene, the efficient use of ethylene tar is of great importance from both an economic and an ecological point of view. It contains significant amounts of polycyclic aromatic hydrocarbons, which can be designated as technogenic asphaltenes. Such polyaromatic structures can be isolated and used as a synthetic platform for modification and molecular engineering, similar to petroleum asphaltenes. In this study, the possibility of modifying technogenic asphaltenes by oxidizing reagents used previously for petroleum asphaltenes was shown for the first time. Technogenic asphaltenes contain significantly fewer heteroatomic structures and have a lower molecular weight compared to petroleum asphaltenes. The compositional features of technogenic asphaltenes ensure deeper oxidation with the formation of various O-containing products, whose properties can vary significantly depending on the reaction conditions. At the same time, the general patterns of oxidative modification of technogenic asphaltenes correspond to the oxidation processes of petroleum asphaltenes. The modification products obtained in this way can be used as sorbents, catalysts, fillers for polymers, adhesive additives for road bitumens, etc. Full article
(This article belongs to the Special Issue High Value-Added Utilization of Fossil Fuels)
Show Figures

Figure 1

17 pages, 4729 KB  
Article
Effect of Pretreatment on the Nitrogen Doped Activated Carbon Materials Activity towards Oxygen Reduction Reaction
by Galina Dobele, Ance Plavniece, Aleksandrs Volperts, Aivars Zhurinsh, Daina Upskuviene, Aldona Balciunaite, Vitalija Jasulaitiene, Gediminas Niaura, Martynas Talaikis, Loreta Tamasauskaite-Tamasiunaite, Eugenijus Norkus, Jannicke Kvello and Luis César Colmenares-Rausseo
Materials 2023, 16(17), 6005; https://doi.org/10.3390/ma16176005 - 31 Aug 2023
Cited by 3 | Viewed by 1872
Abstract
Nitrogen-doped activated carbons with controlled micro- and mesoporosity were obtained from wood and wastes via chemical processing using pre-treatment (pyrolysis at 500 °C and hydrothermally carbonization at 250 °C) and evaluated as oxygen reduction catalysts for further application in fuel cells. The elemental [...] Read more.
Nitrogen-doped activated carbons with controlled micro- and mesoporosity were obtained from wood and wastes via chemical processing using pre-treatment (pyrolysis at 500 °C and hydrothermally carbonization at 250 °C) and evaluated as oxygen reduction catalysts for further application in fuel cells. The elemental and chemical composition, structure and porosity, and types of nitrogen bonds of obtained catalyst materials were studied. The catalytic activity was evaluated in an alkaline medium using the rotating disk electrode method. It was shown that an increase in the volume of mesopores in the porous structure of a carbon catalyst promotes the diffusion of reagents and the reactions proceed more efficiently. The competitiveness of the obtained carbon materials compared to Pt/C for the reaction of catalytic oxygen reduction is shown. Full article
(This article belongs to the Special Issue Design and Characterization of Energy Catalytic Materials)
Show Figures

Figure 1

20 pages, 3893 KB  
Article
Non-Thermal Plasma Pyrolysis of Fuel Oil in the Liquid Phase
by Evgeniy Yurevich Titov, Ivan Vasilevich Bodrikov, Alexander Leonidovich Vasiliev, Yuriy Alekseevich Kurskii, Anna Gennadievna Ivanova, Andrey Leonidovich Golovin, Dmitry Alekseevich Shirokov, Dmitry Yurievich Titov and Evgenia Ruslanovna Bodrikova
Energies 2023, 16(10), 4017; https://doi.org/10.3390/en16104017 - 10 May 2023
Cited by 14 | Viewed by 2972
Abstract
A pulsed plasma pyrolysis reactor with an efficient control system was designed for fuel oil processing. Non-thermal plasma pyrolysis was carried out in the liquid phase at low temperatures (not higher than 100 °C) in a 300 cm3 reactor without additional reagents [...] Read more.
A pulsed plasma pyrolysis reactor with an efficient control system was designed for fuel oil processing. Non-thermal plasma pyrolysis was carried out in the liquid phase at low temperatures (not higher than 100 °C) in a 300 cm3 reactor without additional reagents or catalysts. The main process parameters and characteristics of non-thermal plasma fuel oil products were investigated within the DC source voltage range of 300–700 V. An increase in the energy of pulsed discharges led to an increase in the productivity of the plasma pyrolysis process and the yield of hydrogen but reduced the yield of acetylene and ethylene. The resulting gas consisted predominantly of hydrogen (46.5–50.0 mol%), acetylene (28.8–34.3 mol%), ethylene (7.6–8.6 mol%), methane (4.2–6.2 mol%), and C3–C5 hydrocarbons. The solid-phase products were in the form of disordered graphite and multilayer nanotubes. Full article
(This article belongs to the Special Issue Plasma Application in Fuel Conversion Processes)
Show Figures

Figure 1

22 pages, 1212 KB  
Article
Opportunities of Integrating Slow Pyrolysis and Chemical Leaching for Extraction of Critical Raw Materials from Sewage Sludge
by Andrea Salimbeni, Marta Di Bianca, Giacomo Lombardi, Andrea Maria Rizzo and David Chiaramonti
Water 2023, 15(6), 1060; https://doi.org/10.3390/w15061060 - 10 Mar 2023
Cited by 7 | Viewed by 3537
Abstract
Slow pyrolysis is a promising technology to convert sewage sludge into char: a stable solid product with high carbon and phosphorus content. However, due to its heavy metals content, char use in agriculture is avoided in many European Union (EU) countries. This study [...] Read more.
Slow pyrolysis is a promising technology to convert sewage sludge into char: a stable solid product with high carbon and phosphorus content. However, due to its heavy metals content, char use in agriculture is avoided in many European Union (EU) countries. This study aimed to test a solution, based on integrating slow pyrolysis and chemical leaching, to separate phosphorus and other inorganics from char, obtaining an inorganic P-rich fertiliser and a C-rich solid usable for industrial purposes. The sludge was first characterized and then processed in a 3 kg/h slow pyrolysis reactor at 450 °C for 30 min. The resulting char was processed by chemical leaching with acid (HCl, HNO3) and alkali (KOH) reagents to extract inorganic compounds. To optimize the inorganic extraction, three case studies have been considered. The char obtained from sewage sludge pyrolysis contained around 78% d.b. (dry basis) of inorganics, 14% d.b. of C, 14% d.b. of Al, and almost 5% d.b. of P. The leaching tests enabled to extract 100% of P, Mg, and Ca from the char. The remaining char contained mainly carbon (27%) and silica (42%), with a surface area of up to 70 m2/g, usable as adsorbent or precursor of sustainable materials. Full article
(This article belongs to the Special Issue Sewage Sludge: Treatment and Recovery)
Show Figures

Figure 1

10 pages, 1869 KB  
Article
Facile Functionalization of Charcoal by a Green Approach
by Aida Kiani, Giuseppe Valvano and Maria Rosaria Acocella
Crystals 2023, 13(3), 476; https://doi.org/10.3390/cryst13030476 - 9 Mar 2023
Cited by 2 | Viewed by 1745
Abstract
The ability of charcoal, a low-cost material derived from biomass pyrolysis, to be functionalized via cation exchange in an aqueous solution, providing new interesting fillers with possible antimicrobial and flame-retardant properties, is discussed here. The adducts obtained through this sustainable procedure, show a [...] Read more.
The ability of charcoal, a low-cost material derived from biomass pyrolysis, to be functionalized via cation exchange in an aqueous solution, providing new interesting fillers with possible antimicrobial and flame-retardant properties, is discussed here. The adducts obtained through this sustainable procedure, show a significant uptake of close to 30% by weight of well-known quaternary phosphonium salts, tetraphenyl phosphonium bromide, and dodecyl triphenyl phosphonium bromide. The new functionalized materials were characterized by elemental analysis, wide-angle X-ray diffraction, infrared spectroscopy, and thermogravimetry. Additionally, a study of changing the ratio between the reagents for both adducts was performed to improve salt uptake and optimize the cationic exchange. Dispersibility tests showed the ability of functionalization to deeply change the polarities of the carbon materials to modify the compatibility and improve the possible interactions with different media, such as different polymer matrices. Full article
Show Figures

Figure 1

24 pages, 25609 KB  
Article
Low-Temperature Carburization: Ex Situ Activation of Austenitic Stainless Steel
by Cyprian Illing, Zhe Ren and Frank Ernst
Metals 2023, 13(2), 335; https://doi.org/10.3390/met13020335 - 7 Feb 2023
Cited by 4 | Viewed by 2721
Abstract
Surface engineering of chromium-oxide-passivated alloys (e.g., stainless steels) by low-temperature infusion of interstitial solutes (carbon, nitrogen) from a gas phase requires “surface activation” by removing or perforating the passivating oxide film. We demonstrate a new approach for surface activation based on pyrolysis of [...] Read more.
Surface engineering of chromium-oxide-passivated alloys (e.g., stainless steels) by low-temperature infusion of interstitial solutes (carbon, nitrogen) from a gas phase requires “surface activation” by removing or perforating the passivating oxide film. We demonstrate a new approach for surface activation based on pyrolysis of a reagent powder, introduce advanced methodology to study its microstructure, and compare it to an established activation method. Rather than a bare alloy surface, stripped of its oxide, we find that an “activated” surface involves a reaction layer containing high concentrations of Cl, carbon, or nitrogen. We propose a model for the microscopic mechanism of surface activation that will enable future systematic development toward more effective process schemes. Full article
(This article belongs to the Special Issue Surface Engineering and Coating Tribology)
Show Figures

Figure 1

11 pages, 3070 KB  
Article
Crude Oil Pyrolysis Studies: Application to In Situ Superheat Steam Enhanced Oil Recovery
by Eric N. Coker, Burl Donaldson, Brian Hughes and Nadir Yilmaz
Energies 2023, 16(3), 1544; https://doi.org/10.3390/en16031544 - 3 Feb 2023
Cited by 8 | Viewed by 2480
Abstract
This work focuses on the occurrence and composition of flammable pyrolysis gases which can be expected from stimulation of heavy oil with superheat steam. These gases can have commodity value or be used to fire a conventional boiler to generate steam vapor for [...] Read more.
This work focuses on the occurrence and composition of flammable pyrolysis gases which can be expected from stimulation of heavy oil with superheat steam. These gases can have commodity value or be used to fire a conventional boiler to generate steam vapor for superheater feed. Seven oil samples taken from different US locations were tested via thermogravimetric analysis (TGA) with off-gas analysis of light hydrocarbons via mass spectrometry (MS). The samples were heated up to 500 °C at 5 °C/min in a gas flow of moist carbon dioxide and held at 500 °C until no further mass loss was noted. Then, carbonaceous residue was exposed to air at 500 °C to determine enthalpy of combustion by differential scanning calorimetry (DSC). To demonstrate that pyrolysis was indeed occurring and not simple de-volatilization, a high-molecular-weight reagent-grade organic molecule, lactose, was first demonstrated to produce components of interest. After treatment under moist CO2 at 500 °C, all samples were found to lose around 90% of mass, and the follow-up combustion process with air further reduced the residual mass to between 2% and 12%, which is presumed to be mineral matter and char. The light hydrocarbons methane, ethane, and propane, as well as hydrogen, were detected through MS during pyrolysis of each oil sample. Heavier hydrocarbons were not monitored but are assumed to have evolved, especially during periods where additional mass loss was occurring in the isothermal process, with minimal light hydrocarbon evolution. These results correspond to a possible concept of subsequent in situ combustion drive with or without heat scavenging following high-temperature pyrolysis from in situ superheat steam injection. Full article
(This article belongs to the Special Issue Enhanced Hydrocarbon Recovery)
Show Figures

Figure 1

16 pages, 21683 KB  
Article
Additive Manufacturing: Corrosion Proofing by Infusion of Interstitial Solute—Exemplified for Alloy 22
by Cyprian Illing, Michael Bestic and Frank Ernst
Metals 2023, 13(1), 127; https://doi.org/10.3390/met13010127 - 8 Jan 2023
Cited by 3 | Viewed by 2354
Abstract
The corrosion resistance of Cr-containing alloy parts made by additive manufacturing can be significantly improved by a post-treatment of gas-phase-based infusion of concentrated interstitial solute (carbon and nitrogen). We demonstrate this universal approach for the example of low-temperature nitrocarburization by solid-reagent pyrolysis applied [...] Read more.
The corrosion resistance of Cr-containing alloy parts made by additive manufacturing can be significantly improved by a post-treatment of gas-phase-based infusion of concentrated interstitial solute (carbon and nitrogen). We demonstrate this universal approach for the example of low-temperature nitrocarburization by solid-reagent pyrolysis applied to Alloy 22 (UNS N06022) parts made by laser powderbed fusion. We show that the post-treatment improves the crevice-corrosion resistance of these parts, as well as the corrosion resistance of corresponding parts made from wrought Alloy 22 to surpass the maximum crevice corrosion test temperature specified in ASTM G48-D, whereas non-treated samples typically fail well below. Similarly, cyclic potentiodynamic polarization testing (ASTM G61-86) demonstrates that the post-treatment makes the additively manufactured alloy and the wrought alloy more corrosion-resistant than the non-treated wrought alloy. Full article
Show Figures

Figure 1

9 pages, 1495 KB  
Article
Pyrolysis of Aesculus chinensis Bunge Leaves as for Extracted Bio-Oil Material
by Yiyang Li, Qian Ma, Guanyan Li, Junwei Lou, Xiangmeng Chen, Yifeng He and WanXi Peng
Polymers 2022, 14(22), 5003; https://doi.org/10.3390/polym14225003 - 18 Nov 2022
Cited by 9 | Viewed by 2319
Abstract
Biomass rapid pyrolysis technology is easy to implement in continuous production and industrial application, and has become one of the leading technologies in the field of world renewable energy development. Agricultural and forestry waste is an important resource of renewable energy in China. [...] Read more.
Biomass rapid pyrolysis technology is easy to implement in continuous production and industrial application, and has become one of the leading technologies in the field of world renewable energy development. Agricultural and forestry waste is an important resource of renewable energy in China. In general, abandoned leaves in forest areas cause serious waste of resources. Its utilization may help to settle the problems of energy deficiency and environment pollution. In this study, Aesculus chinensis Bunge leaves (A. Bunge) are used as the research object to study the pyrolysis and extract. The results showed that there are a lot of bioactive components in A. Bunge leaves extract, including acetamide, 5-hydroxymethylfurfural, R-limonene, d-mannose, and dihydroxyacetone. The active components of A. Bunge leaves supply scientific evidence for the exploration and exploitation of this plant. The pyrolysis products of A. Bunge leaves are rich in organic acids, aldehydes, and ketones, which means that A. Bunge leaves can be used as a crude material for the manufacturing of bio-oil or bio-fuel. The pyrolysis products include batilol, pregnenolone, benzoic acid, butyrolactone, and propanoic acid, which can be used in biological medicine, chemical crude materials, and industrial raw material reagents. Therefore, A. Bunge leaves can be used as a good crude material for bio-oil or biofuel production. Combining A. Bunge leaves and fast pyrolysis methods can effectively solve the problem of forestry and agricultural residues in the future. Full article
Show Figures

Figure 1

14 pages, 1228 KB  
Article
Humic Acids Formation during Compositing of Plant Remnants in Presence of Calcium Carbonate and Biochar
by Nataliya Orlova, Elena Orlova, Evgeny Abakumov, Kseniia Smirnova and Serafim Chukov
Agronomy 2022, 12(10), 2275; https://doi.org/10.3390/agronomy12102275 - 22 Sep 2022
Cited by 7 | Viewed by 2725
Abstract
The investigation of the mechanisms organic matter transformation in compost organic fertilizers is an urgent task of modern soil ecology and soil chemistry. The main components of such fertilizers are newly formed, weakly humified labile humic acids (HAs). The objective of the study [...] Read more.
The investigation of the mechanisms organic matter transformation in compost organic fertilizers is an urgent task of modern soil ecology and soil chemistry. The main components of such fertilizers are newly formed, weakly humified labile humic acids (HAs). The objective of the study is to determine the mechanism of converting the newly formed HAs into the forms with increased resistance to microbiological and biochemical influences. Obtained during the plant residues decomposition, HAs were studied in the incubation experiment (0, 30, 90 days). Calcium carbonate and biochar produced by rapid pyrolysis from birch and aspen wood, at 550 °C, were used as the composting mixture compounds. Decomposed plant residues—fresh aboveground mass of clover (Trifolium pratense L.), rye (Secale cereale L.), as well as dry oat straw (Avena sativa L.) were the material used for humification. To obtain Has, 0.1 M NaOH and 0.1 M Na4P2O7 were used. Then, HAs were separated from fulvic acids (FAs) using a 0.5 M H2SO4. The amount of labile HAs (HAs1) was estimated by their content in 0.1 M NaOH. The amount of stabilized HAs (HAs2) was calculated by the difference between the HAs content in 0.1 M Na4P2O7 and 0.1 M NaOH. Preparation of HAs for elemental composition and NMR analysis was performed according to the International Humic Substances Society’s recommendations. The possibility of converting newly formed HAs into stable forms (calcium humates), whose share in the HAs composition reaches 40–50%, has been shown. However, the mechanism of HAs transformation under the studied reagent’s influence was different. In the presence of calcium carbonate, it is caused by the physicochemical processes of newly formed HAs rearrangement. However, in the presence of biochar, this is due to the humification processes’ intensification and to the increase in the aromatization degree confirmed by the increase in the optical density, as well as by the increase in carbon and oxygen proportion, and by the decrease in hydrogen proportion in HAs molecules. The understanding of HAs formation and transformation mechanisms at the early humification stages can help to optimize the methods of obtaining organic fertilizers. Full article
Show Figures

Figure 1

Back to TopTop